Research article

Combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers

  • Received: 29 December 2023 Revised: 29 February 2024 Accepted: 05 March 2024 Published: 07 March 2024
  • MSC : 05A19, 11B65

  • In this work, by means of the generating function method and the De Moivre's formula, we derive some interesting combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers. One of them confirms the formula proposed recently by Svinin (2022).

    Citation: Yulei Chen, Yingming Zhu, Dongwei Guo. Combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers[J]. AIMS Mathematics, 2024, 9(4): 9348-9363. doi: 10.3934/math.2024455

    Related Papers:

  • In this work, by means of the generating function method and the De Moivre's formula, we derive some interesting combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers. One of them confirms the formula proposed recently by Svinin (2022).



    加载中


    [1] Z. Akyuz, S. Halici, On some combinatorial identities involving the terms of generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat., 42 (2013), 431–435.
    [2] L. Carlitz, A Fibonacci array, Fibonacci Quart., 1 (1963), 17–28.
    [3] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and enlarged edition, D. Reidel Publishing Company, Dordrecht, 1974.
    [4] D. Guo, Summation formulae involving Stirling and Lah numbers, Forum Math., 32 (2020), 1407–1414. https://doi.org/10.1515/forum-2020-0108 doi: 10.1515/forum-2020-0108
    [5] D. Guo, W. Chu, Binomial Sums with Pell and Lucas Polynomials, Bull. Belg. Math. Soc. Simon Stevin, 28 (2021), 133–145. https://doi.org/10.36045/j.bbms.200525 doi: 10.36045/j.bbms.200525
    [6] D. Guo, W. Chu, Inverse Tangent Series Involving Pell and Pell-Lucas Polynomials, Math. Slovaca, 72 (2022), 869–884. https://doi.org/10.1515/ms-2022-0059 doi: 10.1515/ms-2022-0059
    [7] H. W. Gould, Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, West Virginia, Morgantown Printing and Binding Co., 1972.
    [8] T. Koshy, Fibonacci and Lucas Numbers with Applications, New York: Wiley, 2001.
    [9] D. Merlini, R. Sprugnoli, M. C. Verri, The method of coefficients, Amer. Math. Monthly, 114 (2007), 40–57. https://doi.org/10.1080/00029890.2007.11920390 doi: 10.1080/00029890.2007.11920390
    [10] A. K. Svinin, Problem H-895, Fibonacci Quart., 60 (2022), P185.
    [11] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science (2nd ed.), Addison–Wesley Publ. Company, Reading, Massachusetts, 1994.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(644) PDF downloads(45) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog