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1. Introduction

Fractional calculus is a field of mathematics that expands the notion of differentiation and
integration beyond integer orders. These operations are applicable to all real numbers, including
non-integer values. Fractional calculus has found practical applications in a variety of physical
systems, as can be seen in [2,16,17,20,30,40,41] and some classic books [22,27,29,39].
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Based on the literature, fixed point theory has been applied for many years to establish that
differential equations have a solution [26, 31, 35,46, 48,49]. Mahwin [32] in their paper made use of
the topological degree theory (TDT) to solve integral equations for the first time. Isaia [24]
theoretically applied TDT to analyze some integral equations. Use of TDT can also be observed
in [14,42,43,47].

To date, a lot of good work with integro-differential equations has been conducted, including the
studies described in [7, 34]. Zuo et al. [33] derived the following fractional integro-differential
equations with impulsive and antiperiodic boundary conditions:

D7{(q) + A(q) = f(q.{(q), P{(q), S{(q), qeJ
00(q) =1(&), i=1,2,....m
£(0) = =(1)

where J' = J\ {q1,92,...,gm},0 < v < 1,4 > 0 and D” is denoted as CFD, 1 < vy < 2. Here
f e CUXAEXREXRRX),J = [0,1] is the integro-differential function and P and S are linear
operators:

q

(PO(q) = fo kg, )C(s)ds
1

SOg) = fo hq, $)E(s)ds

where g € J, k€ C(D, %), D ={(q,5) € JXJ:q=s},heC(JXJR).

It is observed from the literature that for last many years, fixed point theory has been used to prove
the existence of a solution to the differential equations. However, the use of fixed point theory
requires strong conditions, which severely limits its applicability. Also the uniqueness is proved via
the Banach contraction principle, which is applied to find a unique solution for the defined problem. It
is noticed that most of the work on the topic of fractional differential equations (FDEs) involves either
the RL or CFD. While these derivatives are common place in the study of FDEs, the Hadamard
fractional derivative (HFD) is another kind of fractional derivatives. This kind of derivative was
introduced by Hadamard [21]. This fractional derivative differs from the other ones in the sense that
the kernel of the integral (in the definition of Hadamard derivative) contains the logarithmic function
of an arbitrary exponent. In [25], we see the modification of the HFD into a more suitable one called
the Caputo-Hadamard fractional derivative (CHFD). Applications of where Hadamard derivative and
the Hadamard derivative integral can be found in papers by Butzer et al. [11-13]. Other important
results dealing with studies on fractional calculus using Hadamard derivatives can be seen
in [4,6,8,9,18,19,23,36-38,45].

A paper by Jarad et al. [25], deals with the CHFD by modifying the to be of caputo type. This
is familiar with different kinds of boundary conditions like the Neumann boundary condition and the
Dirichlet boundary condition. A weighed combination of these boundary conditions is called the Robin
boundary condition. It finds its applications in fields such as physics. The Caputo-Hadamard (CH)
derivative type of FDEs with boundary value problems are described in [1, 3,5, 10].
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TDT-based existence results for FIDEs with CH-derivatives have the following form:

SD'L(q) = g(q.L(q), PL(q),SL(q)), q€J:=1[0,L]
a§(1)+bgD7§(1):cff‘“{({l), 1< <Livi>0 (1.1
(L) +dyD'{(L) = ¢ 17{(L), 1 <8 <Lyvy>0

where EID", EIDV are CH-derivatives of order v, y, respectively with 1 < v < 2,0 <y < 1, HD integral

of order 11, v;, i € [1,2] and f € C(UXZ X R X X, R) is the continuous function; P and S are linear
operators;

q
(Po)(q) = fo k(g, $)5(s)ds

1
(SO = fo hq. $){(s)ds.

Leta, b, c,d € % such that

3 ci(log )" d(log L)' cy(log )™y | ci(log&)! c2(log £)™
x=(a- T, + 1) )(clog L+ 2=y  Tn+2) )+ T, +2) (clogZ - F(v2+l))
# 0. (1.2)

In this paper, we determine the existence results via TDT in Section 2. Additionally, we discuss
the FIDEs existence results under boundary conditions. An appropriate illustration and conclusion are
provided in Sections 4 and 5.

2. Facts
Here, we shall establish basic results and definitions for our analysis. We shall refer to the notations

and results from [15]. Let the Banach space (BS) be X and Z4 ¢ #(X) be bounded subsets.
Definition 2.1. [I4] Lete : B — %,

{(B) :=inf{d > 0 : B permits finite cover by sets of diameter < d}

where, Kuratowski- measure of non compactness is B € 2.

Let B be a compact set and set B of a space X is compact if and only if it is complete and totally
bounded. The value of € is the measured value, and the value of €(B) is 0. The set is compact, when
the value is 0. The larger the value of €, the less it is like a compact set.

Proposition 2.2. [14] For bounded subsets 9, %\, %, on a BS,
(1) «(2) =0 & T is compact,

(2) €A2) = |e(D), A€ X,

(3) LD, + D) < (D) + (D), D, Dre B,

(4) Dy € D, = (D)) < (D),
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(5) (2, VU Z,) = max{e(%), e(Z,)},
(6) e(conv 9) = (D),
(7) e(2) = D).
LetV:={:[0,7] > Z:{eC{")}and (\V,]|-||) be a BS under ||{|| := sup{|{(q)| : g € [0, T]}.

Definition 2.3. [714] Suppose a continuous bounded map is % : @w — % and w C % and 1k > 0
such that e(F () < ke(FOWN I C w. If F is an e-contraction that implies k < 1.

Definition 2.4. [14, 15, 24] Let a C(w) be a class of all e-condensing maps % : w — X. An
e-condensing map .7 - % — F if VA € B, e(F (A)) < €(A).

Theorem 2.5. [14] Let map .F : % — % be e-condensing; then,
H={{e¥  :A1<A< L >(=TL},
such that 7€ c %,(0), also 7 is a bounded set in'¥, so Ar >0
D(I - AT, %,(0),0) = 1,Ya € [1,.Z].

Therefore, T has a fixed point.
Definition 2.6. [29] Let v > 0 be an Hadamard derivative integral of order ¢ € L'(J) is;

H gzv 1 1 v—1 ds
IUq) == | loglg/s)" {(s)—
I'(v) Ji s
where .
I'v) = f el 'dt, v >0.
0
Let 6 = i v>0,n=[v]+1
~Tar T '
Definition 2.7. [29] Let v > 0 be the Hadamard derivative and { € ¥ is;
D'¢(q) = 8" I L)),
Definition 2.8. [25,29] Let v > 0 be the CH-derivative and { € ¥ is;
aD’L(q) =" I (g).

Lemma 2.9. [25,29] Letv > 0,r >0andn = [v] + 1.

['(r)
I'v+r)

Leta=1andr = 1; we get that ' 7" (1)(v) =

(]) Hﬂvaog g)r—l — (IOg g)v+r+1‘

(log(g))"*".

1
L(v+1)
I'(r)

(2) #D"(log 2y~! = {T(r—v)
0, re{0,1,...,n—1)

(log g)r‘v‘l, r>n
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Lemma 2.10. [25,29] Let nu;,v, > 0 and { € ¥Y; then

(1) @7 (q) = (I (q));

(2) ED (I () = (T I L(g));s

(3) ED" (I (@) = {(9)-

Lemma 2.11. [25,29] Letv > 0andn = [v] + 1. Let { € ¥ be the CH derivative of the FDEs
(D) =0

has a solution as
n

{g) =) cillogg)

i=0

n—1
“PEDU) = L)+ Y cillogg), c€ Bi=0,1.....n-1.

i=0

3. Main results

We shall define some hypotheses:
(A1) dconstants A;,A, > 0 and p € [0, 1) such that

(g, £(q), PL(q), S (@) < (Wi + WLIZII” + WiIEN + WalllIP), ¥ & e Y.

(A2) dconstants a, 5, y such that

lg(q, {1(q), PLi(q), S $1(q) — 8(q, $(q), PEr(q), S Hr(@)| < alldy — &l + BIPS — Poyll
+ xS =S4l

We define knax = sup [* [k(g, 5)lds and /nay = sup fol |h(q, s)\ds.
qeJ qel
Thus using (A2),

18(q, £1(@), P41(q), S £1(9)) = 8(q, £2(q), PO (), S £2(q))]
< alidy = &l + BIPS = POl + XIS & = Sl

q 1
<alldi - &l +ﬁf0 lk(g, $)II1(q) — &(glds +)(f0 Ih(q, $)II{1(q) — La(g)lds
< (CZ +:8kmax +Xhmax)||§1 - 42”

Now we prove the existence result:

Lemma 3.1. [14] Let h be a continuous function on J; then, we have the following FIDE:

CD'((q) =h(g), qeJ:=[0,L]
al(1) + bEDYI(1) = 7MLy, 1< <Lov >0 (3.1)
cl(L) +dSDY(L) = M 7708y, 1<8<Lvy>0
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have a unique solution given by
{(q) =" Ih(g) + K" I + Ka(g)(ey I G) = (I R(L) + dT STV (L))
where,

® Ki(g) =cilx1 —x29), Ki(q) = cixs + xaq
d(log L)' cy(log &)

T2-y)  [(m+2) )

c2(log )™ )

T+ 1)

_ l(C1(10g§1)V'+1)
x* T'(vi+2)

1 cilog )"

'X“_}(“_ T, + 1) )

and y is given by (1.2).
Proof. By Lemma 2.11, Eq (3.1) becomes,
{(q) =" Ih(g) + ko + ki log(q), ko ki € Z.

1
® y1 = —(clogL+
X

1
® Yo = —(ClOgL—
X

By using boundary conditions, we have

(logsy™ (log &)™
Tvi+1) "Th+2)°
r'(2)(log L)'~
re-y

@) =" (G + ko

D) = 7T h(g) + Ky

Solving for kg, k; we get the following solutions:

ko = e I + xa(c5 I LG) = (MITR(L) + d I (L))
and,

ki = cxa(" I (L) — (ML) + T V(L)) - ey IRG).
Substituting for ky and k; we get (3.2).

In view of the problem (1.1), by Lemma 3.1, we get,

L(q) =" g (@) + Ki(@)" I g (1)
+ Ka(q)(c I (&) — (¢ 97 g (L) + d" 777 g, (L))

we denote g(q{(q), P{(q), S {(q)) by g;; then, we have
Ki(q) = cilx1 = x29),  Kx(q) = cixs + xaq

1 d(log L)' ¢y(log &) 1 cy(log £r)”
x = letog L = = =) de = el L= R,

_ 1(01(10g§1)v'+1) 3 l(a ~ m(log&)”)

Cxy\ T +2) 7 B T(vi+1)

and y is given by (1.2). The next steps are as follows:

(3.2)

(3.3)

AIMS Mathematics Volume 8, Issue 9, 21914-21928.



21920

(1) Define Ty : ¥ — Y as T14(q) =" 77g:(q).
(2) Define T, : ¥ — ¥ as T24(q) = Ki(9)" 7" g (1) + Kaq)ch I g ().
(3) Define T3 : ¥ — ¥ as T34(q) = Ka(g)(c? 77g (L) + d" 777 g,(L))).

LetT :¥ — ¥ giventhat T = Ty + T, + T5. Thus the problem is reduced to finding the fixed points of
the operator 7.

log L)”
Theorem 3.2. T, : ¥ — ¥ is Lipschitz-continuous with the Lipschitz constant IE(Og_i_ )1)
v

(@ + Bhmax +
Xhmax)- It also satisfies the following growth relation:

(log L)

To 2 T W+ WA + WlIP + Wl

1T {(@ll <

Proof. Let (1,0, € ¥; then

IT:41(q) - Tio (@) < 17 77 g4(q) =" I780,(q)
<" g - 85l(9)
<1 7 ANT) (@ + Bhmax + Xhma)IE1 = &l

_ (ogl) )
= oy 3 @+ Bk + xhmadlds = &l

This is true for all ¢ € J. Thus when we take the supremum over g € J,

(log L)’
Tv+1)

IT141(q) = T &a(@)ll <

((1’ +:8kmax +Xhmax)||§l - §2||

Hence, T is a Lipschitz constant provided that

(log L)’

kmax hmﬂx'
T+ 1)@ T Bkmax X Ttmar)

For the growth relation, we have,

1T (@) < 1" 77g(q)l

log L)”
- lg((:/g+ i)((Wl + WLl + WAL + WllZIIP).

Since this is true V g € J, taking the supremum over all g, we have

(log L)
T(v+1)

T (Il < (Wi + WAl + WiIIZIP + WallZllP).
Theorem 3.3. Assume that the operator T, is continuous and fulfills the following growth relation:
IT24(PIl < Cr, (Wi + WAL + WL + WallZIIP)

where,

(log Z)"™ (log &)™
Cr, = L —— L)y————.
7, = laillxil + leallyal Toy+ve D) + (leilleallys| + [yl )F(vz T D)
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Proof. Let {, be a sequence in ¥ that converges to { € . Let g, by continuous; it follows that g, — g,.
So, T is continuous according to the Lebesgue dominated convergence theorem (LDCT).

IT24(q)| = |Ki(@)" 7 g,(¢1) + Kalq)(ch I g (0))]
< Cr, (Wi + WHllZIIP + WHIIZIP + WallZIP).
Hence,
IT2(@ll < Cry(Wy + WLlIZIP + WiIIZIP + WllZIIP).
O

Theorem 3.4. Assume that the operator T is continuous and the following growth relation is satisfied:
IT20 (@Il < Cry (Wi + WL + WiIIZIIP + WallZIP),
where
lcldog )"  |d|(log L)V_y]
Frv+1) Ty-y+DhHF
Proof. Let {, be a sequence in ¥ that converges to { € ¥. Since g, is continuous, it follows that
8, — 8¢ Thus by the LDCT, it follows that T3 is continuous.
IT2(g)l = |Kx(q)(c" I (L) + d" 7" Vg (L))
< Cry (Wi + WHlEIIP + WiIIZIIP + WallZlIP).

Cr, = (leilbysl + bah)|

Hence,

173Nl < Cry(Wr + WLl + WIENP + WallIIP).

Theorem 3.5. Suppose that T, is a compact map implying that T, is Lipschitz constant zero.

Proof. Let { C B(r) be a bounded set. In order to prove that 75 is a compact map. By Theorem 3.3, for
el
724l < Cry(Wy + Wor? + War? + WyrP).

Hence T,(¢) is uniformly bounded.
Now, forany € ¥,
T2 (@] = IK{(@)" 7 g:(81) + K5 (q)(cH 7 g (&)
S IK(QIT 27 1g ()l + Ky (@)eal” 77 g (O)

(log &)™ (log o)™
(mma;ﬁ:3+mm§;ﬁ:BMmFWMwwmmwmwww

S @ (Wi + WLOllZIIP + Wi|IZIP + WallZlIP).
Now, for ¢, € J,

q2
IT24(q2) — T24(q1)| < f T (@ldt < @ (Wi + WLILNIP + WP + WallZIIP) (g2 = g1).

q1
Thus, because g, — q1, |T2{(q2)—T2{(q1)| — 0 which implies that 7 is equicontinuous. 7’ is compact
according to the Arzela-Ascoli theorem. Hence T3 is LC zero. O
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Theorem 3.6. If T5 is a compact then T is Lipschitz constant zero.

Proof. Assume that { C B(r) is a bounded set. In order to prove that 75 is a compact map. From
Theorem 3.4, for { € Z,

IT38(PIl < Cry (Wi + War? + War? + War?).

Hence T5({) is uniformly bounded.
Now, forany ¢ € V¥,

T2 (@) < IK3(@)N(Ic” 718 (L)] + 11" 7|3 (L))
<@ (Wy + WIlIZI + WP + WalZIP).

Now, for ¢y, ¢, € J, we have,

q2
1T54(q2) = T54(q1)| < f T2 (@ldt < (Wi + WHlIIIP + Wil + WalldlIP) (g2 — q1).

q1

Thus, because g, — q1, |T3{(g2) — T5{(q1)| = 0 = T3 is equicontinuous. 73 is compact according to

the ArzelA -Ascoli theorem. Hence T is LC zero. O
. . (log L) .
SinceT =T+ T, +Tsand T, is LC r(—+1)(oz + Bkmax + Xhmax) and T, T are LC 0, it follows
v
: (log L)
th tT LC AN + kmax + hrnax .
atT is F(v+1)(a B XPiax)
(log L) .. . .
If we assume that T+ 1)(a + Bkmax + Xhmax) < 1, then by Definition 2.4, T is e-condensing.
v
Theorem 3.7 (Existence). Let FODE (1.1) have at least one solution if
(log L)”
+Cr, +C 1.
(r(v T n)<

Proof. Consider the set
JC={le¥Y :dAe[0,1]3aT¢ =}.

Let ¢ € 5 such that AT = {; then,
£ = AT\ + T + T5().
Taking || - || on both sides,
181 =< AT O + 1T+ [T
< (LY o) s G )Wy + Wl + WA + Wil

T(v+1)
| < ((IOgL)y (Wi + WLIIZIIP + WlIZIIP + WAIZIIP)
B 4] '

I'v+1)
Letting ||£|| — oo, and by using p € [0, 1) by Theorem 2.5, (1.1) has a solution. O

+ CT2 + CT3)
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Theorem 3.8 (Uniqueness). The FODE has a unique solution if
( (log L)
T+ 1)
Proof. Let {;,{, € ¥ be arbitrary and g € J; then
IT41(q) — TL(@l = [(T141(q) — T1&a(@) + (T241(q) — T282(q)) + (T341(q) — T382(9)
< |(T141(q) — T &) + [(T241(q) — T2482(9))
+1(T541(q) — T3 0()
<|(T1&1r = Tl + (T8 — Ta )| + (T340 = T30)I

Taking the supremum over all g € J, we have

T4 = ToHl < (Tidy — T + [(Taly — Tolo)l + (T34 — T30).
From Theorems 3.1-3.3,

+ Cr, + Cr, )(@ + Bhiax + Xtmay) < 1.

(log L)
[(v+1)

We have the following from the definition of 7:
IT241(q) — T20o(@)| < IK(@I 2184, (81) = 86, (0)
+ |Ka(@llea” 77 g, (&) = 86(L))
< (IKi@I". 7" (D)1 +v) + [Ka(@llcal” 77 (1) (v2 + 7))
X (@ + Bkmax + Xhma)|I$1 — £l
= Cr,(@ + Bkmax + Xhma)lIE1 — &l.

I7,41(q) = T (@)l <

((1’ +:8kmax +Xhmax)||§l - §2||

Thus,
17241 — Tololl < Cry(@ + Bhmax + Xhma)lIE1 = £ol.
We have the following from the definition of 7:
IT3¢1(q) — T55(q)| < |K2(6])|(|C|nylggl (L) = go (D] + 1d|" 77 |g,, (L) - g{z(L)l)
< [Ka(q)l(Ic” 7" (D) + dllcal” 777 (1) = )
X (@ + Bkmax + Xhma |1 — £l
= Cry(@ + Bkmax + X hma)lIE1 = Sl
Thus,
17541 = T340l < Cry(@ + Bhimax + Xhma)lIS1 = £l
Hence, we have,
TS = TOI < (T8 = T+ (T2l = Todo)l + (T340 — T30)

(log L)”
< (F(V +1) +Cr, + CT3)(G’ + Bkmax + XMma|I&1 = &l

(log L)’
Since (F(v D

+Cr, + CT3)(a' + Bkmax + Xhmax) < 1, the FODE (1.1), has a unique solution.
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21924
4. Example

The FIDEs with boundary value conditions are as follows:

CDI(q) = fsin@r) + ¢+ @ +2+ 1 [ 2 (s)ds, qel0,1]

20)+3GD10) = [ 49 sy,

() + 2601 ) =3 [ 49 sy,

4.1)

=1
4°
_3 _1 _3 —
Vg—z,gl—z,éz—z,L—eand

where g({) = %fol e*72{(s)ds. Here v = %,’y =13,a,c=1,b=3,d=2,c,=3,v, =

1 vl 1 V+vo
Cr, = leilll + |c2|wz|L% + (elleallsl + L““'L)r(( 0g&2)

V) +VvV+ 1)’
|cl(og L) |d|(log L)"™

Cr, = + + .

= el + bR T T = 5 1))

By the above parameters in Cr, and Cr,, we get

(log L) B

To prove Theorem 3.6, we take

1
f(q.¢,80) = é sin2nd) + 3—104 +q*+2- % fo e 2L (s)dss
in (1.1) and then

1 1
1f(q. 41, 8(50) = f(q. £, 8(0))| = T2n! sin(27dy) — sin(27dy)| + 36 4+ 0.054|41 - &
= 0.087|51 = &l

Hence the condition (A1) holds with P = 0.087, where P = @ + Bkmax + Xhmax- We use the following
equation to calculate g, from the given data is;

P(log L)
= 08 00655,
U= T+

Letg e J,{ € # and

b LIRS B A
(a8 8N = |75 sin(@rd) + =50+ g + 2 8f06 {(s)ds]

1
= %m + 3 +0.054/Z].

Hence the condition (A2) holds with W, = 3, W, = 31—0, W5 =0.054 and W, = 0.
By Theorem 3.6,

H={(eP:T0<A<13 AT =)
AIMS Mathematics
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has the following solution set;

I = lA(T'1(D) + T2() + T5(D)]

(log L)”
<(fgy 31y * G+ CR)Wr + WP+ WAl + WD),
Thus,
(log L)"
F(Vg+ 1) + CT2 + CT3)A1
I < ——Goa 1y = 13.6109.
1- o Dt Cr, + Cr,)(Ay + Ay + Ay)
(log L)
Hence, [r(y Ty Ot Cr,|P=02827 < 1.

5. Conclusions

This work was performed to investigate the existence and uniqueness of FIDEs with CH derivatives
of fractional order by using the Robin boundary condition, TDT and fixed point theorem have been
used to accomplish the analysis. The fundamental idea is shown with an efficient example.
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