This paper aimed to further introduce the finite element analysis of non-smooth data for semilinear stochastic subdiffusion problems driven by fractionally integrated additive noise. The mild solution of this stochastic model consisted of three different Mittag-Leffler functions. We analyzed the smoothness of the solution and utilized complex integration to approximate the error of the solution operator under non-smooth data. Consequently, optimal convergence estimates were obtained, and we also obtained the continuity conditions of the mild solution. Finally, the influence of the fractional parameters $ \alpha $ and $ \gamma $ on the convergence rates were accurately demonstrated through numerical examples.
Citation: Fang Cheng, Ye Hu, Mati ur Rahman. Analyzing the continuity of the mild solution in finite element analysis of semilinear stochastic subdiffusion problems[J]. AIMS Mathematics, 2024, 9(4): 9364-9379. doi: 10.3934/math.2024456
This paper aimed to further introduce the finite element analysis of non-smooth data for semilinear stochastic subdiffusion problems driven by fractionally integrated additive noise. The mild solution of this stochastic model consisted of three different Mittag-Leffler functions. We analyzed the smoothness of the solution and utilized complex integration to approximate the error of the solution operator under non-smooth data. Consequently, optimal convergence estimates were obtained, and we also obtained the continuity conditions of the mild solution. Finally, the influence of the fractional parameters $ \alpha $ and $ \gamma $ on the convergence rates were accurately demonstrated through numerical examples.
[1] | B. Baeumer, M. Geissert, M. Kovács, Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise, J. Differ. Equations, 258 (2015), 535–554. https://doi.org/10.1016/j.jde.2014.09.020 doi: 10.1016/j.jde.2014.09.020 |
[2] | Z. Q. Chen, K. H. Kim, P. Kim, Fractional time stochastic partial differential equations, Stoch. Proc. Appl., 125 (2015), 1470–1499. https://doi.org/10.1016/j.spa.2014.11.005 doi: 10.1016/j.spa.2014.11.005 |
[3] | C. M. Elliott, S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comp., 58 (1992), 603–630. |
[4] | H. Fujita, T. Suzuki, Evolution problems, In Handbook of Numerical Analysis, North-Holland, Amsterdam, 2 (1991), 789–928. |
[5] | B. T. Jin, Y. B. Yan, Z. Zhou, Numerical approximation of stochastic time-fractional diffusion, ESAIM: M2AN, 53 (2019), 1245–1268. https://doi.org/10.1051/m2an/2019025 doi: 10.1051/m2an/2019025 |
[6] | M. Kovács, S. Larsson, F. Saedpanah, Mittag-Leffler Euler integrator for a stochastic fractional order equation with additive noise, SIAM J. Numer. Anal., 58 (2020), 66–85. https://doi.org/10.1137/18M1177895 doi: 10.1137/18M1177895 |
[7] | R. Kruse, Strong and weak approximation of semilinear stochastic evolution equations, Springer, Berlin, 2016. |
[8] | Y. Hu, C. P. Li, Y. Yan, Weak convergence of the L1 scheme for a stochastic subdiffusion problem driven by fractionally integrated additive noise, Appl. Numer. Math., 178 (2022), 192–215. https://doi.org/10.1016/j.apnum.2022.04.004 doi: 10.1016/j.apnum.2022.04.004 |
[9] | Y. Hu, Y. Yan, Shahzad Sarwar, Strong approximation of stochastic semilinear subdiffusion and superdiffusion driven by fractionally integrated additive noise, Numer. Meth. Part. D. E., 2023. https://doi.org/10.1002/num.23068 |
[10] | X. C. Li, X. Y. Yang, Error estimates of finite element methods for stochastic fractional differential equations, J. Comput. Math., 35 (2017), 346–362. https://doi.org/10.4208/jcm.1607-m2015-0329 doi: 10.4208/jcm.1607-m2015-0329 |
[11] | G. D. Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992. https://doi.org/10.1017/CBO9780511666223 |
[12] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[13] | J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., 70 (2024), 489–511. https://doi.org/10.1007/s12190-023-01975-4 doi: 10.1007/s12190-023-01975-4 |
[14] | X. J. Wang, R. S. Qi, A note on an accelerated exponential Euler method for parabolic SPDEs with additive noise, Appl. Math. Lett., 46 (2015), 31–37. https://doi.org/10.1016/j.aml.2015.02.001 doi: 10.1016/j.aml.2015.02.001 |
[15] | X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972 |
[16] | X. H. Yang, Z. M. Zhang, Q. Zhang, G. W. Yuan, Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2 doi: 10.1007/s11071-022-07399-2 |
[17] | Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), 1363–1384. https://doi.org/10.1137/040605278 doi: 10.1137/040605278 |
[18] | V. Thomée, Galerkin finite element methods for parabolic problems, Springer-Verlag, Berlin, 2007. |
[19] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, New York, 1993. |
[20] | H. X. Zhang, Y. Liu, X. H. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69 (2023), 651–674. https://doi.org/10.1007/s12190-022-01760-9 doi: 10.1007/s12190-022-01760-9 |