Research article Special Issues

A new 4D hyperchaotic system and its control

  • Received: 28 July 2022 Revised: 21 September 2022 Accepted: 28 September 2022 Published: 13 October 2022
  • MSC : 34K18, 65P20

  • This paper presents a new four-dimensional (4D) hyperchaotic system by introducing a linear controller to 3D chaotic Qi system. Based on theoretical analysis and numerical simulations, the dynamical behaviors of the new system are studied including dissipativity and invariance, equilibria and their stability, quasi-periodic orbits, chaotic and hyperchaotic attractors. In addition, the Hopf bifurcation at the zero equilibrium point and hyperchaos control of the system are investigated. The numerical simulations, including phase diagram, Lyapunov exponent spectrum, bifurcations and Poincaré maps are carried out in order to analyze and verify the complex phenomena of the 4D hyperchaotic system.

    Citation: Ning Cui, Junhong Li. A new 4D hyperchaotic system and its control[J]. AIMS Mathematics, 2023, 8(1): 905-923. doi: 10.3934/math.2023044

    Related Papers:

  • This paper presents a new four-dimensional (4D) hyperchaotic system by introducing a linear controller to 3D chaotic Qi system. Based on theoretical analysis and numerical simulations, the dynamical behaviors of the new system are studied including dissipativity and invariance, equilibria and their stability, quasi-periodic orbits, chaotic and hyperchaotic attractors. In addition, the Hopf bifurcation at the zero equilibrium point and hyperchaos control of the system are investigated. The numerical simulations, including phase diagram, Lyapunov exponent spectrum, bifurcations and Poincaré maps are carried out in order to analyze and verify the complex phenomena of the 4D hyperchaotic system.



    加载中


    [1] O. Rössler, An equation for hyperchaos, Phys. Lett. A, 71 (1979), 155–157. https://doi.org/10.1016/0375-9601(79)90150-6 doi: 10.1016/0375-9601(79)90150-6
    [2] S. Zhang, T. Gao, A coding and substitution frame based on hyper-chaotic systems for secure communication, Nonlinear Dyn., 84 (2016), 833–849. https://doi.org/10.1007/s11071-015-2530-2 doi: 10.1007/s11071-015-2530-2
    [3] H. Li, Z. Hua, H. Bao, L. Zhu, M. Chen, B. Bao, Two-dimensional memristive hyperchaotic maps and application in secure communication, IEEE T. Ind. Electron., 68 (2021), 9931–9940. https://doi.org/10.1109/TIE.2020.3022539 doi: 10.1109/TIE.2020.3022539
    [4] Q. Li, H. Zeng, J. Li, Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria, Nonlinear Dyn., 79 (2015), 2295–2308. https://doi.org/10.1007/s11071-014-1812-4 doi: 10.1007/s11071-014-1812-4
    [5] Z. Wang, F. Min, E. Wang, A new hyperchaotic circuit with two memristors and its application in image encryption, AIP Adv., 6 (2016), 095316. https://doi.org/10.1063/1.4963743 doi: 10.1063/1.4963743
    [6] N. Fataf, S. Palit, S. Mukherjee, M. Said, D. Son, S. Banerjee, Communication scheme using a hyperchaotic semiconductor laser model: chaos shift key revisited, Eur. Phys. J. Plus, 132 (2017), 492. https://doi.org/10.1140/epjp/i2017-11786-y doi: 10.1140/epjp/i2017-11786-y
    [7] E. Barakat, M. Abdel-Aty, I. El-Kalla, Hyperchaotic and quasiperiodic behaviors of a two-photon laser with multi-intermediate states, Chaos Soliton. Fract., 152 (2021), 111316. https://doi.org/10.1016/j.chaos.2021.111316 doi: 10.1016/j.chaos.2021.111316
    [8] Q. Jia, Projective synchronization of a new hyperchaotic Lorenz system, Phys. Lett. A, 370 (2007), 40–45. https://doi.org/10.1016/j.physleta.2007.05.028 doi: 10.1016/j.physleta.2007.05.028
    [9] Y. Chen, Q. Yang, Dynamics of a hyperchaotic Lorenz-type system, Nonlinear Dyn., 77 (2014), 569–581. https://doi.org/10.1007/s11071-014-1318-0 doi: 10.1007/s11071-014-1318-0
    [10] J. Singh, B. Roy, Hidden attractors in a new complex generalised Lorenz hyperchaotic system, its synchronisation using adaptive contraction theory, circuit validation and application, Nonlinear Dyn., 92 (2018), 373–394. https://doi.org/10.1007/s11071-018-4062-z doi: 10.1007/s11071-018-4062-z
    [11] Q. Lai, Z. Wan, P. Kuate, H. Fotsin, Dynamical analysis, circuit implementation and synchronization of a new memristive hyperchaotic system with coexisting attractors, Mod. Phys. Lett. B, 35 (2021), 2150187. https://doi.org/10.1142/S0217984921501876 doi: 10.1142/S0217984921501876
    [12] K. Thamilmaran, M. Lakshmanan, A. Venkatesan, Hyperchaos in a modified canonical chua's circuit, Int. J. Bifurcat. Chaos, 14 (2004), 221–243. https://doi.org/10.1142/S0218127404009119 doi: 10.1142/S0218127404009119
    [13] M. Sahin, A. Demirkol, H. Guler, S. Hamamci, Design of a hyperchaotic memristive circuit based on wien bridge oscillator, Comput. Electr. Eng., 88 (2020), 106826. https://doi.org/10.1016/j.compeleceng.2020.106826 doi: 10.1016/j.compeleceng.2020.106826
    [14] M. Abdul Rahim, H. Natiq, N. Fataf, S. Banerjee, Dynamics of a new hyperchaotic system and multistability, Eur. Phys. J. Plus, 134 (2019), 499. https://doi.org/10.1140/epjp/i2019-13005-5 doi: 10.1140/epjp/i2019-13005-5
    [15] H. Natiq, S. Banerjee, S. He, M. Said, A. Kilicman, Designing an M-dimensional nonlinear model for producing hyperchaos, Chaos Soltion. Fract., 114 (2018), 506–515. https://doi.org/10.1016/j.chaos.2018.08.005 doi: 10.1016/j.chaos.2018.08.005
    [16] G. Qi, B. Wyk, M. Wyk, A four-wing attractor and its analysis, Chaos Soliton. Fract., 40 (2009), 2016–2030. https://doi.org/10.1016/j.chaos.2007.09.095 doi: 10.1016/j.chaos.2007.09.095
    [17] G. Qi, X. Liang, Mechanical analysis of Qi four-wing chaotic system, Nonlinear Dyn., 86 (2016), 1095–1106. https://doi.org/10.1007/s11071-016-2949-0 doi: 10.1007/s11071-016-2949-0
    [18] C. Xu, Q. Zhang, On the chaos control of the Qi system, J. Eng. Math., 90 (2015), 67–81. https://doi.org/10.1007/s10665-014-9730-5 doi: 10.1007/s10665-014-9730-5
    [19] G. Qi, J. Zhang, Energy cycle and bound of Qi chaotic system, Chaos Soliton. Fract., 99 (2017), 7–15. https://doi.org/10.1016/j.chaos.2017.03.044 doi: 10.1016/j.chaos.2017.03.044
    [20] X. Wang, Y. Zhang, Y. Gao, Hyperchaos generated from Qi system and its observer, Mod. Phys. Lett. B, 23 (2009), 963–974. https://doi.org/10.1142/S021798490901920X doi: 10.1142/S021798490901920X
    [21] X. Wang, Y. Gao, Y. Zhang, Hyperchaos Qi system, Int. J. Mod. Phys. B, 24 (2010), 4771–4778. https://doi.org/10.1142/S0217979210055895 doi: 10.1142/S0217979210055895
    [22] K. Sudheer, M. Sabir, Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters, Commun. Nonlinear Sci., 15 (2010), 4058–4064. https://doi.org/10.1016/j.cnsns.2010.01.014 doi: 10.1016/j.cnsns.2010.01.014
    [23] E. De Jesus, C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A, 35 (1987), 5288. https://doi.org/10.1103/PhysRevA.35.5288 doi: 10.1103/PhysRevA.35.5288
    [24] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2
    [25] X. Chen, Z. Jing, X. Fu, Chaos control in a pendulum system with excitations and phase shift, Nonlinear Dyn., 78 (2014), 317–327. https://doi.org/10.1007/s11071-014-1441-y doi: 10.1007/s11071-014-1441-y
    [26] C. Wang, H. Zhang, W. Fan, P. Ma, Finite-time function projective synchronization control method for chaotic wind power systems, Chaos Soliton. Fract., 135 (2020), 109756. https://doi.org/10.1016/j.chaos.2020.109756 doi: 10.1016/j.chaos.2020.109756
    [27] G. Yuan, S. Chen, S. Yang, Eliminating spiral waves and spatiotemporal chaos using feedback signal, Eur. Phys. J. B, 58 (2007), 331–336. https://doi.org/10.1140/epjb/e2007-00220-6 doi: 10.1140/epjb/e2007-00220-6
    [28] J. Zheng, A simple universal adaptive feedback controller for chaos and hyperchaos control, Comput. Math. Appl., 61 (2011), 2000–2004. https://doi.org/10.1016/j.camwa.2010.08.050 doi: 10.1016/j.camwa.2010.08.050
    [29] S. Sajjadi, D. Baleanu, A. Jajarmi, H. Pirouz, A new adaptive synchronization and hyperchaos control of a biological snap oscillator, Chaos Soliton. Fract., 138 (2020), 109919. https://doi.org/10.1016/j.chaos.2020.109919 doi: 10.1016/j.chaos.2020.109919
    [30] H. Jahanshahi, A. Yousefpour, Z. Wei, R. Alcaraz, S. Bekiros, A financial hyperchaotic system with coexisting attractors: dynamic investigation, entropy analysis, control and synchronization, Chaos Soliton. Fract., 126 (2019), 66–77. https://doi.org/10.1016/j.chaos.2019.05.023 doi: 10.1016/j.chaos.2019.05.023
    [31] F. Chien, A. Roy Chowdhury, H. Saberi Nik, Competitive modes and estimation of ultimate bound sets for a chaotic dynamical financial system, Nonlinear Dyn., 106 (2021), 3601–3614. https://doi.org/10.1007/s11071-021-06945-8 doi: 10.1007/s11071-021-06945-8
    [32] H. Saberi Nik, S. Effati, J. Saberi-Nadjafi, New ultimate bound sets and exponential finite-time synchronization for the complex Lorenz system, J. Complexity, 31 (2015), 715–730. https://doi.org/10.1016/j.jco.2015.03.001 doi: 10.1016/j.jco.2015.03.001
    [33] M. Zahedi, H. Saberi Nik, Bounds of the chaotic system for couette-Taylor flow and its application in finite-time control, Int. J. Bifurcat. Chaos, 25 (2015), 1550133. https://doi.org/10.1142/S0218127415501333 doi: 10.1142/S0218127415501333
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1750) PDF downloads(146) Cited by(10)

Article outline

Figures and Tables

Figures(13)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog