In this work, we analyze the fractional order by using the Caputo-Hadamard fractional derivative under the Robin boundary condition. The topological degree method combined with the fixed point methodology produces the desired results. Finally to show how the key findings may be utilized, applications are presented.
Citation: Kottakkaran Sooppy Nisar, Suliman Alsaeed, Kalimuthu Kaliraj, Chokkalingam Ravichandran, Wedad Albalawi, Abdel-Haleem Abdel-Aty. Existence criteria for fractional differential equations using the topological degree method[J]. AIMS Mathematics, 2023, 8(9): 21914-21928. doi: 10.3934/math.20231117
[1] | K. Kefi, Jian Liu . Triple solutions for a Leray-Lions p(x)-biharmonic operator involving Hardy potential and indefinite weight. AIMS Mathematics, 2024, 9(8): 22697-22711. doi: 10.3934/math.20241106 |
[2] | Jia Li, Changchun Bi . Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems. AIMS Mathematics, 2022, 7(11): 19758-19769. doi: 10.3934/math.20221083 |
[3] | Lulu Tao, Rui He, Sihua Liang, Rui Niu . Existence and multiplicity of solutions for critical Choquard-Kirchhoff type equations with variable growth. AIMS Mathematics, 2023, 8(2): 3026-3048. doi: 10.3934/math.2023156 |
[4] | Xiaomin Wang, Zhong Bo Fang . New Fujita type results for quasilinear parabolic differential inequalities with gradient dissipation terms. AIMS Mathematics, 2021, 6(10): 11482-11493. doi: 10.3934/math.2021665 |
[5] | Khaled Kefi, Mohammed M. Al-Shomrani . On multiple solutions for an elliptic problem involving Leray–Lions operator, Hardy potential and indefinite weight with mixed boundary conditions. AIMS Mathematics, 2025, 10(3): 5444-5455. doi: 10.3934/math.2025251 |
[6] | José L. Díaz . Non-Lipschitz heterogeneous reaction with a p-Laplacian operator. AIMS Mathematics, 2022, 7(3): 3395-3417. doi: 10.3934/math.2022189 |
[7] | Jia Li, Zhipeng Tong . Local Hölder continuity of inverse variation-inequality problem constructed by non-Newtonian polytropic operators in finance. AIMS Mathematics, 2023, 8(12): 28753-28765. doi: 10.3934/math.20231472 |
[8] | Shulin Zhang . Existence of nontrivial positive solutions for generalized quasilinear elliptic equations with critical exponent. AIMS Mathematics, 2022, 7(6): 9748-9766. doi: 10.3934/math.2022543 |
[9] | Huashui Zhan, Yuan Zhi, Xiaohua Niu . On a non-Newtonian fluid type equation with variable diffusion coefficient. AIMS Mathematics, 2022, 7(10): 17747-17766. doi: 10.3934/math.2022977 |
[10] | Dengming Liu, Luo Yang . Extinction behavior for a parabolic p-Laplacian equation with gradient source and singular potential. AIMS Mathematics, 2022, 7(1): 915-924. doi: 10.3934/math.2022054 |
In this work, we analyze the fractional order by using the Caputo-Hadamard fractional derivative under the Robin boundary condition. The topological degree method combined with the fixed point methodology produces the desired results. Finally to show how the key findings may be utilized, applications are presented.
The presence of singularities and degeneracies in elliptic equations introduces significant challenges in analyzing the behavior of solutions. These singularities, especially near the origin or boundary, can profoundly affect the properties of the operator, making solutions more sensitive to changes in the domain. For instance, when 1<p<N, it is known that ˜u/|y|∈Lp(RN) if ˜u∈W1,p(RN), or ˜u/|y|∈Lp(Ω) when ˜u∈W1,p(Ω), where Ω is a bounded domain (see Lemma 2.1 in [12] for further details). In this context, the solution under consideration is ˜u, and such behavior leads to the development of Hardy-type inequalities, which are crucial for controlling the singularities of solutions near critical points, particularly when the equation includes singular potential terms (see, e.g., [1,12,17,18,20]).
Furthermore, the presence of an indefinite weight in the source term creates several challenges, mainly because it can change sign or behave irregularly. This complicates the application of standard methods for proving the existence of solutions, such as ensuring the necessary properties of the energy functional. The irregular behavior of the weight also makes it difficult to use common mathematical tools like Sobolev embeddings and variational methods. To overcome these difficulties, this manuscript employs a more flexible approach based on critical point theory [4], which allows establishing the existence of solutions despite the complexities introduced by the indefinite weight.
Finally, the degeneracy of differential operators, such as p-Laplacian or p(x)-Laplacian, when coupled with a weight function ω(x) inside the divergence, introduces additional complexity to the problem. The presence of ω(x), whether it is singular or merely bounded, requires a shift in the selection of appropriate functional spaces. Traditional Sobolev spaces like W1,p(Ω) or W1,p(x)(Ω) may no longer be adequate in such cases. To properly handle the singularities or degeneracies, it becomes necessary to consider alternative Sobolev spaces, such as W1,p(x)(ω,Ω) (see section 2 for the definition of W1,p(ω,Ω)), which are specifically designed to accommodate the weight function (see [6] for further details). The most recent contribution to the study of the p Laplacian in a bounded domain and in the whole space can be found in respectively in [5] and [3], furthermore, the degenerate p-Laplacian operator combined with a Hardy potential can be found in [16].
This paper tackles the challenges posed by degeneracy, Hardy-type singularities, and sign-changing source terms, which are common in applied mathematical models, by examining a class of weighted quasilinear elliptic Dirichlet problem involving a variable exponent p(x) and an indefinite source term. The main objective is to prove the existence of three weak solutions, using a critical point theorem introduced by Bonanno and Moranno in [4] while accounting for the complexities introduced by the operator's degeneracy and the singularities in the equation.
This manuscript explores the multiplicity of weak solutions to a weighted elliptic equations of the form:
{−Δp(x),a(x,u)u+b(x)|u|q−2u|x|q=λk(x)|u|s(x)−2uin Ω,u=0on ∂Ω, | (1.1) |
where λ is a positive parameter, 1<q<N, and Ω⊂RN (with N≥2) is a bounded open subset with smooth boundary ∂Ω. The function u is a solution to a weighted quasilinear elliptic equation involving a variable exponent p(x)∈C+(¯Ω)(see, the beginning of Section 2) and the nonlinear source term of the form k(x)|u|s(x)−2u which involves a weight function k(x) and may exhibit singularities on Ω and can change sign, belongs to a nonstandard Lebesgue space Lγ(x)(Ω).
The operator Δp(x),a(x,u)u represents a nonlinear generalization of the classical Laplacian, defined by:
Δp(x),a(x,u)u=div(a(x,u)|∇u|p(x)−2∇u), |
here a(x,u) denotes a Carathéodory function satisfying the inequality:
a1ω(x)≤a(x,u)≤a2ω(x), |
with a1,a2 are two positive constants, the function ω(x) is assumed to belongs to the local Lebesgue space L1loc(Ω), and it satisfies additional growth conditions, such as ω−h(x)∈L1(Ω), where h(x) satisfies certain bounds related to the variable exponent p(x). Specifically, we assume that
(ω)ω−h(x)∈L1(Ω),forh(x)∈C(¯Ω)andh(x)∈(Np(x),+∞)∩[1p(x)−1,+∞). |
The nonlinearity in the equation involves the functions k(x) and s(x), which are assumed to satisfy the following inequality for almost every x∈Ω
(k)1<s(x)<ph(x)<N<γ(x), |
where ph(x)=h(x)p(x)h(x)+1.
Set, S(Ω), the space that contains all measurable functions in Ω and
C+(¯Ω)={p(x)|p(x)∈C(¯Ω), p(x)>1, ∀x∈¯Ω}, |
p+=maxx∈¯Ωp(x),p−=minx∈¯Ωp(x). |
For τ>0, and p(x)∈C+(¯Ω), we use the following notations
τˆp=max{τp−, τp+}, τˇp=min{τp−, τp+}. |
In the sequel, we define the space Lp(x)(ω,Ω) as follows
Lp(x)(ω,Ω)={u∈S(Ω)∣∫Ωω(x)|u(x)|p(x)dx<∞}, |
where p(x) is a variable exponent, and ω(x) is a weight function. The space is endowed with a Luxemburg-type norm, given by:
‖ |
Next, we define the corresponding variable exponent Sobolev space, which incorporates the variable exponent p(x) in the functional setting.
W^{1,p(x) }( \Omega ) = \big\{ u\in L^{p(x) }( \Omega ):\ | \nabla u| \in L^{p(x) }( \Omega) \big\}, |
with the norm
\|u\|_{W^{1,p(x)}( \Omega )} = \|\nabla u\|_{p(x)}+\|u\|_{p(x)}, |
where \|\nabla u\|_{p(x)} = \||\nabla u| \|_{p(x)}, |\nabla u| = (\sum\limits_{i = 1}^N \big|\frac{\partial u}{\partial x_{i}}\big|^{2})^{\frac{1}{2}}, \nabla u = \Big(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, ..., \frac{\partial u}{\partial x_{N}}\Big) is the gradient of u at (x_{1}, x_{2}, ..., x_{N}).
Denote, by
W^{1,p(x)}(\omega,\Omega) = \{u\in L^{p(x)}(\Omega):\omega^{\frac{1}{p(x)}}|\nabla u|\in L^{p(x)}(\Omega)\} |
the weighted Sobolev space and by W^{1, p(x)}_0(\omega, \Omega) as the closure of C_{0}^{\infty}(\Omega) in the space W^{1, p(x)}(\omega, \Omega) endowed with the norm
\begin{gather*} \|u\| = \inf\Big\{\nu > 0: \int_\Omega\omega(x)\big| \frac{\nabla u(x)}{\nu}\big|^{p(x)} dx \leq 1\Big\}. \end{gather*} |
Lemma 2.1. [8] If p_1(x), p_2(x)\in C_+(\overline\Omega) such that p_1(x) \leq p_2(x) a.e. x\in \Omega, then there exists the continuous embedding W^{1, p_{2}(x)}(\Omega)\hookrightarrow W^{1, p_{1}(x)}(\Omega) .
Proposition 2.1 ([9]) For p(x)\in C_+(\overline\Omega), u, u_n \in L^{p(x)}(\Omega), one has
\min \big\{ \| u\| _{p(x)}^{p^{-}},\| u\| _{p(x) }^{p^{+}}\big\} \leq \int_\Omega|u(x)|^{p(x)}dx \leq \max\big\{ \| u\| _{p(x) }^{p^{-}},\| u\| _{p(x) }^{p^{+}}\text{ }\big\}. |
Let 0 < d(x) \in S(\Omega) , and define the space
L^{p(x)}(d, \Omega) : = L^{p(x)}_{d(x)}(\Omega) = \left\{ u \in S(\Omega) \mid \int_{\Omega} d(x) |u(x)|^{p(x)} \, dx < \infty \right\}, |
where p(x) is a variable exponent, and d(x) is a weight function. The space is equipped with a Luxemburg-type norm, defined by
\|u\|_{L^{p(x)}_{d(x)}(\Omega)} = \|u\|_{(p(x), d(x))} : = \inf \left\{ \nu > 0 \mid \int_{\Omega} d(x) \left| \frac{u(x)}{\nu} \right|^{p(x)} \, dx \leq 1 \right\}. |
Proposition 2.2 ([10]) If p\in C_+(\overline\Omega). Then
\min \big\{ \|u\|_{(p(x),d(x))}^{p^{-}},\| u\| _{(p(x),d(x))}^{p^{+}}\big\} \leq \int_\Omega d(x)|u(x)|^{p(x)}dx \leq \max\big\{ \| u\|_{ {(p(x),d(x))}}^{p^{-}},\| u\| _{(p(x),d(x))}^{p^{+}}\big\} |
for every u\in L^{p(x)}_{d(x)}(\Omega) and for a.e. x\in \Omega .
Combining Proposition 2.1 with Proposition 2.2, one has
Lemma 2.2. Let
\rho_{\omega}(u) = \int_\Omega \omega(x)\big| \nabla u(x)\big|^{p(x)}dx. |
For p\in C_+(\overline\Omega), u \in W^{1, p(x) }(\omega, \Omega), we have
\min \big\{ \| u\|^{p^{-}},\| u\|^{p^{+}}\big\} \leq \rho_{\omega}(u) \leq \max\big\{ \| u\| ^{p^{-}},\| u\|^{p^{+}}\mathit{\text{}}\big\}. |
From Proposition 2.4 of [20], if (\omega) holds, W^{1, p(x)}(\omega, \Omega) is a reflexive separable Banach space.
From Theorem 2.11 of [15], if (\omega) holds, the following embedding
\begin{equation} \begin{aligned}W^{1,p(x)}(\omega,\Omega)\hookrightarrow W^{1,p_{h}(x)}(\Omega)\end{aligned} \end{equation} | (2.1) |
is continuous, where
p_{h}(x) = \frac{p(x)h(x)}{h(x)+1} < p(x). |
Combining (2.1) with Proposition 2.7 and Proposition 2.8 in [11], we get the following embedding
W^{1,p(x)}(\omega,\Omega)\hookrightarrow L^{r(x)}(\Omega) |
is continuous, where
\ 1\leq r(x) \leq p_{h}^{*}(x) = \frac{Np_{h}(x)}{N-p_{h}(x)} = \frac{Np(x)h(x)}{Nh(x)+N-p(x)h(x)}. |
Furthermore, the following embedding
W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{t(x)}(\Omega) |
is compact, when 1\leq t(x) < p_{h}^{*}(x).
In what follows, and for any p(x)\in C_+(\overline\Omega) , let us denote by p'(x): = \frac{p(x)}{p(x)-1} , the conjugate exponent of p(x) .
Remark 2.1. Under Condition (k) , one has
● 1 < \beta(x) < p^{*}_{h}(x) for almost every x\in\Omega , where \beta(x): = \frac{\gamma(x) s(x)}{\gamma(x)-s(x)} , consequently
W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{\beta(x)}(\Omega) |
is compact.
● 1 < \alpha(x) < p^{*}_{h}(x) for almost every x\in\Omega , where \alpha(x) = \gamma'(x)s(x) , consequently
W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{\alpha(x)}(\Omega) |
is compact.
Lemma 2.3 (Hölder type inequality [2,11]). Let p_1, p_2, t\geq 1 three functions that belong in \mathcal{S}(\Omega) such that
\frac{1}{t( x) } = \frac{1}{p_1( x) }+\frac{1}{p_2(x) },\quad \mathit{\text{for almost every}}\ x\in \Omega. |
If f\in L^{p_1(x) }(\Omega) and g\in L^{p_2(x) }(\Omega) , then fg\in L^{t(x) }(\Omega) , moreover
\| fg\| _{t( x ) }\leq 2\|f\| _{p_1(x) }\| g\| _{p_2(x ) }. |
Similarly, if \frac{1}{t(x) }+\frac{1}{p_1(x) }+\frac{1}{p_2(x) } = 1 , for a.e. x\in \Omega , then
\int_{\Omega}|f(x)g(x)h(x)|dx\leq 3\|f\|_{t(x)}\|g\|_{p_1(x)}\|h\|_{p_2(x)}. |
Lemma 2.4 ([7]). Let r_1(x) and r_2(x) be measurable functions such that r_1(x)\in L^{\infty}(\Omega) , and 1\leq r_1(x)r_2(x)\leq\infty , for a.e. x\in\Omega . Let w\in L^{r_2(x)}(\Omega) , w\neq0 . Then
\|w\|^{\check{r_1}}_{r_1(x)r_2(x)} \leq \||w|^{p(x)}\|_{r_2(x)} \leq \|w\|^{\hat{p}}_{r_1(x)r_2(x)}. |
Let's define the functional \mathcal{I}_{\lambda}\colon W^{1, p(x)}_0(\omega, \Omega)\to \mathbb{R} as
\mathcal{I}_{\lambda}(u): = \mathcal{L}(u)-\lambda\mathcal{M}(u), |
where
\begin{eqnarray} \mathcal{L}(u): = \int_{\Omega} \frac{a(x,u)}{p(x)}|\nabla u|^{p(x)}dx+\frac{1}{q}\int_{\Omega}\frac{b(x)|u|^{q}}{|x|^{q}} dx, \end{eqnarray} | (2.2) |
and
\begin{eqnarray} \mathcal{M}(u): = \int_{\Omega}\frac{1}{s(x)}k(x)|u|^{s(x)} dx. \end{eqnarray} | (2.3) |
It is noted that, based on Remark 2.1 and Lemma 2.4, the aforementioned functionals are both well-defined and continuously Gâteaux differentiable (see [14] for further details). The Gâteaux derivatives are as follows
\langle\mathcal{L}'(u),v\rangle = \int_{\Omega} a(x,u) |\nabla u|^{p(x)-2} \nabla u \cdot \nabla v \, dx + \int_{\Omega} \frac{b(x) |u|^{q-2} u v}{|x|^q} \, dx, |
and
\langle\mathcal{M}'(u),v\rangle = \int_{\Omega} k(x) |u|^{s(x)-2} u v \, dx. |
Furthermore, \mathcal{M}'(u) is compact in the dual space (W^{1, p(x)}_0(\omega, \Omega))^* (see [14]).
u\in W^{1, p(x)}_0(\omega, \Omega) is said to be a weak solution of the problem (1.1) if, the following holds for every v\in W^{1, p(x)}_0(\omega, \Omega) .
\langle\mathcal{I}'_{\lambda}(u),v\rangle = \langle\mathcal{L}'(u),v\rangle-\lambda\langle\mathcal{M}'(u),v\rangle = 0. |
Lemma 2.5. \mathcal{L}' is a strictly monotone coercive functional that belongs in (W^{1, p(x)}_{0}(\omega, \Omega))^*.
Proof. For any u \in W^{1, p(x)}_{0}(\omega, \Omega)\setminus {\{0\}} , by Lemma 2.2, one has
\begin{align*} \mathcal{L}'(u)(u)& = \int_{\Omega}a(x,u) |\nabla u|^{p(x)-2}\nabla u \nabla udx +\int_{\Omega}\frac{b(x)|u|^{q-2}u^{2}}{|x|^{q}}dx\\& \geq a_{1}\rho_{\omega}(u)\\&\geq a_{1}\cdot\min\{\|u\|^{p^{+}},\|u\|^{p^{-}}\}, \end{align*} |
thus
\lim\limits_{\|u\|\to \infty}\frac{\mathcal{L}'(u)(u)}{\|u\|}\geq a_{1}\cdot \lim\limits_{\|u\|\to \infty}\frac{\min\{\|u\|^{p^{+}},\|u\|^{p^{-}}\}}{\|u\|} = +\infty, |
then \mathcal{L}' is coercive in view of p(x)\in C_+(\overline\Omega) .
According to (2.2) of [13], for all x, y \in \mathbb{R}^{N} , there is a positive constant C_{p} such that
\langle|x|^{p-2}x-|y|^{p-2}y, x-y\rangle\geq C_{p}|x-y|^{p},\ \text{if}\ p\geq 2, |
and
\langle|x|^{p-2}x-|y|^{p-2}y, x-y\rangle\geq \frac{C_{p}|x-y|^{2}}{(|x|+|y|)^{2-p}},\ \text{if}\ 1 < p < 2,\ \text{and}\ (x,y)\neq(0,0), |
where \langle., .\rangle is the usual inner product in \mathbb{R}^{N}. Thus, for any u, v\in X satisfying u\neq v, by standard arguments we can obtain
\begin{align*} \langle\mathcal{L}'(u)-\mathcal{L}'(v),u-v\rangle& = \int_{\Omega} a(x,u)(|\nabla u|^{p(x)-2}\nabla u -|\nabla v|^{p(x)-2}\nabla v)(\nabla u -\nabla v)dx \\& \ \ \ \\&\ \ \ +\int_{\Omega}\frac{b(x)}{{|x|^{q}}}(|u|^{q-2}u-|v|^{q-2}v)(u-v))dx\\& > 0, \end{align*} |
hence, one has \mathcal{L}' is strictly monotone in W^{1, p(x)}_0(\omega, \Omega) .
Lemma 2.6. The functional \mathcal{L}' is a mapping of (S_{+}) -type, i.e. if u_{n}\rightharpoonup u in W^{1, p(x)}_{0}(\omega, \Omega), and \overline{\lim}_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u), u_{n}-u)\rangle\leq 0, then u_{n}\rightarrow u in W^{1, p(x)}_{0}(\omega, \Omega).
Proof. Let u_{n}\rightharpoonup u in W^{1, p(x)}_{0}(\omega, \Omega), and \overline{\lim}_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u), u_{n}-u\rangle\leq 0.
Noting that \mathcal{L}' is strictly monotone in W^{1, p(x)}_{0}(\omega, \Omega), we have
\lim\limits_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u),u_{n}-u\rangle = 0, |
while
\begin{align*} \langle\mathcal{L}'(u_{n})-\mathcal{L}'(u),u_{n}-u\rangle& = \int_{\Omega} a(x,u)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \\&\ \ \ +\int_{\Omega}\Big(\frac{b(x)|u_{n}|^{q-2}}{|x|^{q}} u_{n}(u_{n}-u)-\frac{b(x)|u|^{q-2}}{|x|^{q}} u(u_{n}-u)\Big )dx , \end{align*} |
thus we get
\overline{\lim}_{n\rightarrow \infty}\int_{\Omega} a(x,u)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \leq 0. |
Further, by (1.2) one has
\overline{\lim}_{n\rightarrow \infty}\int_{\Omega} \omega(x)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \leq 0, |
then u_{n}\rightarrow u in W^{1, p(x)}_{0}(\omega, \Omega) via Lemma 3.2 in [19].
Lemma 2.7. \mathcal{L}' is an homeomorphism.
Proof. The strict monotonicity of \mathcal{L}' implies that it is injective. Since \mathcal{L}' is coercive, it is also surjective, and hence \mathcal{L}' has an inverse mapping.
Next, we show that the inverse mapping (\mathcal{L}')^{-1} is continuous.
Let \tilde{f}_n, \tilde{f} \in (W^{1, p(x)}_0(\omega, \Omega))^* such that \tilde{f}_n \to \tilde{f} . We aim to prove that (\mathcal{L}')^{-1}(\tilde{f}_n) \to (\mathcal{L}')^{-1}(\tilde{f}) .
Indeed, let (\mathcal{L}')^{-1}(\tilde{f}_n) = u_n and (\mathcal{L}')^{-1}(\tilde{f}) = u , so that \mathcal{L}'(u_n) = \tilde{f}_n and \mathcal{L}'(u) = \tilde{f} . By the coercivity of \mathcal{L}' , the sequence u_n is bounded. Without loss of generality, assume u_n \rightharpoonup u_0 , which implies
\lim\limits_{n \to \infty} \left( \mathcal{L}'(u_n) - \mathcal{L}'(u), u_n - u_0 \right) = \lim\limits_{n \to \infty} \left( \tilde{f}_n - \tilde{f}, u_n - u_0 \right) = 0. |
Thus, u_n \to u_0 because \mathcal{L}' is of (S_+) -type, which ensures that \mathcal{L}'(u_n) \to \mathcal{L}'(u_0) . Combining this with \mathcal{L}'(u_n) \to \mathcal{L}'(u) , we deduce that \mathcal{L}'(u) = \mathcal{L}'(u_0) . Since \mathcal{L}' is injective, it follows that u = u_0 , and hence u_n \to u . Therefore, we have (\mathcal{L}')^{-1}(\tilde{f}_n) \to (\mathcal{L}')^{-1}(\tilde{f}) , proving that (\mathcal{L}')^{-1} is continuous.
The following critical point theorems constitute the principal tools used to obtain our result.
Theorem 2.1. ([4, Theorem 3.6]). Let X be a reflexive real Banach space and assume the following
● \mathcal{L}: X \to \mathbb{R} be a coercive functional that is continuously Gateaux differentiable and weakly lower semicontinuous in the sequential sense
● The Gateaux derivative of \mathcal{L} has a continuous inverse on the dual space X^* .
● \mathcal{M}: X \to \mathbb{R} is a continuously Gateaux differentiable functional whith a compact Gateaux derivative.
Furthermore, suppose that
(a_0) \quad \inf\limits_X \mathcal{L} = \mathcal{L}(0) = 0\ and\ \mathcal{M}(0) = 0. |
There exist a positive constant d and a point \overline{v} \in X such that d 06 \mathcal{L}(\overline{v}) , and the following conditions are satisfied:
(a_1) \quad \frac{\sup\nolimits_{\mathcal{L}(x) < d} \mathcal{M}(x)}{d} < \frac{\mathcal{M}(\overline{v})}{\mathcal{L}(\overline{v})}, |
(a_2) \quad \mathit{\text{For each}}\ \lambda \in \Lambda_d : = \left( \frac{\mathcal{L}(\overline{v})}{\mathcal{M}(\overline{v})}, \frac{d}{\sup\nolimits_{\mathcal{L}(x) \leq d} \mathcal{M}(x)} \right), \mathit{\text{the functional}}\ I_{\lambda} : = \mathcal{L} - \lambda \mathcal{M}\ \mathit{\text{is coercive.}} |
Then, for any \lambda \in \Lambda_d , \mathcal{L} - \lambda \mathcal{M} has at least three distinct critical points in X .
In this section, a theorem about the existence of at least three weak solutions to the problem (1.1) is obtained.
Recall the Hardy inequality (refer to Lemma 2.1 in [12] for more details), which asserts that for 1 < t < N , the following inequality holds:
\int_{\Omega} \frac{|u(x)|^t}{|x|^t} \, dx \leq \frac{1}{\mathcal{H}} \int_{\Omega} |\nabla u|^t \, dx, \quad \forall u \in W^{1,t}_0(\Omega), |
where the optimal constant \mathcal{H} is given by:
\mathcal{H} = \left( \frac{N-t}{t} \right)^t. |
By combining this with Lemma 2.1 and using the fact that 1 < q < p_h(x) < N , we deduce the continuous embeddings
W^{1,p(x)}_0(\omega, \Omega) \hookrightarrow W^{1,p_h(x)}_0(\Omega) \hookrightarrow W^{1,q}_0(\Omega), |
which leads to the inequality
\int_{\Omega} \frac{|u(x)|^q}{|x|^q} \, dx \leq \frac{1}{\mathcal{H}} \int_{\Omega} |\nabla u|^q \, dx, \quad \forall u \in W^{1,p(x)}_0(\omega, \Omega), |
where \mathcal{H} = \left(\frac{N-q}{q} \right)^q .
We are now ready to present our primary result. To this end, we define
\tilde{\mathfrak{D}}(x) : = \sup \left\{ \tilde{\mathfrak{D}} > 0 \mid B(x, \tilde{\mathfrak{D}}) \subseteq \Omega \right\} |
for each x \in \Omega , here B(x, \tilde{\mathfrak{D}}) denotes a ball centered at x with radius \tilde{\mathfrak{D}} . It is clear that there exists a point x^0 \in \Omega such that B(x^0, R) \subseteq \Omega , where
R = \sup\limits_{x \in \Omega} \tilde{\mathfrak{D}}(x). |
In the remainder, assume that k(x) , fulfill this requirement
k(x): = \left\{ \begin{array}{l} {\leq 0,} & {\mbox{ for}\, x\in \Omega\setminus B(x^0,R),}\\{\geq k_0,} & {\mbox{ for}\, x\in B(x^0,\frac{R}{2}),}\\{ > 0, } & { \mbox{ for } \, x\in B(x^0,R)\setminus B(x^0,\frac{R}{2}),} \end{array} \right. |
where k_0 is a positive constant, the symbol \tilde{m} will represent the constant
\tilde{m} = \frac{\pi^{\frac{N}{2}}}{\frac{N}{2} \Gamma\left( \frac{N}{2} \right)}, |
with \Gamma denoting the Gamma function.
Theorem 3.1. Assume that p^- > s^+ , and, there exist two positive constants d and \delta > 0 , such that
\frac{1}{{p}^+}\Big(\frac{2 \delta}{R}\Big)^{{\check{p}}}\|w\|_{L^1(\mathfrak{B})} = d, |
and
A_{\delta}: = \frac{\frac{1}{{p^-}}\Big(\frac{2 \delta}{R}\Big)^{\hat{p}}\|\omega\|_{L^1(\mathfrak{B})}+\Big(\frac{2 \delta}{R}\Big)^{{q}}\frac{\|b\|_{\infty}}{q \mathcal{H}}\tilde{m}\left(R^{N}-\left(\frac{R}{2}\right)^{N}\right)}{ \frac{1}{s^{+}} k_{0}\delta^{\check{s}} \tilde{m}\left(\frac{R}{2}\right)^{N}} < B_{d}: = \frac{d}{\frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}} \big[\Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}\big]^{\hat{s}}}, |
then for any \lambda \in] A_{\delta}, B_{d}[ , problem (1.1) has at least three weak solutions.
Proof. It is worth noting that the functional \mathcal{L} and \mathcal{M} associated with problem (1.1) and defined in (2.2) and (2.3), satisfy the regularity assumptions outlined in Theorem 2.1. We will now establish the fulfillment of conditions (a_1) and (a_2) . To this end, let's consider
\frac{1}{{p}^+}\Big(\frac{2 \delta}{R}\Big)^{\check{p}}\|\omega\|_{L^1(\mathfrak{B})} = d |
and consider v_d \in X such that
v_{\delta}(x): = \begin{cases}0 & x \in \Omega \backslash B\left(x^{0}, R\right) \\ \frac{2 \delta}{R}\left(R-\left|x-x^{0}\right|\right) & x \in \mathfrak{B}: = \overline{B}\left(x^{0}, R\right) \backslash B\left(x^{0}, \frac{R}{2}\right), \\ \delta & x \in \overline{B}\left(x^{0}, \frac{R}{2}\right) .\end{cases} |
Then, by the definition of \mathcal{L} , we have
\begin{aligned} & \frac{1}{{p^+}}\Big(\frac{2 \delta}{R}\Big)^{\check{p}}\|\omega\|_{L^1(\mathfrak{B})} \\ & \quad < \mathcal{L}(v_{\delta}) \\ & \quad \leq \frac{1}{{p^-}}\Big(\frac{2 \delta}{R}\Big)^{\hat{p}}\|\omega\|_{L^1(\mathfrak{B})}+\Big(\frac{2 \delta}{R}\Big)^{{q}}\frac{\|b\|_{\infty}}{q \mathcal{H}}\tilde{m}\left(R^{N}-\left(\frac{R}{2}\right)^{N}\right) \end{aligned} |
Therefore, \mathcal{L}(v_{\delta}) > d . However, it is important to consider the following
\begin{eqnarray} \mathcal{M}\left(v_{\delta}\right) \geq \int_{B\left(x_{0}, \frac{R}{2}\right)} \frac{k(x)}{s(x)}\left|v_{\delta}\right|^{\gamma(x)} d x \geq \frac{1}{s^{+}} k_{0}\delta^{\check{s}} \tilde{m}\left(\frac{R}{2}\right)^{N} \end{eqnarray} | (3.1) |
In addition, for each u\in\mathcal{L}^{-1}(]-\infty, d]) , we have
\begin{equation} \frac{1}{p^+}\|u\|^{\check{p}}\leq d. \end{equation} | (3.2) |
therefore,
\|u\| \leq \Big({p}^{+}\mathcal{L}(u)\Big)^{\frac{1}{\check{p}}} < \Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}. |
Furthermore, we can deduce using Lemmas 2.3, 2.4 and Remark 2.1 the following
\begin{eqnarray} \mathcal{M}(u) \leq \frac{1}{s^{-}}\|k\|_{\gamma(x)} \||u|^{s(x)}\|_{\gamma'(x)} \leq \frac{1}{s^{-}}\|k\|_{s(x)}(c_{\gamma' s}\|u\|)^{\hat{s}}, \end{eqnarray} | (3.3) |
where c_{\gamma' s} is the constant from the continuous embedding of W^{1, p(x)}_0(\omega, \Omega) into W^{1, \gamma'(x) s(x)}(\Omega) .
This leads to the following result
\begin{eqnarray*} \sup\limits_{\mathcal{L}(u) < d}\mathcal{M}(u)&\leq& \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}} \big[\Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}\big]^{\hat{s}}, \end{eqnarray*} |
and
\begin{aligned} \frac{1}{d} \sup _{\mathcal{L}(u) < d} \mathcal{M}(u) < \frac{1}{\lambda} . \end{aligned} |
Furthermore, we can establish the coerciveness of \mathcal{I}_{\lambda} for any positive value of \lambda by employing inequality (3.1) once more. This yields the following result
\mathcal{M}(u)\leq \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}}\|u\|^{\hat{s}} . |
When \|u\| is great enough, the following can be inferred
\mathcal{L}(u)-\lambda \mathcal{M}(u) \geq \frac{1}{p^+}\|u\|^{p^-}-\lambda \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}}\|u\|^{\hat{s}} . |
By considering the fact that p^- > s^+ , we can reach the desired conclusion. In conclusion, considering the aforementioned fact that
\bar{\Lambda}_d: = \left(A_{ \delta}, B_d\right) \subseteq\left(\frac{\mathcal{L}\left(v_{\delta}\right)}{\mathcal{M}\left(v_{\delta}\right)}, \frac{d}{\sup\nolimits_{\mathcal{L}(u) < d} \mathcal{M}(u)}\right), |
since all assumptions of Theorem 2.1 are fulfilled, it can be deduced that for any \lambda \in \bar{\Lambda}_d , the function \mathcal{L}-\lambda \mathcal{M} possesses at least three critical points that belong in X: = W^{1, p}_0(\omega, \Omega) . Consequently these critical points are exactly weak solutions of problem (1.1) .
Khaled Kefi: Conceptualization, Methodology, Writing–original draft, Supervision; Nasser S. Albalawi: Conceptualization, Methodology, Writing–original draft, Supervision. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number NBU-FPEJ-2025-1706-01.
The authors declare that they have no conflicts of interest.
[1] |
S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027–1045. https://doi.org/10.1515/fca-2018-0056 doi: 10.1515/fca-2018-0056
![]() |
[2] | T. Abdeljawad, F. Jarad, D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A, 51 (2008), 1775–1786. |
[3] |
A. Ardjouni, A. Djoudi, Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions, Open J. Math. Anal., 3 (2019), 62–69. https://doi.org/10.30538/psrp-oma2019.0033 doi: 10.30538/psrp-oma2019.0033
![]() |
[4] |
A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Math., 4 (2019), 1101–1113. https://doi.org/10.3934/math.2019.4.1101 doi: 10.3934/math.2019.4.1101
![]() |
[5] | Y. Arioua, N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional diffential equations, Surv. Math. Appl., 12 (2017), 103–115. |
[6] |
O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method. H., 28 (2018), 828–856. https://doi.org/10.1108/HFF-07-2016-0278 doi: 10.1108/HFF-07-2016-0278
![]() |
[7] |
B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217 (2010), 480–487. https://doi.org/10.1016/j.amc.2010.05.080 doi: 10.1016/j.amc.2010.05.080
![]() |
[8] |
M. Benchohra, S. Bouriah, J. J. Nieto, Existence of periodic solutions for nonlinear implicit Hadamard's fractional differential equations, RACSAM Rev. R. Acad. A, 112 (2018), 25–35. https://doi.org/10.1007/s13398-016-0359-2 doi: 10.1007/s13398-016-0359-2
![]() |
[9] |
W. Benhamida, J. R. Graef, S. Hamani, Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions, Fract. Differ. Calc., 8 (2018), 165–176. https://doi.org/10.7153/fdc-2018-08-10 doi: 10.7153/fdc-2018-08-10
![]() |
[10] | W. Benhamida, S. Hamani, J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 138–145. |
[11] |
P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. https://doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5
![]() |
[12] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamardtype fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. |
[13] |
P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. https://doi.org/10.1016/S0022-247X(02)00066-5 doi: 10.1016/S0022-247X(02)00066-5
![]() |
[14] |
C. Derbazi, H. Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Math., 5 (2020), 2694–2709. https://doi.org/10.3934/math.2020174 doi: 10.3934/math.2020174
![]() |
[15] | K. Deimling, Nonlinear functional analysis, Springer, Berlin, Heidelberg, 1985. |
[16] |
K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
![]() |
[17] |
M. Feng, X. Zhang, W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value Probl., 2011 (2011), 1–20. https://doi.org/10.1155/2011/720702 doi: 10.1155/2011/720702
![]() |
[18] |
J. R. Graef, N. Guerraiche, S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Stud. U. Babes-Bol. Mat., 62 (2017), 427–438. https://doi.org/10.24193/subbmath.2017.4.02 doi: 10.24193/subbmath.2017.4.02
![]() |
[19] | G. Rahman, S. Ahmad, F. Haq, Application of topological degree method in quantitative behavior of fractional differential equations, Filomat, 34 (2020), 421–432. |
[20] | E. F. D. Goufo, C. Ravichandran, G. A. Birajdar, Self-similarity techniques for chaotic attractors with many scrolls using step series switching, Math. Model. Anal., 26 (2021), 591–611. |
[21] | J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Mat. Pure Appl. Ser., 8 (1892), 101–186. |
[22] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. |
[23] | H. Sweis, N. Shawagfeh, O. A. Arqub, Fractional crossover delay differential equations of Mittag-Leffler kernel: Existence, uniqueness, and numerical solutions using the Galerkin algorithm based on shifted Legendre polynomials, Results Phys., 41 (2022), 105891. |
[24] | F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comen., 75 (2006), 233–240. |
[25] |
F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 1–8. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
![]() |
[26] |
K. Jothimani, K. Kaliraj, S. K. Panda, K. S. Nisar, C. Ravichandran, Results on controllability of non-densely characterized neutral fractional delay differential system, Evol. Equ. Control Th., 10 (2021), 619–631. https://doi.org/10.3934/eect.2020083 doi: 10.3934/eect.2020083
![]() |
[27] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, 1993. |
[28] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006. |
[30] |
L. Lv, J. Wang, W. Wei, Existence and uniqueness results for fractional differential equations with boundary value conditions, Opusc. Math., 31 (2011), 629–643. https://doi.org/10.7494/OpMath.2011.31.4.629 doi: 10.7494/OpMath.2011.31.4.629
![]() |
[31] |
M. Manjula, K. Kaliraj, T. Botmart, K. S. Nisar, C. Ravichandran, Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses, AIMS Math., 8 (2023), 4645–4665. https://doi.org/10.3934/math.2023229 doi: 10.3934/math.2023229
![]() |
[32] | J. Mawhin, Topological degree methods in nonlinear boundary value problems, American Mathematical Society, 1979. |
[33] |
M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017 (2017), 1–15. https://doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
![]() |
[34] |
S. M. Momani, A. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Comput. Math. Appl., 52 (2006), 459–470. https://doi.org/10.1016/j.camwa.2006.02.011 doi: 10.1016/j.camwa.2006.02.011
![]() |
[35] |
A. Morsy, K. S. Nisar, C. Ravichandran, C. Anusha, Sequential fractional order neutral functional integro differential equations on time scales with Caputo fractional operator over Banach spaces, AIMS Math., 8 (2023), 5934–5949. https://doi.org/10.3934/math.2023299 doi: 10.3934/math.2023299
![]() |
[36] |
Q. Ma, R. Wang, J. Wang, Y. Ma, Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Comput., 257 (2015), 436–445. https://doi.org/10.1016/j.amc.2014.10.084 doi: 10.1016/j.amc.2014.10.084
![]() |
[37] |
O. A. Arqub, M. Al-Smadi, Numerical solutions of Riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm, J. Porous Media, 23 (2020), 783–804. https://doi.org/10.1615/JPorMedia.2020025011 doi: 10.1615/JPorMedia.2020025011
![]() |
[38] |
O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
![]() |
[39] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, 1999. |
[40] |
C. Promsakon, E. Suntonsinsoungvon, S. K. Ntouyas, J. Tariboon, Impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function, Adv. Differ. Equ., 2019 (2019), 1–17. https://doi.org/10.1186/s13662-019-2416-6 doi: 10.1186/s13662-019-2416-6
![]() |
[41] |
K. Shah, H. Khalil, R. A. Khan, Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations, Chaos Soliton. Fractal., 77 (2015), 240–246. https://doi.org/10.1016/j.chaos.2015.06.008 doi: 10.1016/j.chaos.2015.06.008
![]() |
[42] |
K. Shah, R. A. Khan, Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory, Numer. Funct. Anal. Optim., 37 (2016), 887–899. https://doi.org/10.1080/01630563.2016.1177547 doi: 10.1080/01630563.2016.1177547
![]() |
[43] |
K. Shah, W. Hussain, Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory, Numer. Funct. Anal. Optim., 40 (2019), 1355–1372. https://doi.org/10.1080/01630563.2019.1604545 doi: 10.1080/01630563.2019.1604545
![]() |
[44] | D. Bainov, P. Simeonov, Impulsive differential equations: Periodic solutions and applications, Routledge, London, 1993. |
[45] |
J. Tariboon, A. Cuntavepanit, S. K. Ntouyas, W. Nithiarayaphaks, Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, J. Funct. Space. Appl., 2018 (2018), 1–8. https://doi.org/10.1155/2018/6974046 doi: 10.1155/2018/6974046
![]() |
[46] |
Y. Tian, W. Ge, Applications of variational methods to boundary-value problem for impulsive differential equations, P. Edinburgh. Math. Soc., 51 (2008), 509–527. https://doi.org/10.1017/S0013091506001532 doi: 10.1017/S0013091506001532
![]() |
[47] |
J. R. Wang, Y. Zhou, W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Funct. Anal. Optim., 33 (2012), 216–238. https://doi.org/10.1080/01630563.2011.631069 doi: 10.1080/01630563.2011.631069
![]() |
[48] |
J. R. Wang, M. Feckan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806–831. https://doi.org/10.1515/fca-2016-0044 doi: 10.1515/fca-2016-0044
![]() |
[49] |
W. X. Zhou, X. Liu, J. G. Zhang, Some new existence and uniqueness results of solutions to semilinear impulsive fractional integro-differential equations, Adv. Differ. Equ., 2015 (2015), 1–16. https://doi.org/10.1186/s13662-015-0372-3 doi: 10.1186/s13662-015-0372-3
![]() |