In this paper, we introduce split dual Fibonacci and split dual Lucas octonions over the algebra $ \widetilde{\widetilde{O}}\left(a, b, c\right) $, where $ a, b $ and $ c $ are real numbers. We obtain Binet formulas for these octonions. Also, we give many identities and Vajda theorems for split dual Fibonacci and split dual Lucas octonions including Catalan's identity, Cassini's identity and d'Ocagne's identity.
Citation: Ümit Tokeşer, Tuğba Mert, Yakup Dündar. Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions[J]. AIMS Mathematics, 2022, 7(5): 8645-8653. doi: 10.3934/math.2022483
In this paper, we introduce split dual Fibonacci and split dual Lucas octonions over the algebra $ \widetilde{\widetilde{O}}\left(a, b, c\right) $, where $ a, b $ and $ c $ are real numbers. We obtain Binet formulas for these octonions. Also, we give many identities and Vajda theorems for split dual Fibonacci and split dual Lucas octonions including Catalan's identity, Cassini's identity and d'Ocagne's identity.
[1] | M. Akyiğit, H. H. Köksal, M. Tosun, Split Fibonacci quaternions, Adv. Appl. Clifford Algebras, 25 (2013), 535–545. https://doi.org/10.1007/s00006-013-0401-9 |
[2] | M. Akyiğit, H. H. Köksal, M. Tosun, Fibonacci generalized quaternions, Adv. Appl. Clifford Algebras, 24 (2014), 631–641. https://doi.org/10.1007/s00006-014-0458-0 doi: 10.1007/s00006-014-0458-0 |
[3] | A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Mon., 70 (1963), 289–291. https://doi.org/10.2307/2313129 doi: 10.2307/2313129 |
[4] | C. Flaut, V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayan quaternions, Adv. Appl. Clifford Algebras, 23 (2013), 673–688. https://doi.org/10.1007/s00006-013-0388-2 doi: 10.1007/s00006-013-0388-2 |
[5] | S. Halici, On Fibonacci quaternions, Adv. Appl. Clifford Algebras, 22 (2012), 321–327. https://doi.org/10.1007/s00006-011-0317-1 |
[6] | S. Halici, On complex Fibonacci quaternions, Adv. Appl. Cilifford Algebras, 23 (2013), 105–112. https://doi.org/10.1007/s00006-012-0337-5 doi: 10.1007/s00006-012-0337-5 |
[7] | O. Keçilioğlu, I. Akkuş, The Fibonacci octonions, Adv. Appl. Clifford Algebras, 25 (2015), 151–158. https://doi.org/10.1007/s00006-014-0468-y |
[8] | A. F. Horadam, Quaternion recurrence relations, Ulam Q., 2 (1993), 22–33. |
[9] | S. Halici, On dual Fibonacci octonions, Adv. Appl. Clifford Algebras, 25 (2015), 905–914. https://doi.org/10.1007/s00006-015-0550-0 |
[10] | T. Koshy, Fibonacci and Lucas numbers with applications, Wiley-Interscience Publications, John Wiley & Sons, Inc., 2001. |
[11] | I. L. Iakin, Generalized quaternions of higher order, Fibonacci Quart., 15 (1977), 343–346. |
[12] | M. R. Iyer, A note on Fibonacci quaternions, Fibonacci Quart., 7 (1969), 225–229. |
[13] | I. Akkuş, O. Keçilioğlu, Split Fibonacci and Lucas octonions, Adv. Appl. Clifford Algebras, 25 (2015), 517–525. https://doi.org/10.1007/s00006-014-0515-8 doi: 10.1007/s00006-014-0515-8 |
[14] | Z. Ünal, Ü. Tokeşer, G. Bilgici, Some properties of dual Fibonacci and dual Lucas octonions, Adv. Appl. Clifford Algebras, 27 (2017), 1907–1916. https://doi.org/10.1007/s00006-016-0724-4 doi: 10.1007/s00006-016-0724-4 |
[15] | G. Bilgici, Z. Ünal, Ü. Tokeşer, T. Mert, On Fibonacci and Lucas generalized octonions, Ars Combinatoria, 138 (2018), 35–44. |
[16] | W. K. Clifford, Preliminary sketch of bi-quaternions, Proc. Lond. Math. Soc., 4 (1871), 381–395. |
[17] | M. N. S. Swamy, On generalized Fibonacci quaternions, Fibonacci Quart., 11 (1973), 547–549. |
[18] | Y. Dündar, Split dual Fibonacci and split dual Lucas octonions, M.Sc. Thesis, Kastamonu University, Graduate School of Natural and Applied Sciences, Kastamonu, 2018. |