Research article

On two backward problems with Dzherbashian-Nersesian operator

  • Received: 30 July 2022 Revised: 24 September 2022 Accepted: 30 September 2022 Published: 12 October 2022
  • MSC : 33E12, 34A08, 65M32, 65N21, 80A23

  • We investigate the initial-boundary value problems for a fourth-order differential equation within the powerful fractional Dzherbashian-Nersesian operator (FDNO). Boundary conditions considered in this manuscript are of the Samarskii-Ionkin type. The solutions obtained here are based on a series expansion using Riesz basis in a space corresponding to a non-self-adjoint spectral problem. Conditional to some regularity, consistency, alongside orthogonality dependence, the existence and uniqueness of the obtained solutions are exhibited by using Fourier method. Acquired results here are more general than those obtained by making use of conventional fractional operators such as fractional Riemann-Liouville derivative (FRLD), fractional Caputo derivative (FCD) and fractional Hilfer derivative (FHD).

    Citation: Anwar Ahmad, Dumitru Baleanu. On two backward problems with Dzherbashian-Nersesian operator[J]. AIMS Mathematics, 2023, 8(1): 887-904. doi: 10.3934/math.2023043

    Related Papers:

  • We investigate the initial-boundary value problems for a fourth-order differential equation within the powerful fractional Dzherbashian-Nersesian operator (FDNO). Boundary conditions considered in this manuscript are of the Samarskii-Ionkin type. The solutions obtained here are based on a series expansion using Riesz basis in a space corresponding to a non-self-adjoint spectral problem. Conditional to some regularity, consistency, alongside orthogonality dependence, the existence and uniqueness of the obtained solutions are exhibited by using Fourier method. Acquired results here are more general than those obtained by making use of conventional fractional operators such as fractional Riemann-Liouville derivative (FRLD), fractional Caputo derivative (FCD) and fractional Hilfer derivative (FHD).



    加载中


    [1] K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Amsterdam: Elsevier, 1974.
    [2] R. Metzler, J. Jeon, A. Cherstvy, E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16 (2014), 24128–24164. https://doi.org/10.1039/c4cp03465a doi: 10.1039/c4cp03465a
    [3] L. Dorčák, J. Terpák, I. Podlubny, L. Pivka, Methods for monitoring heat flow intensity in the blast furnace wall, Metalurgija, 49 (2010), 75–78.
    [4] J. Klafter, I. Sokolov, Anomalous diffusion spreads its wings, Phys. World, 18 (2005), 29–32. https://doi.org/10.1088/2058-7058/18/8/33 doi: 10.1088/2058-7058/18/8/33
    [5] R. Magin, Fractional calculus in bioengineering, Redding: Begell House, 2006.
    [6] A. Freed, K. Diethelm, Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad, Biomech. Model. Mechan., 5 (2006), 203–215. https://doi.org/10.1007/s10237-005-0011-0 doi: 10.1007/s10237-005-0011-0
    [7] J. Bai, X. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492–2502. https://doi.org/10.1109/tip.2007.904971 doi: 10.1109/tip.2007.904971
    [8] R. Marks, M. Hall, Differintegral interpolation from a bandlimited signal's samples, IEEE Transactions on Acoustics, Speech, and Signal Processing, 29 (1981), 872–877. https://doi.org/10.1109/tassp.1981.1163636 doi: 10.1109/tassp.1981.1163636
    [9] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x doi: 10.1111/j.1365-246x.1967.tb02303.x
    [10] I. Podlubny, Fractional-order systems and fractional-order controllers, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, 12 (1994), 1–18.
    [11] R. Gorenflo, G. De Fabritiis, F. Mainardi, Discrete random walk models for symmetric Lévy-Feller diffusion processes, Physica A, 269 (1999), 79–89. https://doi.org/10.1016/s0378-4371(99)00082-5 doi: 10.1016/s0378-4371(99)00082-5
    [12] R. Gorenflo, A. Vivoli, Fully discrete random walks for space-time fractional diffusion equations, Signal Process., 83 (2003), 2411–2420. https://doi.org/10.1016/s0165-1684(03)00193-2 doi: 10.1016/s0165-1684(03)00193-2
    [13] S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives: theory and applications, New York: Gordon and Breach Science Publishers, 1993.
    [14] D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional calculus: models and numerical methods, New Jersey: World Scientific, 2011. https://doi.org/10.1142/10044
    [15] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [16] J. Gómez-Aguilar, B. Dumitru, Fractional transmission line with losses, Z. Naturforsch. A, 69 (2014), 539–546. https://doi.org/10.5560/zna.2014-0049 doi: 10.5560/zna.2014-0049
    [17] M. Dzhrbashyan, A. Nersesyan, Fractional derivatives and the Cauchy problem for fractional differential equations, Izv. Acad. Sci. Arm. SSR Mat, 3 (1968), 3–28.
    [18] M. Dzherbashian, A. Nersesian, Fractional derivatives and Cauchy problem for differential equations of fractional order, Fract. Calc. Appl. Anal., 23 (2020), 1810–1836. https://doi.org/10.1515/fca-2020-0090 doi: 10.1515/fca-2020-0090
    [19] A. Ahmad, M. Ali, S. A. Malik, Inverse problems for diffusion equation with fractional Dzherbashian-Nersesian operator, Fract. Calc. Appl. Anal., 24 (2021), 1899–1918. https://doi.org/10.1515/fca-2021-0082 doi: 10.1515/fca-2021-0082
    [20] E. Karimov, M. Ruzhansky, B. Toshtemirov, Solvability of the boundaryvalue problem for a mixed equation involving hyper-Bessel fractional differential operator and bi-ordinal Hilfer fractional derivative, Math. Meth. Appl. Sci., in press. https://doi.org/10.1002/mma.8491
    [21] E. Karimov, B. Toshtemirov, On a time-nonlocal boundary value problem for time-fractional partial differential equation, International Journal of Applied Mathematics, 35 (2022), 423–438.
    [22] F. Neto, A. Neto, An introduction to inverse problems with applications, New York: Springer, 2013. https://doi.org/10.1007/978-3-642-32557-1
    [23] A. Berdyshev, A. Cabada, B. Kadirkulov, The Samarskii-Ionkin type problem for the fourth order parabolic equation with fractional differential operator, Comput. Math. Appl., 62 (2011), 3884–3893. https://doi.org/10.1016/j.camwa.2011.09.038 doi: 10.1016/j.camwa.2011.09.038
    [24] S. Aziz, S. Malik, Identification of an unknown source term for a time fractional fourth-order parabolic equation, Electron. J. Differ. Equ., 2016 (2016), 1–20.
    [25] M. Ali, S. Aziz, S. Malik, Inverse source problem for a space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 21 (2018), 844–863. https://doi.org/10.1515/fca-2018-0045 doi: 10.1515/fca-2018-0045
    [26] M. Ali, S. Aziz, S. Malik, Inverse problem for a space-time fractional diffusion equation: application of fractional Sturm-Liouville operator, Math. Method. Appl. Sci., 41 (2018), 2733–2747. https://doi.org/10.1002/mma.4776 doi: 10.1002/mma.4776
    [27] M. Ali, S. Aziz, Some inverse problems for time‐fractional diffusion equation with nonlocal Samarskii‐Ionkin type condition, Math. Method. Appl. Sci., 44 (2021), 8447–8462. https://doi.org/10.1002/mma.6330 doi: 10.1002/mma.6330
    [28] M. Ali, S. Malik, An inverse problem for a family of two parameters time fractional diffusion equations with nonlocal boundary conditions, Math. Method. Appl. Sci., 40 (2017), 7737–7748. https://doi.org/10.1002/mma.4558 doi: 10.1002/mma.4558
    [29] D. Murio, Time fractional IHCP with Caputo fractional derivatives, Comput. Math. Appl., 56 (2008), 2371–2381. https://doi.org/10.1016/j.camwa.2008.05.015 doi: 10.1016/j.camwa.2008.05.015
    [30] G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time fractional diffusion equation, Inverse Problems, 29 (2013), 065014. https://doi.org/10.1088/0266-5611/29/6/065014 doi: 10.1088/0266-5611/29/6/065014
    [31] A. Berdyshev, B. Kadirkulov, On a nonlocal problem for a fourth-order parabolic equation with the fractional Dzhrbashyan-Nersesyan operator, Diff. Equat., 52 (2016), 122–127. https://doi.org/10.1134/s0012266116010109 doi: 10.1134/s0012266116010109
    [32] G. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha}(x)$, C. R. Acad. Sci. Paris, 137 (1903), 554–558.
    [33] A. Wiman, Über de fundamental satz in der theorie der funktionen $E_{\alpha}(x)$, Acta Math., 29 (1905), 191–201. https://doi.org/10.1007/bf02403202 doi: 10.1007/bf02403202
    [34] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Amsterdam: Elsevier, 1999.
    [35] N. Ionkin, Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition, Diff. Equat., 13 (1977), 204–211.
    [36] M. Ali, S. Malik, An inverse problem for a family of time fractional diffusion equations, Inverse Probl. Sci. Eng., 25 (2017), 1299–1322. https://doi.org/10.1080/17415977.2016.1255738 doi: 10.1080/17415977.2016.1255738
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1339) PDF downloads(99) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog