In this paper, we introduce a class of the multiplicative tempered fractional integral operators. Then, we investigate two Hermite–Hadamard type inequalities for this class. By using the established identity and the multiplicative convexity, we establish some integral inequalities for the multiplicative tempered fractional integrals involving the $ \lambda $-incomplete gamma functions. And our results obtained in the present paper generalize some results given by Budak and Tunç (2020) and Ali et al. (2019). Also, we provide three examples to demonstrate the simplicities of the calculations.
Citation: Hao Fu, Yu Peng, Tingsong Du. Some inequalities for multiplicative tempered fractional integrals involving the $ \lambda $-incomplete gamma functions[J]. AIMS Mathematics, 2021, 6(7): 7456-7478. doi: 10.3934/math.2021436
In this paper, we introduce a class of the multiplicative tempered fractional integral operators. Then, we investigate two Hermite–Hadamard type inequalities for this class. By using the established identity and the multiplicative convexity, we establish some integral inequalities for the multiplicative tempered fractional integrals involving the $ \lambda $-incomplete gamma functions. And our results obtained in the present paper generalize some results given by Budak and Tunç (2020) and Ali et al. (2019). Also, we provide three examples to demonstrate the simplicities of the calculations.
[1] | T. Abdeljawad, M. Grossman, On geometric fractional calculus, J. Semigroup Theory Appl., 2016 (2016), Article ID 2. |
[2] | T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite–Hadamard type with applications, J. Funct. Spaces, 2020 (2020), 1–14. |
[3] | S. Abramovich, L. E. Persson, Fejér and Hermite–Hadamard type inequalities for $N$-quasiconvex functions, Math. Notes, 102 (2017), 599–609. doi: 10.1134/S0001434617110013 |
[4] | P. Agarwal, Some inequalities involving Hadamard-type $k$-fractional integral operators, Math. Meth. Appl. Sci., 40 (2017), 3882–3891. doi: 10.1002/mma.4270 |
[5] | B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129. doi: 10.1016/j.cam.2018.12.030 |
[6] | A. Akkurt, Z. Kacar, H. Yildirim, Generalized fractional integral inequalities for continuous random variables, J. Probab. Stat., 2015 (2015), 1–7. |
[7] | M. A. Ali, M. Abbas, Z. Zhang, I. B. Sial, R. Arif, On integral inequalities for product and quotient of two multiplicatively convex functions, Asian Research Journal of Mathematics, 12 (2019), 1–11. |
[8] | G. A. Anastassiou, Riemann–Liouville fractional fundamental theorem of calculus and Riemann–Liouville fractional Polya type integral inequality and its extension to Choquet integral setting, B. Korean Math. Soc., 56 (2019), 1423–1433. |
[9] | Y. M. Bai, F. Qi, Some integral inequalities of the Hermite–Hadamard type for log-convex functions on co-ordinates, J. Nonlinear Sci., 9 (2016), 5900–5908. doi: 10.22436/jnsa.009.12.01 |
[10] | M. Bakherad, M. Kian, M. Krnić, S. A. Ahmadi, Interpolating Jensen-type operator inequalities for log-convex and superquadratic functions, Filomat, 13 (2018), 4523–4535. |
[11] | A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. doi: 10.1016/j.jmaa.2007.03.081 |
[12] | H. Budak, K. Özçelik, On Hermite–Hadamard type inequalities for multiplicative fractional integrals, Miskolc Math. Notes, 21 (2020), 91–99. doi: 10.18514/MMN.2020.3129 |
[13] | H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite–Hadamard-type inequalities for interval-valued functions, P. Am. Math. Soc., 148 (2020), 705–718. |
[14] | S. I. Butt, A. O. Akdemir, J. Nasir, F. Jarad, Some Hermite–Jensen–Mercer like inequalities for convex functions through a certain generalized fractional integrals and related results, Miskolc Math. Notes, 21 (2020), 689–715. doi: 10.18514/MMN.2020.3339 |
[15] | M. A. Chaudhry, S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55 (1994), 99–124. doi: 10.1016/0377-0427(94)90187-2 |
[16] | F. X. Chen, Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268 (2015), 121–128. |
[17] | H. Chen, U. N. Katugampola, Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018 |
[18] | M. R. Delavar, M. D. L. Sen, A mapping associated to $h$-convex version of the Hermite–Hadamard inequality with applications, J. Math. Inequal., 14 (2020), 329–335. |
[19] | S. S. Dragomir, Hermite–Hadamard type inequalities for generalized Riemann–Liouville fractional integrals of $h$-convex functions, Math. Methods Appl. Sci., 44 (2021), 2364–2380. doi: 10.1002/mma.5893 |
[20] | S. S. Dragomir, Further inequalities for log-convex functions related to Hermite-Hadamard result, Proyecciones (Antofagasta), 38 (2019), 267–293. doi: 10.4067/S0716-09172019000200267 |
[21] | T. S. Du, M. U. Awan, A. Kashuri, S. S. Zhao, Some $k$-fractional extensions of the trapezium inequalities through generalized relative semi-$(m, h)$-preinvexity, Appl. Anal., 100 (2021), 642–662. doi: 10.1080/00036811.2019.1616083 |
[22] | T. S. Du, C. Y. Luo, Z. Z. Huang, A. Kashuri, Fractional trapezium-like inequalities involving generalized relative semi-$(m, h_1, h_2)$-preinvex mappings on an $m$-invex set, Ukrainian Math. J., 72 (2020), 1633–1650. |
[23] | T. S. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized $m$-convexity on fractal sets and their applications, Fractals, 27 (2019), 1–17. |
[24] | A. Fernandez, C. Ustaoğlu, On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math., 366 (2020), Article ID 112400. doi: 10.1016/j.cam.2019.112400 |
[25] | A. G. Ghazanfari, A. Barani, Some Hermite–Hadamard type inequalities for the product of two operator preinvex functions, Banach J. Math. Anal., 9 (2015), 9–20. doi: 10.15352/bjma/09-2-2 |
[26] | D. Y. Hwang, S. S. Dragomir, Extensions of the Hermite–Hadamard inequality for $r$-preinvex functions on an invex set, B. Aust. Math. Soc., 95 (2017), 412–423. doi: 10.1017/S0004972716001374 |
[27] | İ. İşcan, S. Turhan, S. Maden, Hermite–Hadamard and Simpson-like type inequalities for differentiable $p$-quasi-convex functions, Filomat, 31 (2017), 5945–5953. doi: 10.2298/FIL1719945I |
[28] | İ. İşcan, Weighted Hermite–Hadamard–Mercer type inequalities for convex functions, Numer. Meth. Part. D. E., 37 (2021), 118–130. doi: 10.1002/num.22521 |
[29] | A. Kashuri, T. M. Rassias, Fractional trapezium-type inequalities for strongly exponentially generalized preinvex functions with applications, Appl. Anal. Discr. Math., 14 (2020), 560–578. doi: 10.2298/AADM190220038K |
[30] | M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite–Hadamard type inequalities for conformable fractional integrals, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 112 (2018), 1033–1048. |
[31] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, 2006. |
[32] | M. Kunt, D. Karapinar, S. Turhan, İ. İsçan, The left Riemann–Liouville fractional Hermite–Hadamard type inequalities for convex functions, Math. Slovaca, 69 (2019), 773–784. doi: 10.1515/ms-2017-0261 |
[33] | M. A. Latif, On some new inequalities of Hermite–Hadamard type for functions whose derivatives are $s$-convex in the second sense in the absolute value, Ukrainian Math. J., 67 (2016), 1552–1571. doi: 10.1007/s11253-016-1172-y |
[34] | J. G. Liao, S. H. Wu, T. S. Du, The Sugeno integral with respect to $\alpha$-preinvex functions, Fuzzy Set. Syst., 379 (2020), 102–114. doi: 10.1016/j.fss.2018.11.008 |
[35] | C. Li, W. H. Deng, L. J. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst., 24 (2019), 1989–2015. |
[36] | D. Ş. Marinescu, M. Monea, A very short proof of the Hermite–Hadamard inequalities, Amer. Math. Monthly, 127 (2020), 850–851. doi: 10.1080/00029890.2020.1803648 |
[37] | M. Matłoka, Inequalities for $h$-preinvex functions, Appl. Math. Comput., 234 (2014), 52–57. |
[38] | P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals, Symmetry, 2020 (2020), Article ID 595. |
[39] | M. A. Noor, K. I. Noor, S. Iftikhar, C. Ionescu, Some integral inequalities for product of harmonic log-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 78 (2016), 11–20. |
[40] | C. P. Niculesau, The Hermite–Hadamard inequality for log-convex functions, Nonlinear Anal., 75 (2012), 662–669. doi: 10.1016/j.na.2011.08.066 |
[41] | E. R. Nwaeze, S. Kermausuor, A. M. Tameru, Some new $k$-Riemann–Liouville fractional integral inequalities associated with the strongly $\eta$-quasiconvex functions with modulus $\mu\geq0$, J. Inequal. Appl., 2018 (2018), 1–10. doi: 10.1186/s13660-017-1594-6 |
[42] | G. Rahman, K. S. Nisar, T. Abdeljawad, Tempered fractional integral inequalities for convex functions, Mathematics, 2020 (2020), Article ID 500. |
[43] | F. Sabzikar, M. M. Meerschaert, J. H. Chen, Tempered fractiononal calculus, J. Comput. Phys., 293 (2015), 14–28. doi: 10.1016/j.jcp.2014.04.024 |
[44] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048 |
[45] | M. Z. Sarikaya, H. Yildirim, On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049–1059. |
[46] | E. Set, M. A. Ardiç, Inequalities for log-convex functions and $p$-function, Miskolc Math. Notes, 18 (2017), 1033–1041. doi: 10.18514/MMN.2017.1798 |
[47] | W. B. Sun, Q. Liu, New Hermite–Hadamard type inequalities for $(\alpha, m)$-convex functions and applications to special means, J. Math. Inequal., 11 (2017), 383–397. |
[48] | J. R. Wang, J. H. Deng, M. Fečkan, Exploring $s$-$e$-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals, Math. Slovaca, 64 (2014), 1381–1396. |
[49] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite–Hadamard type for $s$-logarithmically convex functions, Acta Math. Sci. Ser. B (Engl. Ed.), 35 (2015), 515–526. |
[50] | G. S. Yang, K. L. Tseng, H. T. Wang, A note on integral inequalities of Hadamard type for log-convex and log-concave functions, Taiwan. J. Math., 16 (2012), 479–496. |
[51] | Y. P. Yu, H. Lei, G. Hu, T. S. Du, Estimates of upper bound for differentiable mappings related to Katugampola fractional integrals and $p$-convex mappings, AIMS Math., 6 (2021), 3525–3545. doi: 10.3934/math.2021210 |
[52] | Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via $(\alpha, m)$-convexity, J. Inequal. Appl., 2018 (2018), 1–24. doi: 10.1186/s13660-017-1594-6 |
[53] | X. M. Zhang, W. D. Jiang, Some properties of log-convex function and applications for the exponential function, Comput. Math. Appl., 63 (2012), 1111–1116. doi: 10.1016/j.camwa.2011.12.019 |