Research article Special Issues

N-dimension for dynamic generalized inequalities of Hölder and Minkowski type on diamond alpha time scales

  • Received: 20 January 2023 Revised: 19 February 2024 Accepted: 01 March 2024 Published: 06 March 2024
  • MSC : 26D10, 26D15, 34N05, 39A12, 47B38

  • Expanding on our research, this paper introduced novel generalizations of H ölder's and Minkowski's dynamic inequalities on diamond alpha time scales. Specifically, as particular instances of our findings, we replicated the discrete inequalities established when $ \mathbb{T = N} $. Furthermore, our investigation extended to the continuous case with $ \mathbb{ T = R} $, revealing additional inequalities that are both new and valuable for readers seeking a comprehensive understanding of the topic.

    Citation: Elkhateeb S. Aly, Ali M. Mahnashi, Abdullah A. Zaagan, I. Ibedou, A. I. Saied, Wael W. Mohammed. N-dimension for dynamic generalized inequalities of Hölder and Minkowski type on diamond alpha time scales[J]. AIMS Mathematics, 2024, 9(4): 9329-9347. doi: 10.3934/math.2024454

    Related Papers:

  • Expanding on our research, this paper introduced novel generalizations of H ölder's and Minkowski's dynamic inequalities on diamond alpha time scales. Specifically, as particular instances of our findings, we replicated the discrete inequalities established when $ \mathbb{T = N} $. Furthermore, our investigation extended to the continuous case with $ \mathbb{ T = R} $, revealing additional inequalities that are both new and valuable for readers seeking a comprehensive understanding of the topic.



    加载中


    [1] O. Hölder, Uber einen mittelwerthssatz, Nachr. Ges. Wiss. Gottingen, 1889 (1889), 38–47.
    [2] W. T. Sulaiman, Reverses of Minkowski's, Hölder's, and Hardy's integral inequalities, Int. J. Mod. Math. Sci., 1 (2012), 14–24.
    [3] B. Sroysang, More on reverses of Minkowski's integral inequality, Math. Aeterna, 3 (2013), 597–600.
    [4] U. S. Kirmaci, On generalizations of Hölder's and Minkowski's inequalities, Math. Sci. Appl. E Notes, 11 (2023), 213–225. https://doi.org/10.36753/mathenot.1150375 doi: 10.36753/mathenot.1150375
    [5] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153
    [6] R. P. Agarwal, D. O'Regan, S. Saker, Dynamic inequalities on time scales, New York: Springer, 2014. https://doi.org/10.1007/978-3-319-11002-8
    [7] G. AlNemer, A. I. Saied, M. Zakarya, H. A. A. El-Hamid, O. Bazighifan, H. M. Rezk, Some new reverse Hilbert's inequalities on time scales, Symmetry, 13 (2021), 2431. https://doi.org/10.3390/sym13122431 doi: 10.3390/sym13122431
    [8] E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412. https://doi.org/10.7153/jmi-2022-16-29 doi: 10.7153/jmi-2022-16-29
    [9] R. Bibi, M. Bohner, J. Pečarić, S. Varošanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal., 7 (2013), 299–312. https://doi.org/10.7153/jmi-07-28 doi: 10.7153/jmi-07-28
    [10] M. Bohner, S. G. Georgiev, Multivariable dynamic calculus on time scales, Springer, 2016,449–515. https://doi.org/10.1007/978-3-319-47620-9
    [11] P. Řehák, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 942973. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
    [12] H. M. Rezk, W. Albalawi, H. A. A. El-Hamid, A. I. Saied, O. Bazighifan, M. S. Mohamed, et al., Hardy-Leindler-type inequalities via conformable Delta fractional calculus, J. Funct. Spaces, 2022 (2022), 2399182. https://doi.org/10.1155/2022/2399182 doi: 10.1155/2022/2399182
    [13] S. H. Saker, A. I. Saied, M. Krnić, Some new dynamic Hardy-type inequalities with kernels involving monotone functions, Rev. Real Acad. Cienc. Exactas Fis. Nat., 114 (2020), 142. https://doi.org/10.1007/s13398-020-00876-6 doi: 10.1007/s13398-020-00876-6
    [14] S. H. Saker, A. I. Saied, M. Krnić, Some new weighted dynamic inequalities for monotone functions involving kernels, Mediterr. J. Math., 17 (2020), 39. https://doi.org/10.1007/s00009-020-1473-0 doi: 10.1007/s00009-020-1473-0
    [15] S. H. Saker, J. Alzabut, A. I. Saied, D. O'Regan, New characterizations of weights on dynamic inequalities involving a Hardy operator, J. Inequal. Appl., 2021 (2021), 73. https://doi.org/10.1186/s13660-021-02606-x doi: 10.1186/s13660-021-02606-x
    [16] S. H. Saker, A. I. Saied, D. R. Anderson, Some new characterizations of weights in dynamic inequalities involving monotonic functions, Qual. Theory Dyn. Syst., 20 (2021), 49. https://doi.org/10.1007/s12346-021-00489-3 doi: 10.1007/s12346-021-00489-3
    [17] M. Zakarya, G. AlNemer, A. I. Saied, R. Butush, O. Bazighifan, H. M. Rezk, Generalized inequalities of Hilbert-type on time scales nabla calculus, Symmetry, 14 (2022), 1512. https://doi.org/10.3390/sym14081512 doi: 10.3390/sym14081512
    [18] M. Zakarya, A. I. Saied, G. AlNemer, H. A. A. El-Hamid, H. M. Rezk, A study on some new generalizations of reversed dynamic inequalities of Hilbert-type via supermultiplicative functions, J. Funct. Spaces, 2022 (2022), 8720702. https://doi.org/10.1155/2022/8720702 doi: 10.1155/2022/8720702
    [19] M. Zakarya, A. I. Saied, G. AlNemer, H. M. Rezk, A study on some new reverse Hilbert-type inequalities and its generalizations on time scales, J. Math., 2022 (2022), 6285367. https://doi.org/10.1155/2022/6285367 doi: 10.1155/2022/6285367
    [20] E. S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, W. W. Mohammed, Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus, AIMS Math., 9 (2024), 5147–5170. https://doi.org/10.3934/math.2024250 doi: 10.3934/math.2024250
    [21] W. W. Mohammed, F. M. Al-Askar, C. Cesarano, On the dynamical behavior of solitary waves for coupled stochastic Korteweg-de vries equations, Mathematics, 11 (2023), 3506. https://doi.org/10.3390/math11163506 doi: 10.3390/math11163506
    [22] M. Alshammari, N. Iqbal, W. W. Mohammed, T. Botmart, The solution of fractional-order system of KdV equations with exponential-decay kernel, Results Phys., 38 (2022), 105615. https://doi.org/10.1016/j.rinp.2022.105615 doi: 10.1016/j.rinp.2022.105615
    [23] W. W. Mohammed, F. M. Al-Askar, C. Cesarano, E. S. Aly, The soliton solutions of the stochastic shallow water wave equations in the sense of Beta-derivative, Mathematics, 11 (2023), 1338. https://doi.org/10.3390/math11061338 doi: 10.3390/math11061338
    [24] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, The influence of white noise and the Beta derivative on the solutions of the BBM equation, Axioms, 12 (2023), 447. https://doi.org/10.3390/axioms12050447 doi: 10.3390/axioms12050447
    [25] M. J. Huntul, I. Tekin, Simultaneous determination of the time-dependent potential and force terms in a fourth-order Rayleigh-Love equation, Math. Methods Appl. Sci., 46 (2022), 6949–6971. https://doi.org/10.1002/mma.8949 doi: 10.1002/mma.8949
    [26] M. J. Huntul, I. Tekin, Inverse coefficient problem for differential equation in partial derivatives of a fourth order in time with integral over-determination, Bull. Karaganda Univ. Math. Ser., 4 (2022), 51–59. https://doi.org/10.31489/2022M4/51-59 doi: 10.31489/2022M4/51-59
    [27] M. J. Huntul, I. Tekin, An inverse problem of identifying the time-dependent potential and source terms in a two-dimensional parabolic equation, Hacet. J. Math. Stat., 52 (2023), 1578–1599. https://doi.org/10.15672/hujms.1118138 doi: 10.15672/hujms.1118138
    [28] M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [29] D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran, Nabla dynamic equations on time scales, Panam. Math. J., 13 (2003), 1–47.
    [30] N. Atasever, B. Kaymakçalan, G. Lešaja, K. Taş, Generalized diamond-$\alpha $ dynamic opial inequalities, Adv. Differ. Equations, 2012 (2012), 109. https://doi.org/10.1186/1687-1847-2012-109 doi: 10.1186/1687-1847-2012-109
    [31] U. S. Kirmaci, M. K. Bakula, M. E. Özdemir, J. E. Pecaric, On some inequalities for $p$-norms, J. Inequal. Pure Appl. Math., 9 (2008), 27.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(876) PDF downloads(62) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog