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1. Introduction and motivation

The Fibonacci and Lucas numbers are defined by the following recurrence relations [5, 6]

FOZO,Flzl, d L0:2,L1:1,
an
F,=F,1+F,,,n>2 L,=L,1+L,»,n>2

with the explicit formulae of Binet forms

a" — 3"
F, = p and L,=a"+p",
a-p
where a = “T‘B and 8 = FT‘@ It is interesting that they can be expressed by binomial coefficients,

which can be found in Koshy [8, Eqs 12.1 and 13.5] and [1]

L5]

L%J
(" k 1):Fn and n (” k):Ln with 7> 0.
2\ k k
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In fact, there are two general binomial identities, which can be found in Carlitz [2, Page 23], Comtet
[3, §4.9] and [5]

)y (—1>"(” B Z ) 1)<uv>"(u pyyrt 2 020

0<k<n/2 u-v

Z (- " (n - k)(uv)k(u V) =yt

0<k<n/2 n—k\ k

When specifying u = @ and v = 3, they reduce to the formulae mentioned above.
Recently, Svinin [10] proposed a problem, where including demands to show that

1 (n—k—l)(4)k 4 — 1 an

n—1
L5

—

Ziok+1\ 2k N\27) T 3@n+ 1y

which can be rewritten as |
o2+ l(n—k (4)k_4"—1
4 n—k \2k+1)\27/ — 31"

When making attempts to resolve (1.1), we find that a series of similar identities, concerning

trigonometric function or Fibonacci/Lucas numbers, can be established. In the process of proving
some of these formulae, we will use the De Moivre’s formula

(cos@ +1isin )" = cosnb + isin no,
by which we can get the following identities

(cos @ +1isinf)" + (cos @ —isin )" = 2 cos(nb), (1.2)
(cos @ +1isinf)" — (cos @ —isinH)" = 2isin(no), (1.3)
where i denotes the imaginary unit.

In the following sections, we will evaluate, by means of generating functions and binomial linear
relations, the following binomial sums

—

10 |
: ‘rn+6(n—vk

X, with 7,v,6 €{0,1,2).
Tk + 06

= n— vk

Specifically, in the next section, we shall consider the sums

n—o0
L5

J2n+6 n—k
n—k\2k+6) "’

k=0

where 6 € {0, 1}. Then in Section 3, we will examine the binomial sums

13
-2k

Lin-2k\ k
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Finally in Section 4, the paper will end with two formulae, one of which is equivalent to (1.1).

For convenience, throughout the paper we shall make use of the notations: for a real number x, the
symbol | x| denotes the greatest integer < x. When 7 is a natural number, the symbol i =, j stands for
“i 1s congruent to j modulo n”. For a formal power series f(x), its coefficient of x" denote by [x"] f(x).
Considering two formal power series f(x) and g(x), the following two equalities are well known [4, 9]

[x"]xf(x) = [x"'1f (), (1.4)
[x"](@f(x) + Bg(x) = alx"]f(x) + Blx"]g(x), (1.5)

which will be used frequently in the proofs in subsequent sections.

2. Casev=1land =2

n—k+5) k

Lemma 1. The generating function of the sequence A,(x) = ), (2k s )X IS
k=0

- 1
,X,0)= ) A0 = . 2.1

Ao = ) A0 = @D

Proof. By exchanging the summation order, we have
AN (n—k+0 S (n—k+0
X, 8) = X
Az %,9) Z;;;(Zk 5) Z ;(2k+5)
Making the replacement n — n + k — ¢, the last equation becomes
x.0) = k_k—6 BN .
Az, x _xz Z(Zk 6)Z Z Z Z 2k+6
=0 n= =2k+6
Keeping in mind the formula [11, Eq 5.57]
1 _ n+l’
; (n) (1 z) +
we get the generating function
k3
1
Az, x,0) = Z (1 — g)2kros = (1 -2 — x23(1 — g o
2.1. Four combinatorial identities concerning trigonometric functions
Firstly, we establish four combinatorial identities concerning trigonometric functions.

Theorem 2 (n € N).

L"“2n+5(”—’<)k_ 2" +2c0s %, =0 2.2)

k=0 —k\2k+0 2" + 2sin@, o=1.

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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Proof. Letting 6 = 1 and x = 2in (2.1), we have

1 1
(1-z2-27 - (1 =22)(1 +iz)(1 —iz)

Alz,2,1) =

According to partial fraction decomposition, it can be decomposed into

1 A s B . C
(1-27)(1+ig)(1—-iz) 1-2z 1+iz 1-iz

Az,2,1) =

where A, B and C are three parameters to be determined. Multiplying both sides of the equation by
1 — 2z and taking the limit at z — 1 yields

A =1i 1-22 I 1 4
= lm =lim— = _
z—>% (1 — 2Z)(1 + lz)(l — iz) z—>% (1 + iZ)(l _ iZ) 5

Similarly, multiplying both sides of the equation by 1 + iz and taking the limit at z — i yields

) 1+iz ) 1 20+ 1
B = lim - — = lim — =
i (1 =291+l —iz) =i (1-22)(—ig) 10

Multiplying both sides of the equation by 1 — iz and taking the limit at z — —1i yields

Co i 1-iz I 1 2i—1
= lim = lim = - :
=i (1 =22)(1 +iz)(1 —iz) z=-i (1 = 22)(1 +1iz) 10

Therefore, we can decompose the rational fraction

1 4 1 2i+1 1 2i-1 1

2,1) = =z - '
A2 D =g 5551 10 1+ 10 1-&

Keeping in mind (1.4) and the fact that 1T1x = ), x", we can determine the coefficient of z”
n=0

[ n] 1 _ 2n+2 N i{[.n + (_-)n] _ 2.[.,1 _ (_-)n]}
“l—p—22 =5 a0 TV AU

By means of the relations (1.2) and (1.3), we can get the formulae
i+ (—i)" = 2cos — and " — (i)' = 2isin —,
2 2
which results in the following binomial summation formula

" —k 21 4 sin ™ — 2 cos &
Z(” )2k - 2 Z, 2.3)

£a\2k +1 5

Noting that when 6 = 0 and x = 2
Az,2,0) = (1 - AR, 2, 1),

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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we have
[Z']A(z,2,0) = ['|Az,2,1) - [ Az 2, 1),

which yields another combinatorial identity below.

an(n_k)zk _ 2"+ 3cos & + sin &
24\ 2% 5

Then by means of the binomial relation below

2n+o6({n—-k _ 3 n—k n—-k-1
n—k\2k+¢6) “\2k+6 2k+6 )

and after a little manipulation, we can derive, from (2.4) and (2.3), the identity in Theorem 2.

Theorem 3 (n € N).

—

5 2" lCOS(I’l9 )+ (—l) 0 =0;
2 + — 1 s s

=0 k\2k +6 2m+s sin(nf; + 6,) — %, o=1,

where 0, = arctan g and 6, = arctan #

Proof. Letting 6 = 1 and x = —4 in (2.1), we have

(L — 27 + 48 = 4z 4 1)(Z 3 +8«/7i)(Z 3 —8\/7i)'

By using partial fractional decomposition, we get the generating function

1
(1 -2)?+47

_L L 49+ 13VTE 1 49-13VTE ]
81+z2 112 1_3—2‘ﬁiz 112 1_3+2‘ﬁiZ

ﬂ(z’ _49 1) =

Computing the coeflicient of 7, we obtain

=D

1A 4, 1) == + o {49[3 + VT + (3~ VTiY']

— 13VTI[3 + VTi)' - 3 - VTiy"]}.

By means of the relations (1.2) and (1.3), we have
n n 7
(3 + \/71) + (3 - \/71) =2-4"cos (n arctan T\/_)’

(3+ Vi)' - (3~ V7i) =2 4isin (n arctan g)

(2.4)

(2.5)

(2.6)

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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we can establish the following combinatorial identity:

Z (Zk + 1)( 4k = 2" {7 cos (n arctan g) +11V7sin (n arctan g)} 3 (—81)”'

Keeping in mind the relations

Alz,—4,0) = (1 — 2)A(z, -4, 1)

and
[Zn]ﬂ(za _4’ O) = [Zn]ﬂ(z’ _4a 1) - [Zn_l]ﬂ(z’ _4’ l)a

we can derive the identity below:

Z ( 2k )( 4) (- i)" 2; {21 cos (n arctan g) 7 sin (n arctan g)}

k=0

By employing the relation (2.5), we can get, from (2.8) and (2.7), the identity in Theorem 3.

Theorem 4 (n € N).

—

0;

k=0

L 2n+6 (n_k) k 2 3 costnf) + (=27, ’
(-18) =
n—k\2k+6 3”1\/_sln(n6’1+92)—ﬂ 6=1

where 0 = arctan g and 0, = arctan g

Proof. By setting t = 1 and x = —18 in (2.1), we have

T )

By means of the partial fractional decomposition, we can get the generating function

4 1 854165 1 85 — 16 V5i 1
Az, —18,1) = + 16 V5 + V5i

and determine the coefficient of 7"

1A 18, 1) =2 {85[(3 ﬁi)n+(%‘£i)n]

21 210 3 3 3
2 V5N 2 W5y
_ J(2 0 225 (22 250 L
6\@'[(3 3 ') (3 3 ') ]}
Then we can derive, by utilizing the relations
(2 \/gi)n + (2 \/gi)n 2005( arctan \/3)
j— _ —_— — - n _
3 3 3 3 2 )
(2 \/g)n (2 \/gi)n 2is'n( arctan \/5)
— R _ - - — = 1 _
3773 373 " 2 )

21+22 " 210 1-(2- V5i 210 1 -2+ V5i)

2.7)

(2.8)

(2.9)

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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the following summation formula:

k) o A3
Z(zm 1)(_18) BT AR (10

k=0

where Vi v
x(n) = 10cos (n arctan 75) + 13 V5sin (n arctan 75)
According to the relation

we have
["]A(z, —18,0) = [£"] Az, —18, 1) — [" ' Az, - 18, 1),

which leads to the following binomial sum:

n n—=k K 2(_2)11 3n \/g . \/g
kzz(;( 2% )(—18) =— 5{25 cos (n arctan 7) + V5sin (n arctan 7)} (2.11)

By means of the binomial relation (2.5), we can get, from (2.11) and (2.10), the summation formula
stated in Theorem 4. O

Theorem 5 (n € N).

(2.12)

i n—k\2k+6

125 o+ 5( . k) o 4" + 2(=3)" cos(nb), 6=0;
L +(=3)""'sin(nd; +6,), 6=1,

where 6; = arctan 2 V2 and 6, = arctan %ﬁ

Proof. Letting 6 = 1 and x = 36 in (2.1), we have

e S S

which results in, by the partial fractional decomposition, the generating function

16 1  68+1972i 1
A2.36,1) = — , 68+ 19Vai
331-4z 264 1+ (1422
+68—19\/§i 1

264 1+(1 —2\/§i)z.

Computing it’s coefficient of 7", we have

[']A(z, 36, 1) :4;;2 + %{68[(1 +2 \/Ei)" +(1-2 \/51)]

+19Va[(1+2V3i)' - (1-2V23)']}.

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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Combining it with the relations
(1 +2 \/El)n + (1 -2 \/ii)n =2-3"cos (n arctan 2 \/5),

(1+2V2i)' - (1-2V2i) =2-3"isin(narctan2 V2),

we can obtain the following identity:

n n—=k 4n+1 (_3)n
36¢ = — - : 2.13
;(2“ 1) 33 132 1 13)
where
n(n) = 16 cos (n arctan 2 \/5) + 13 V2sin (n arctan 2 \5)
According to the relation between the generating functions of 6 = 1 and 6 = 0
A(z,36,0) = (1 - 2)A(z, 36, 1),
we have
[Zn]ﬂ(z, 36’ O) = [Zn]ﬂ(za 367 1) - [Zn_l]ﬂ(z’ 367 1)’
which yields the summation formula below:
(2.14)

n n—k ‘ g+t (_3)n ]
Z( ok )36 = T + 7 {14cos(narctan2\/§)— \/§s1n(narctan2\/§)}.

k=0
Now, employing the binomial relation (2.5), we can get, from (2.14) and (2.13), the identity stated in
O

Theorem 5.

2.2. Three identities concerning Fibonacci and Lucas numbers
In this section, three identities concerning Fibonacci and Lucas numbers are derived.
2+
(1(2+/1+)1)3 in (2.1), we have

R 2 Bt AV s
(I-2"—xz" = (/12+/1+1)3(Z (4 +/l+1))(Z A2 )(Z (A+1)? )

For A # {0, +1, -2, —%}, letting 6 = 1 and x = x(1) =

By means of the partial fractional decomposition, we can get the generating function
Al XA, 1) 1 L 1
3, X ) = -
P =-DAP+2)1 -5 (A2-DRA+1)1 - ﬁ;ﬂz
A+ 1* 1
2 (A+1)
B+ )2A+1)1 - Ly

Evaluating the coefficient of 7, we get
/12n+4 (/l + 1)2n+4 }

n — 1 —
1A, x(4), 1) = {(12 D@ T2 (B-D@i+ 1) (E+r2h@El+l)

Volume 9, Issue 4, 9348-9363.
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1
X -
(A2 + A+ 1)

2241222 20+ A+ D2 - D

=D H2D2A+ D2+ A+ 1)

which results in the following identity:

Z”: n—k ( (2 + 1) )k 204+ 1= P2 4 20) + (A + PR - 1) 015
k:o 2k +1\(A2+ A1+ 1)3 B A2 =D +2D)Q2A+ D22+ A+ 1)t )
Theorem 6 (n € N).
= 5"+L2,, _ .
' 2+ 6 n—k(s)k_ . 0=0; 016
oo n—k\2k+ 564 Tl §=1.
1 9"+ Ly, -0
'S 2+ 6 n—k(9)’<_ 5 6 =0; 217
= n— k \2k + 6/\512 32";12;5?“2, S=1. ‘
124 5"+ Lay N
R ) n—k(s)k_ 5 0=0; o18)
S =k \k+o)\206) T |rar 5y
Proof. Letting A = %, 1 = @* and 1 = —a* in (2.15), we can get the following three combinatorial
identities:
S(n—k\ 5\ 5 — Fy — Fapes
A= 2 (_) — n n ,
< kzz(; 2k + 1)\64 11 41
1=a S (n—k ( 9 )k: 32%3 — 2F 4pia — Fapss
Zi\2k + 1\512 5781 ’
/l:_a4 n n—k ( 5 )k:F4n+5_5n+1
2k + 1)\216 9.6m1

=~

=0

Observing that the generating function
Az, x(1), 0) = (1 = Az, x(1), 1),

we can establish another three identities below about Fibonacci and Lucas numbers:

Z": n—k(S )k_ 5" 4 10F, + 3L,

£\ 2k o4 11 -4 ’
Zn: n—k ( 9 )k _ 2. 32n+2 + 9F4n+4 - L4n+4
2k \512) 38 - 8" ’

- l’l—k( 5 )k_5n+l+L4n+3
2k \216) 9.6

=0
Applying the binomial relation (2.5) to the above six identities, we can recover the three summation

formulae stated in Theorem 6 O.

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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3. Casev=2and =1

Lemma 7. The generating function of the sequence B,(x) = ), (”_,fk)x" is
k=0

- n—2k 1
B(z,x) = ZO kZ( )XkZ = m (31)
0
Proof. Exchanging the summation order, we can evaluate
N n—2k O L (= 2k)
B(z, x) ZZ( ) —Zx Z( X )z.
=0 k=0
By making the replacement n — n + 2k, the last equation becomes
2%
B(z,x) = Z ¥z ; (k)z .

By means of the formula

kZ (n) (1 _ Z)n+1 ’

we get the generating function

o xkk 1
B(z,x)—z(l < = . O

)k+1 1 - f— XZS

3.1. Three formulae concerning trigonometric functions

Analogously, in this section we establish another three formulae concerning trigonometric
functions.

Theorem 8 (n € N).

- 2k n+.
WQA”k)ewzsz¥?+en% (3.2)
k=0

Proof. Letting x = —2 in Lemma 7, we have the generating function

Bz, —2) = 1 11 +2—i 1 +2+i 1
% T 1-z4273 51+72 5 1-(1+i) 5 1-(1-i)z

By extracting the coefficient of 7", we get
( 1)" i . 2+i .
— (0 +i)'+ —a -1
5 5 L+ 5 (-0

= S gl =il - - (i)

[z"18(z,-2) =

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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By means of the identities [7, Egs. 1.90 and 1.96]

L]

n nm
=22cos —,

n\, . (L+iy+(1-i)
(2k)(_1) N 2

_
~ bl
N\\ 1i
- O
o

n (I+)"'-A-D" . . nn

_1 k = = 2 -

(2k+ 1)( ) 2i s sme,
k=0
we obtain the following identity

- - 2k 1 n+2
Z (” )(—2)k = —{22(2 cos X 4 sin E) + (—1)"}_
=\ K 5 4 4

Then the desired identity follows by using the binomial relation (3.7).
Theorem 9 (n € N).

3 n (n -2k

r )18" = 2( - \/E)n cos (n arctan \/5) + 3".

Proof. Letting x = 18 in Lemma 7, we have the generating function

1
1-7z-187
3 1 10 + V5i 1 +10—\/§i 1

B(z,18) =

=_ + .
T1-32 35 4 (VEil) 35 1-(VEi-1)

Evaluating the coeflicient of 7", we get

218618 = 2+ C 1o (1+ VEi)' + (1 - 5|
+ V5|1 + V5i) - (1 - \/51)]}

Keeping in mind that

(cos @ +1isinf)" + (cos @ —isin )" = 2 cos(nb),

(cos @ +1isinf)" — (cos @ —isinH)" = 2isin(no),

we have

Il
(SIE)

(1+ V5i) +(1- V5i) =6 {(% n %i)ﬂ n (% _ %1)}

n

= 67{(cos t+isint)" + (cost —isin t)”}

=263 cos(nt),

(3.3)

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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and

Il
(SIS

(33 (-3 =6'{( G+ ) - (G2 |

2{(cost +isint)" — (cost —isint)")

6
2 - 67isin(nt),

where tan 7 = V5, which yield the identity

Z(; (n _ka)ISk = 3n7+1 + 2(_3\5/6),1{10005 (n arctan \/5) — V5sin (n arctan \/3)}

The desired identity follows by means of (3.7). O
Theorem 10 (n € N).

L]

) _nZk(n ;21()(_36),( = 2(2 \/g)n cos (n arctan \/i) + (=3)". (3.4)

*=0
Proof. Letting x = =36 in Lemma 7, we have the generating function
1
3672 —z+1
31 +8+\/§i 1 +8—\/§i 1
I1+3z 0 22 1 -9(1-V2i)e 22 1-2(1+ V2i)e

B(z,-36) =

and its coeflicient of 7"

21836 = 24 28l (1 V3 + (14 V2]

+ V(1= V2 - (14 V) ]}

By means of the following results

(1= v2i) + (1 + V2i)' =2-3% cos (narctan V2),
and

(1= V2i)" = (1+ V2i)' =2 3%isin (narctan V2),

we can get the identity

i (n _ka)(_%)k _ 3(;13)" " 2 f)" {8 cos (n arctan \/5) + V2sin (n arctan \5)}
k=0

Then the proof completes by the aid of (3.7). O

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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3.2. Four identities concerning Fibonacci and Lucas numbers

For x = x(A) = — (422 1 # {0, £1,-2, -1}, we have
. (2% +2)? +/12+/1+1 A+a+1 A+a+1
-z-Xx - - .
= Aty 1 N\ Taxr T e
By means of the partial fractional decomposition, we can get the generating function
A 1 A+1 1
B(z, x() = —
(A+2)21+ 1)1+ A=z A+ DA-D1- T’
A+ 1) 1
+ A+ _°
@+2)(A= 1)1 - LD

Evaluating the coefficient of 7", we get

1 { (_1)n/ln+l (/l+ l)n+l . (/12+/1)n+1 }

1B = o T\ e s D) eir =D T ara-Df

which results in the following identity:

n—2k\( (B>+2)? \
Z( Dk( k )((/12+/l+1)3)

B 1 (_1)n/ln+1 (ﬂ + 1)n+1 . (/12 + A)n+1 (3 5)
L2+ A+ D) A+2)21+ D) A+ D=1 A+2A-DJ '
Theorem 11 (n € N).
L5l
-2k IV L,+1
nzk(n k )( - _) - 2J"r (36)
n— 8
Proof. Let A = « in (3.5), we have x(1) = — and
Z(n —~ 2k)( 1)k _ Fus—1
“ k 8 2n
By means of the relation
n [(n-2k n—2k n—2k-1
=3 -2 , 3.7
= (PR ES (P R G @
we have
I (PG CRED Uy B B3 (e B8
=0 T k 8 k=0 8 k=0 8
_3Fn+3_3 2Pwn+2_2_3I7n+3_4'Fn+2+l
- on on—1 - on .
Then the proof follows by using
3F,3 —4F 0 = L,. O

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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Theorem 12 (n € N).

—2k\ 5V = =0
S

Proof. Let A = o2 in (3.5), we have x(1) = —Z and

n+2

Zn:(n_%)( 5)k: A1+ 5F @, +4F)), n=0;

=\ kK 64 (5 4L, +SF) 1), n= L.

1147
Then the proof follows by using the relation (3.7). O
Theorem 13 (n € N).

U (n - Zk)( 5 )k _ S%Lé?fﬂ, n=,0; 49)
dn—-2k\ k 216 5%65;2#1’ ne 1 '
Proof. Let A = —a* in (3.5), we have x(1) = -5 and
ook s |5t P — 1 n=0;
kZ:(;( k )(_ m) B 9,16,1{5%142%3 — 1}, n=,1.
By means of the relation (3.7), we can complete the proof. O
Theorem 14 (n € N).
ST (n—Zk)(_ 9 )k _ 3L+ (1) 510
“n—2k\ k 512 8"
Proof. Let A = a* in (3.5), we have x(1) = —z5 and
Z”: (n - 2k)( 9 )k 3 (8Fy, +3L,,) + (—1)"
i\ k 512) 198" '
By using the binomial relation (3.7), we can get the identity stated in the theorem. O

4. Concluding comments

There should be more interesting identities by choosing appropriate parameters A or x in Lemmas
2.1 and 7. For instance, by setting 6 = 1 and x = 24—7 in (2.1), we have the generating function

41)_ 27 1601 4z T 1

Z’ﬁ’ - —

ﬂ( __4z3—27z2+54z—27_?1—§z+ﬁ(1_5)2 9(1_2)2.
3

AIMS Mathematics Volume 9, Issue 4, 9348-9363.
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Extracting the coefficient of 7!, we can get the following identity:

S(n—k\ 4\ 41 -3n-4
=) =— 4.1
Z (Zk + 1)(27) 3n+l 1)

k=0

In view of (1.4) and (1.5), as well as the relation

4 4
—.0)=0- — 1
ﬂ(z, 27,0) ( z)ﬂ(z, 77 )

we have
il o)< 19 ) e )
Z %570 =1z %57 Z &5 1)
and derive immediately another summation formula below:
S (n—k\ 4\ 4 +6n+5
— ) == 4.2
kzz(;( 2k )(27) 3m+2 42)

By means of the binomial relation (2.5), we can get, from (4.2) and (4.1), the theorem below.

Theorem 15 (n € N).

4142
m+s(n—k\ 4y [T 0=0
n+ (n )(_) = % (4.3)
i, o=1

3n-1

In fact, the case of 6 = 1 is equivalent to the identity (1.1) anticipated in the introduction because of

the binomial relation
1 n—k 3 1 n—k—-1
n—k\2k+1) 2k+1\ 2k [

Analogously, by letting x = —% in Lemma 7, we have the generating function

8( _i)_ 14 z N 8
“T27) T 943, T 32232 " 2z-3)

which yields, by evaluating the coefficient of 7", the identity

i (n - 2k)( 4 )" 2" @B+ 4) + (-1
i\ k 27 3n+2
Then using the binomial relation (3.7), we can get the following theorem.

Theorem 16 (n € N).

4.4)

n (n — Zk)( 4 )k _ 2 (=1
3r ’

AIMS Mathematics Volume 9, Issue 4, 9348-9363.



9363

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgments

The authors are sincerely grateful to the anonymous referees for their careful reading and
valuable suggestions, that have improved the manuscript during the revision. This work was
supported by Zhoukou Normal University high-level talents start-up funds research project, China,
(ZKNUC2022007).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. Z. Akyuz, S. Halici, On some combinatorial identities involving the terms of generalized Fibonacci
and Lucas sequences, Hacet. J. Math. Stat., 42 (2013), 431-435.

2. L. Carlitz, A Fibonacci array, Fibonacci Quart., 1 (1963), 17-28.

L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and
enlarged edition, D. Reidel Publishing Company, Dordrecht, 1974.

4. D. Guo, Summation formulae involving Stirling and Lah numbers, Forum Math., 32 (2020), 1407-
1414. https://doi.org/10.1515/forum-2020-0108

5. D. Guo, W. Chu, Binomial Sums with Pell and Lucas Polynomials, Bull. Belg. Math. Soc. Simon
Stevin, 28 (2021), 133—145. https://doi.org/10.36045/j.bbms.200525

6. D. Guo, W. Chu, Inverse Tangent Series Involving Pell and Pell-Lucas Polynomials, Math. Slovaca,
72 (2022), 869-884. https://doi.org/10.1515/ms-2022-0059

7. H. W. Gould, Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial
Coefficient Summations, West Virginia, Morgantown Printing and Binding Co., 1972.
T. Koshy, Fibonacci and Lucas Numbers with Applications, New York: Wiley, 2001.
D. Merlini, R. Sprugnoli, M. C. Verri, The method of coefficients, Amer. Math. Monthly, 114
(2007), 40-57. https://doi.org/10.1080/00029890.2007.11920390

10. A. K. Svinin, Problem H-895, Fibonacci Quart., 60 (2022), P185.

11. R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer
Science (2nd ed.), Addison—Wesley Publ. Company, Reading, Massachusetts, 1994.

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 9, Issue 4, 9348-9363.


http://dx.doi.org/https://doi.org/10.1515/forum-2020-0108
http://dx.doi.org/https://doi.org/10.36045/j.bbms.200525
http://dx.doi.org/https://doi.org/10.1515/ms-2022-0059
http://dx.doi.org/https://doi.org/10.1080/00029890.2007.11920390
http://creativecommons.org/licenses/by/4.0

	Introduction and motivation
	Case =1 and =2
	Four combinatorial identities concerning trigonometric functions
	Three identities concerning Fibonacci and Lucas numbers

	Case =2 and =1
	Three formulae concerning trigonometric functions
	Four identities concerning Fibonacci and Lucas numbers

	Concluding comments

