Research article

On certain inclusion relations of functions with bounded rotations associated with Mittag-Leffler functions

  • Received: 26 November 2021 Revised: 08 February 2022 Accepted: 13 February 2022 Published: 17 February 2022
  • MSC : 46S40, 47H10, 54H25

  • Inspired essentially by the excellence of the implementations of the Mittag-Leffler functions in numerous areas of science and engineering, the authors present, in a unified manner, a detailed account of the Mittag-Leffler function and generalized Mittag-Leffler functions and their interesting and useful characteristics. Besides that, we have used generalized Mittag-Leffler functions to define some novel classes associated with bounded boundary and bounded radius rotations. Moreover, several inclusion relations and radius results, along with some integral preserving properties of these newly constructed classes have been investigated. Our derived results are analogous to some of those already present in the literature. The results showed that the proposed findings procedure is dependable and meticulous in presenting the tendencies of subordination, super-ordination and fractional operators techniques.

    Citation: Bushra Kanwal, Saqib Hussain, Thabet Abdeljawad. On certain inclusion relations of functions with bounded rotations associated with Mittag-Leffler functions[J]. AIMS Mathematics, 2022, 7(5): 7866-7887. doi: 10.3934/math.2022440

    Related Papers:

  • Inspired essentially by the excellence of the implementations of the Mittag-Leffler functions in numerous areas of science and engineering, the authors present, in a unified manner, a detailed account of the Mittag-Leffler function and generalized Mittag-Leffler functions and their interesting and useful characteristics. Besides that, we have used generalized Mittag-Leffler functions to define some novel classes associated with bounded boundary and bounded radius rotations. Moreover, several inclusion relations and radius results, along with some integral preserving properties of these newly constructed classes have been investigated. Our derived results are analogous to some of those already present in the literature. The results showed that the proposed findings procedure is dependable and meticulous in presenting the tendencies of subordination, super-ordination and fractional operators techniques.



    加载中


    [1] A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. https://doi.org/10.2298/FIL1607075A doi: 10.2298/FIL1607075A
    [2] A. A. Attiya, M. K. Aouf, E. E. Ali, M. F. Yassen, Differential subordination and superordination results associated with Mittag-Leffler function, Mathematics, 9 (2021), 226. https://doi.org/10.3390/math9030226 doi: 10.3390/math9030226
    [3] A. A. Attiya, E. E. Ali, T. S. Hassan, A. M. Albalahi, On some relationships of certain k-uniformly analytic functions associated with Mittag-Leffler function, J. Funct. space., 2021 (2021), 6739237. https://doi.org/10.1155/2021/6739237 doi: 10.1155/2021/6739237
    [4] K. O. Babalola, On certain analytic functions of bounded boundary rotation, 2009. arXiv: 0910.3787.
    [5] C. Baishya, P. Veeresha, Laguerre polynomial-based operational matrix of integration for solving fractional differential equations with non-singular kernel, P. Roy. Soc. A, 477 (2021). https://doi.org/10.1098/rspa.2021.0438 doi: 10.1098/rspa.2021.0438
    [6] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446. https://doi.org/10.1090/S0002-9947-1969-0232920-2 doi: 10.1090/S0002-9947-1969-0232920-2
    [7] D. A. Brannan, On functions of bounded boundary rotation I, P. Edinburgh Math. Soc., 16 (1969), 339–347. https://doi.org/10.1017/S001309150001302X doi: 10.1017/S001309150001302X
    [8] T. Bulboaca, Classes of first-order differential subordinations, Demonstr. Math., 35 (2002), 287–392. https://doi.org/10.1515/dema-2002-0209 doi: 10.1515/dema-2002-0209
    [9] S. Bulut, Mapping properties of some classes of analytic functions under certain integral operators, J. Math., 2013 (2013), 541964. https://doi.org/10.1155/2013/541964 doi: 10.1155/2013/541964
    [10] A. W. Goodman, Univalent functions, Vol I and II, 1983.
    [11] R. Gorenflo, A. A. Kilbas, S. Rogosin, On the generalized Mittag-Leffler type functions, Integr. Transf. Spec. F., 7 (1998), 215–224. https://doi.org/10.1080/10652469808819200 doi: 10.1080/10652469808819200
    [12] W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Pol. Math., 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326 doi: 10.4064/ap-28-3-297-326
    [13] B. Kanwal, K. I. Noor, S. Hussain, Properties of certain classes of holomorphic functions related to strongly janowski type function, J. Math., 2021 (2021), 1806174. https://doi.org/10.1155/2021/1806174 doi: 10.1155/2021/1806174
    [14] R. J. Libera, Some classes or regular univalent functions, P. Am. Math. Soc., 16 (1965), 755–758. https://doi.org/10.2307/2033917 doi: 10.2307/2033917
    [15] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [16] K. I. Noor, Some radius of convexity problems for analytic functions of bounded boundary rotations, Punjab Univ. J. Math., XXI (1988), 71–81.
    [17] K. I. Noor, On radii of convexity and starlikeness of some classes of analytic functions, Internat. J. Math. Math. Sci., 14 (1991), 741–746. https://doi.org/10.1155/S016117129100100X doi: 10.1155/S016117129100100X
    [18] K. I. Noor, B. Malik, S. Z. H. Bukhari, Some applications of certain integral operators involving functions with bounded radius rotations, Tamkang J. Math., 49 (2018), 25–34. https://doi.org/10.5556/j.tkjm.49.2018.2369 doi: 10.5556/j.tkjm.49.2018.2369
    [19] K. I. Noor, Applications of certain operators to the classes related with generalized janowski functions, Integr. Transf. Spec. F., 21 (2010), 557–567. https://doi.org/10.1080/10652460903424261 doi: 10.1080/10652460903424261
    [20] K. I. Noor, S. Hussain, On certain analytic functions associated with ruscheweyh derivatives and bounded mocanu variation, J. Math. Annal. Appl., 340 (2008), 1145–1152. https://doi.org/10.1016/j.jmaa.2007.09.038 doi: 10.1016/j.jmaa.2007.09.038
    [21] V. Paatero, Uber die konforme abbildungen von gebieten deren rander von beschrankter drehung sind, Ann. Acad. Sci. Fenn. Ser. A, 33 (1931), 1–77.
    [22] K. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Pol. Math., 31 (1976), 311–323. https://doi.org/10.4064/ap-31-3-311-323 doi: 10.4064/ap-31-3-311-323
    [23] B. Pinchuk, Functions with bounded boundary rotation, Israel J. Math., 10 (1971), 6–16. https://doi.org/10.1007/BF02771515 doi: 10.1007/BF02771515
    [24] S. Ponnusamy, S. K. Sahoo, T. Sugawa, Hornich operations on functions of bounded boundary rotations of order $\alpha$, Comput. Methods Funct. Theory, 19 (2019), 455–472. https://doi.org/10.1007/s40315-019-00276-x doi: 10.1007/s40315-019-00276-x
    [25] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator contaning a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput, 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055
    [26] T. Skovranek, The Mittag-Leffler fitting of the phillips curve, Mathematics, 7 (2019), 589. https://doi.org/10.3390/math7070589 doi: 10.3390/math7070589
    [27] P. Veeresha, D. G. Prakasha, Abdel-Hateem Abdel-Aty, H. Singh, E. E. Mahmoud, S. Kumar, An efficient approach for fractional nonlinear chaotic model with Mittag-Leffler law, J. King Saud Univ. Sci., 33 (2021), 101347. https://doi.org/10.1016/j.jksus.2021.101347 doi: 10.1016/j.jksus.2021.101347
    [28] P. Veeresha, D. G. Prakasha, D. Baleanu, An efficient technique for fractional coupled system arisen in magnetothermoelasticity With rotation using Mittag–Leffler Kernel, J. Comput. Nonlinear Dynam., 16 (2021), 011002. https://doi.org/10.1115/1.4048577 doi: 10.1115/1.4048577
    [29] P. Veeresha, D. G. Prakasha, J. Singh, D. Kumar D. Baleanu, Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory, Chinese J. Phys., 68 (2020), 65–78. https://doi.org/10.1016/j.cjph.2020.08.023 doi: 10.1016/j.cjph.2020.08.023
    [30] P. Veeresha, D. G. Prakasha, J. Singh, I. Khan, D. Kumar, Analytical approach for fractional extended Fisher–Kolmogorov equation with Mittag-Leffler kernel, Adv. Differ. Equ., 2020 (2020), 174. https://doi.org/10.1186/s13662-020-02617-w doi: 10.1186/s13662-020-02617-w
    [31] M. F. Yassen, A. A. Attiya, P. Agarwal, Subordination and superordination properties of certain family of analytic fucntions associated with Mittag-Leffler function, Symmetry, 12 (2020), 1724. https://doi.org/10.3390/sym12101724 doi: 10.3390/sym12101724
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1555) PDF downloads(104) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog