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Abstract: This article discusses the existence and uniqueness of radial solution for the elliptic equation
system 

−4u = f (|x|, u, v, |∇u|), x ∈ Ω,

−4v = g(|x|, u, v, |∇v|), x ∈ Ω,

u|∂Ω = 0, v|∂Ω = 0,

where Ω = {x ∈ RN : r1 < |x| < r2}, N ≥ 3, f , g : [r1, r2] × R × R × R+ → R are continuous. Due to
the appearance of the gradient term in the nonlinearity, the equation system has no variational structure
and the variational method cannot be applied to it directly. We will give the correlation conditions of f
and g, that is, f and g are superlinear or sublinear, and prove the existence and uniqueness of radial
solutions by using Leray-Schauder fixed point theorem.

Keywords: elliptic equation system; gradient term; radial solution; annular domain; Leray-Schauder
fixed point theorem
Mathematics Subject Classification: 35J57, 35J60, 47H10

1. Introduction

In this article we discuss the existence and uniqueness of radial solution for the elliptic equation
system 

−4u = f (|x|, u, v, |∇u|), x ∈ Ω,

−4v = g(|x|, u, v, |∇v|), x ∈ Ω,

u|∂Ω = 0, v|∂Ω = 0

(1.1)
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in an annular domain Ω = {x ∈ RN : r1 < |x| < r2}, where N ≥ 3, 0 < r1 < r2 < ∞, f , g :
[r1, r2] × R × R × R+ → R are continuous.

This problem arises in many different areas of applied mathematics and physics, for instance,
incineration theory of gases, solid state physics, variational methods and optimal control. Therefore,
there have been many research results, see [1–25] and references therein.

The authors of [1] considered the Dirichlet elliptic system 4u + λk1(|x|) f (u, v) = 0,

4v + λk2(|x|)g(u, v) = 0, in Ω,

where Ω = {x ∈ RN : R1 < |x| < R2}, R1, R2 > 0, f , g : [0,∞) × [0,∞) → (0,∞), λ is a positive real
parameter. By establishing the strong maximum principle, applying upper and lower solutions method
and fixed point index results proved the existence of positive radial solutions in the condition (A).

(A) f∞ ≡ lim
(u,v)→∞

f (u, v)
u + v

= ∞, g∞ ≡ lim
(u,v)→∞

g(u, v)
u + v

= ∞.

In [2], Lee replaced the annular domain with an exterior domain.
In [4], the authors used topological methods to prove the existence of positive solutions for

semilinear elliptic systems of the form

−4u = g(x, u, v), x ∈ Ω,

−4v = f (x, u, v), x ∈ Ω,

u > 0, v > 0, in Ω,

u|∂Ω = 0, v|∂Ω = 0,

where Ω is a bounded domain in R2, f , g : Ω × R2 → R are continuous. Similarly, in [8], the authors
also obtain a priori estimates, and then use Leray-Schauder topological degree theory to establish the
existence of positive radial solutions vanishing at infinity.

In addition to the above domain, there are ball domain, see [3, 12, 13, 17, 18, 20, 21]. In [3], Hai
considered the boundary value problem

4u = −λ f (v),

4v = −µg(u), in B,

u = v = 0, on ∂B,

where B is the open unit ball in RN , f , g : R+ → R+. They establish upper and lower estimates,
and the existence and uniqueness of positive solutions are obtained in the case of f and g superlinear.
In [17], the above authors proved the existence and multiplicity of positive radial solutions for the
infinite semipositone/positone superlinear systems.

Recently, in [23], the authors used the fixed point index theory to study the existence of positive
radial solutions for a system of boundary value problems with semipositone second order elliptic
equations
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

4ϕ + k(|z|) f (ϕ, φ) = 0, z ∈ Ω,

4φ + k(|z|)g(ϕ, φ) = 0, z ∈ Ω,

αϕ + β∂ϕ
∂n = 0, αφ + β∂φ

∂n = 0, |z| = R1

γϕ + δ∂ϕ
∂n = 0, γφ + δ∂φ

∂n = 0, |z| = R2,

where α, β, γ, δ ≥ 0, f , g : C(R+ × R+, R) and satisfy

f (u, v), g(u, v) ≥ −M, ∀ u, v ∈ R+.

In [24], Li discussed the existence of positive radial solutions of single elliptic equation. Inspired
by the aforementioned article, we extend the results of [24] to the equation system.

The purpose of this article is to obtain existence and uniqueness results of radial solution for the
elliptic equation system. However, we note that in most of the article on nonlinear differential equations
the nonlinear terms are usually assumed to be nonnegative, see [1–3, 17, 18, 21–23]. However, in this
article, we do not assume that the nonlinear terms are nonnegative, f , g ∈ C([r1, r2] × R2 × R+,R).
Using Leray-Schauder fixed point theorem, we prove the main results in the case of f and g superlinear
or sublinear.

As usual, writing r = |x|, BVP (1.1) becomes the ordinary differential equation system boundary
value problem 

−u′′(r) − N−1
r u′(r) = f (r, u(r), v(r), |u′(r)|), r ∈ [r1, r2],

−v′′(r) − N−1
r v′(r) = g(r, u(r), v(r), |v′(r)|), r ∈ [r1, r2],

u(r1) = u(r2) = 0, v(r1) = v(r2) = 0.

(1.2)

By discussing BVP (1.2) we will obtain radial solution of BVP (1.1).
Our main results are as follows:

Theorem 1.1. Let f , g : [r1, r2] × R × R × R+ → R be continuous. If f and g satisfy the following
conditions:
(F0) for any M > 0, there exists a positive monotone nondecreasing continuous function GM :
[0,+∞]→ (0,+∞) satisfying ∫ +∞

0

ρ dρ
GM(ρ)

= +∞, (1.3)

such that
| f (r, u, v, ξ)| ≤ GM(|ξ|) , |g(r, u, v, η)| ≤ GM(|η|), (1.4)

where r ∈ [r1, r2], |u| ≤ M, |v| ≤ M, ξ, η ∈ R+;

(F1) there exist positive constants a, b, c, d ≥ 0, satisfying r2
N−1

r1N−1

(
(r1−r2)2

2 (a + b) + c + d
)
< 1 and e > 0,

such that
f (r, u, v, ξ)u + g(r, u, v, η)v ≤ au2 + bv2 + cξ2 + dη2 + e, (1.5)

where (r, u, v) ∈ [r1, r2] × R × R, ξ, η ∈ R+. Then BVP (1.1) has at least one radial solution.
Remark 1.1. Condition (F1) allows f (r, u, v, ξ) and g(r, u, v, η) to grow superlinearly with respect
to u, v, ξ, η, while the Nagumo-type condition (F0) restricts f (r, u, v, ξ) and g(r, u, v, η) to grow at
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most quadratically with respect to ξ and η, respectively.
Next we give the uniqueness condition.
Theorem 1.2. Let f , g : [r1, r2] × R × R × R+ → R be continuous. If f and g satisfy (F0) and the
following condition:

(F2) there exist positive constants a, b, c, d ≥ 0, satisfying r2
N−1

r1N−1

(
(r1−r2)2

2 (a + b) + c + d
)
< 1, such that

( f (r, u2, v2, ξ2) − f (r, u1, v1, ξ1))(u2 − u1) + (g(r, u2, v2, η2) − g(r, u1, v1, η1))(v2 − v1)

≤ a(u2 − u1)2 + b(v2 − v1)2 + c(ξ2 − ξ1)2 + d(η2 − η1)2, (1.6)

where (r, ui, vi) ∈ [r1, r2] × R × R, ξi, ηi ∈ R
+, i = 1, 2. Then BVP (1.1) has a unique radial solution.

The main innovations of this article are as follows: First, the nonlinearities are sign-changing.
Second, we replace the previous independent conditions with the correlation conditions of f and g,
which can better reflect the characteristics of the equations. Finally, as far as we know, there are
few articles discussing the elliptic equation system of the nonlinear terms with gradient term, and this
article is one of them.

In Section 2, we will present some preliminaries. The proofs of Theorems 1.1 and 1.2 are based on
the Leray-Schauder fixed point theorem, which will be given in Section 3.

2. Preliminaries

Let I = [r1, r2]. C(I) denote the Banach space of all continuous function on I with norm ‖u‖C =

maxt∈I |u(t)|. C1(I) denote the Banach space of all 1-order continuous differentiable function on I with
norm ‖u‖C1 = maxt∈I{‖u‖C, ‖u′‖C}. L2(I) denote the Hilbert space composed of all Lebesgue square
integrable functions on I with inner product (u, v) =

∫ 1

0
u(t)v(t)dt, and its inner product norm is ‖u‖2 =

(
∫ 1

0
|u(t)|2dt)

1
2 . Let H1(I) = {u ∈ C(I) : u be absolutely continuous on I, and u′ ∈ L2(I)}.

Let X and Y be Banach spaces with norms ‖ · ‖X, ‖ · ‖Y , respectively. X ×Y denotes the product space
of X and Y , forming the Banach space with norm ‖(x, y)‖ = max{‖x‖X, ‖y‖Y}.

For the case of a single equation, given h ∈ C(I), we consider the linear boundary value
problem (LBVP)  −u′′(r) − N−1

r u′(r) = h(r), r ∈ I,

u(r1) = u(r2) = 0.
(2.1)

Lemma 2.1. If h ∈ C(I), then the solution of LBVP (2.1) satisfies

‖u‖22 ≤
(r1 − r2)2

2
‖u′‖22.

Proof. Set u ∈ C2(I) is the solution of LBVP (2.1), then from the Hölder inequality, we have

‖u‖22 =

∫ r2

r1

∣∣∣∣∣ ∫ r

r1

u′(s)ds
∣∣∣∣∣2dr ≤

∫ r2

r1

(r − r1)dr‖u′‖22 ≤
(r1 − r2)2

2
‖u′‖22.

The proof of Lemma 2.1 is completed. �
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Given (h1, h2) ∈ C(I) × C(I), we consider the linear boundary value problem corresponding to
BVP (1.2) 

−u′′(r) − N−1
r u′(r) = h1(r), r ∈ [r1, r2],

−v′′(r) − N−1
r v′(r) = h2(r), r ∈ [r1, r2],

u(r1) = u(r2) = 0, v(r1) = v(r2) = 0.

(2.2)

Lemma 2.2. For every (h1, h2) ∈ C(I) × C(I), LBVP (2.2) has a unique solution (u, v) := S (h1, h2) ∈
C2(I) × C2(I). Moreover, the solution operator S : C(I) × C(I) → C1(I) × C1(I) is a completely
continuous linear operator.
Proof. The case of a single space is known, see [24] Lemma 2.1. We give the proof of the solution
operator is completely continuous in product space.
Set

φ(r) =
1

N − 2

[ 1
r1

N−2 −
1

rN−2

]
, ψ(r) =

1
N − 2

[ 1
rN−2 −

1
r2

N−2

]
, r ∈ I.

By direct computing we have

(rN−1φ′(r))′ = 0, (rN−1ψ′(r))′ = 0, r ∈ I.

rN−1
(
φ′(r)ψ(r) − φ(r)ψ′(r)

)
=

1
N − 2

( 1
r1

N−2 −
1

r2
N−2

)
, ρ > 0, r ∈ I.

We define a function G : I × I → R+ by

G(r, s) =


1
ρ
φ(r) ψ(s), r1 ≤ r ≤ s ≤ r2,

1
ρ
φ(s) ψ(r), r1 ≤ s ≤ r ≤ r2.

(2.3)

Then G ∈ C(I × I). We verify that G(r, s) is the Green function of the LBVP (2.2), namely

(u(r), v(r)) =

( ∫ r2

r1

G(r, s) h1(s)ds,
∫ r2

r1

G(r, s) h2(s)ds
)
, S (h1, h2)(r), r ∈ I (2.4)

is the unique solution of LBVP (2.2). By the above and the definition of G, we have

u(r) =
1
ρ

∫ r

r1

φ(s) ψ(r) h1(s)ds +
1
ρ

∫ r2

r
φ(r) ψ(s) h1(s)ds,

v(r) =
1
ρ

∫ r

r1

φ(s) ψ(r) h2(s)ds +
1
ρ

∫ r2

r
φ(r) ψ(s) h2(s)ds.

By differentiating, we get that

u′(r) =
1
ρ

∫ r

r1

φ(s) ψ′(r) h1(s)ds +
1
ρ

∫ r2

r
φ′(r) ψ(s) h1(s)ds, (2.5)

v′(r) =
1
ρ

∫ r

r1

φ(s) ψ′(r) h2(s)ds +
1
ρ

∫ r2

r
φ′(r) ψ(s) h2(s)ds. (2.6)
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Hence, we see that (u(r), v(r)) is a solution of LBVP (2.2) by direct calculation. By the maximum
principle, LBVP (2.2) has only one solution. From (2.4)–(2.6), we see that the solution operator S :
C(I) ×C(I)→ C1(I) ×C1(I) is a completely continuous linear operator.

The proof of Lemma 2.2 is completed. �
Lemma 2.3. Let f , g : [r1, r2] × R × R × R+ → R be continuous and satisty (F0). For all M > 0,
there exist constants M1 = M1(M) > 0, M2 = M2(M) > 0, such that if the solution (u, v) of BVP (1.2)
satisfis ‖(u, v)‖C ≤ M, then we have

‖(u′, v′)‖C ≤ max{M1, M2}.

Proof. Set M > 0. By (1.3), there exist constants M1, M2 > 0, such that∫ M1

0

ρ dρ
GM(ρ)

> 2M;
∫ M2

0

σ dσ
GM(σ)

> 2M. (2.7)

Let (u, v) ∈ C2(I)×C2(I) is a solution of BVP (1.2) which satisfies ‖(u, v)‖C ≤ M, the following proof
that ‖(u′, v′)‖C ≤ max{M1, M2}. Suppose (u′(r), v′(r)) is not equal to 0, then there exists t0 ∈ (r1, r2)
and t1 ∈ I, t0 , t1, such that (u′(t0), v′(t0)) = (0, 0), ‖(u′, v′)‖C = max{|u′(t1)|, |v′(t1)|} > 0. There are
eight cases as follows:
1) u′(t1) > 0, v′(t1) > 0, t0 < t1;
2) u′(t1) > 0, v′(t1) < 0, t0 < t1;
3) u′(t1) < 0, v′(t1) > 0, t0 < t1;
4) u′(t1) < 0, v′(t1) < 0, t0 < t1;
5) u′(t1) > 0, v′(t1) > 0, t1 < t0;
6) u′(t1) > 0, v′(t1) < 0, t1 < t0;
7) u′(t1) < 0, v′(t1) > 0, t1 < t0;
8) u′(t1) < 0, v′(t1) < 0, t1 < t0.
We only prove case 1), other cases are similar. Set

s1 = sup{r′ ∈ [t0, t1)| u′(r′) = 0, v′(r′) = 0},

then s1 < t1, and (u′(s1), v′(s1)) = (0, 0). When r ∈ (s1, t1], we have u′(r) > 0, v′(r) > 0. Hence,
u′′(r) + N−1

r u′(r) = − f (r, u(r), v(r), |u′(r)|) ≤ GM(|u′(r)|), r ∈ [s1, t1],

v′′(r) + N−1
r v′(r) = −g(r, u(r), v(r), |v′(r)|) ≤ GM(|v′(r)|), r ∈ [s1, t1].

Hence, for all r ∈ [s1, t1], we have

u′′(r)|u′(r)| + N−1
r u′2(r)

GM(|u′(r)|)
≤ |u′(r)| ,

v′′(r)|v′(r)| + N−1
r v′2(r)

GM(|v′(r)|)
≤ |v′(r)|.

Integrating both sides of this inequality on [s1, t1], and variable substitution ρ = |u′(r)|, σ = |v′(r)|, we
obtain that ∫ |u′(t1)|

0

ρ dρ
GM(ρ)

=

∫ t1

s1

u′′(r)|u′(r)|
GM(|u′(r)|)

dr
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≤

∫ t1

s1

u′′(r)|u′(r)|
GM(|u′(r)|)

dr +

∫ t1

s1

N−1
r u′2(r)

GM(|u′(r)|)
dr

≤

∫ t1

s1

|u′(r)| dr

= |u(t1)| − |u(s1)| ≤ 2M.

By (2.7) it follows that
|u′(t1)| < M1.

Similarly, it can be obtained
|v′(t1)| < M2.

Therefore,

‖(u′, v′)‖C = max{‖u′‖C, ‖v′‖C} = max{|u′(t1)|, |v′(t1)|} ≤ max{M1, M2}.

The proof of Lemma 2.3 is completed. �
Theorem 2.1. (Leray-Schauder fixed point theorem) [26,27] Let E be a Banach space, A : E×E →
E × E be a completely continuous mapping. If the solution set of the equation

(u, v) = λA(u, v), 0 < λ < 1

is bounded in E × E, then A has a fixed point.

3. Proofs of the main results

Proof of Theorem 1.1. We known LBVP (2.2) has a unique solution (u, v) ∈ C2(I) × C2(I) by
Lemma 2.2

(u(r), v(r)) =

( ∫ r2

r1

G(r, s) h1(s)ds,
∫ r2

r1

G(r, s) h2(s)ds
)
, r, s ∈ I,

where G(r, s) defined by (2.3). We make integral operator A : C1(I)×C1(I)→ C1(I)×C1(I) as follows:

A(u, v) =

( ∫ r2

r1

G(r, s) f (r, u(r), v(r), |u′(r)|)ds,

∫ r2

r1

G(r, s)g(r, u(r), v(r), |v′(r)|)ds
)
, r ∈ I,

then, A is a completely continuous linear operator. The solution of BVP (1.2) is equivalent to the fixed
point of A. Next we prove that A has fixed point. We consider the equation

(u, v) = λA(u, v), λ ∈ (0, 1). (3.1)

Let (u, v) ∈ C1(I) ×C1(I) be the solution of (3.1), then, (u, v) ∈ C2(I) ×C2(I) satisfies the equations
−u′′(r) − N−1

r u′(r) = λ f (r, u(r), v(r), |u′(r)|), r ∈ I,

−v′′(r) − N−1
r v′(r) = λg(r, u(r), v(r), |v′(r)|), r ∈ I,

u(r1) = u(r2) = 0, v(r1) = v(r2) = 0.

(3.2)
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Multiply both sides of the first formula of Eq (3.2) by u(r), and multiply both sides of the second
formula by v(r). Then, add the two formulas together, by condition (F1) we have

−u′′(r)u(r) −
N − 1

r
u′(r)u(r) − v′′(r)v(r) −

N − 1
r

v′(r)v(r)

= λ( f (r, u(r), v(r), |u′(r)|)u(r) + g(r, u(r), v(r), |v′(r)|)v(r))
≤ au2(r) + bv2(r) + cu′2(r) + dv′2(r) + e, r ∈ I.

Multiply both sides of the above formula by rN−1, we have

−(rN−1u′(r))′u(r) − (rN−1v′(r))′v(r)
≤ rN−1(au2(r) + bv2(r) + cu′2(r) + dv′2(r) + e)
≤ r2

N−1(au2(r) + bv2(r) + cu′2(r) + dv′2(r) + e), r ∈ I.

By integrating on I, by Lemma 2.1 we have

r1
N−1(‖u′‖22 + ‖v′‖22) = r1

N−1
( ∫ r2

r1

u′2(r)dr +

∫ r2

r1

v′2(r)dr
)

≤

∫ r2

r1

rN−1u′2(r)dr +

∫ r2

r1

rN−1v′2(r)dr

≤ r2
N−1(a‖u‖22 + b‖v‖22 + c‖u′‖22 + d‖v′‖22 + e(r2 − r1))

≤ r2
N−1

( (r1 − r2)2

2
(a + b) + c + d

)
(‖u′‖22 + ‖v′‖22) + er2

N−1(r2 − r1),

namely, (
1 −

r2
N−1

r1
N−1

( (r1 − r2)2

2
(a + b) + c + d

))
(‖u′‖22 + ‖v′‖22) ≤

r2
N−1

r1
N−1 e(r2 − r1).

Hence,

‖u′‖22 + ‖v′‖22 ≤
r2

N−1

r1N−1 e(r2 − r1)

1 − r2N−1

r1N−1

(
(r1−r2)2

2 (a + b) + c + d
) , C.

Then,
‖u′‖2 ≤

√
C, ‖v′‖2 ≤

√
C.

For all r ∈ I, we have

|u(r)| =
∣∣∣∣∣ ∫ r

r1

u′(s)ds
∣∣∣∣∣ ≤ ∫ r2

r1

|u′(s)|ds ≤
√

r2 − r1‖u′‖2 ≤
√

C(r2 − r1),

namely,
‖u‖C ≤

√
C(r2 − r1).

Similarly, it can be obtained
‖v‖C ≤

√
C(r2 − r1).

Therefore,
‖(u, v)‖C = max{‖u‖C, ‖v‖C} ≤

√
C(r2 − r1).
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By condition (F0), we have

|λ f (r, u, v, ξ)| ≤ | f (r, u, v, ξ)| ≤ GM(|ξ|), r ∈ I,

|λg(r, u, v, η)| ≤ |g(r, u, v, η)| ≤ GM(|η|), r ∈ I.

Hence, λ f and λg satisfy condition (F0). By Lemma 2.3, there exist constants M1 = M1(M) > 0
and M2 = M2(M) > 0, such that

‖(u′, v′)‖C ≤ max{M1, M2} := M0.

Therefore,
‖(u, v)‖C1 = max{‖(u, v)‖C, ‖(u′, v′)‖C} ≤ max{

√
C(r2 − r1), M0}.

Hence, the solution set of the Eq (3.1) is bounded in C1(I) × C1(I). By the Leray-Schauder fixed
point, we know that A has fixed point (u, v) ∈ C1(I)×C1(I). By the definition of A, (u, v) is a solution
of BVP (1.2), namely, (u(|x|), v(|x|)) is a radial solution of BVP (1.1).

The proof of Theorem 1.1 is completed. �
Proof of Theorem 1.2. First, we prove that (F2)⇒ (F1). For all (r, u, v) ∈ I × R × R, ξ, η ∈ R+, we
take u2 = u, v2 = v, ξ2 = ξ, η2 = η, u1 = v1 = ξ1 = η1 = 0 in (F2). Set

C0 = max
r∈I
{| f (r, 0, 0, 0)|, |g(r, 0, 0, 0)|} + 1.

By condition (F2), we have

f (r, u, v, ξ)u + g(r, u, v, η)v
= ( f (r, u, v, ξ) − f (r, 0, 0, 0))u + (g(r, u, v, η) − g(r, 0, 0, 0))v

+ f (r, 0, 0, 0)u + g(r, 0, 0, 0)v
≤ au2 + bv2 + cξ2 + dη2 + | f (r, 0, 0, 0)u| + |g(r, 0, 0, 0)v|
≤ au2 + bv2 + cξ2 + dη2 + C0|u| + C0|v|

= au2 + bv2 + cξ2 + dη2 + 2 ·

√
2

(r1−r2)2 − (a + b) − 2
(r1−r2)2 (c + d)

2
|u|

·
C0√

2
(r1−r2)2 −(a+b)− 2

(r1−r2)2 (c+d)
+ 2 ·

√
2

(r1−r2)2 −(a+b)− 2
(r1−r2)2 (c+d)

2
|v|

·
C0√

2
(r1−r2)2 − (a + b) − 2

(r1−r2)2 (c + d)

≤ au2 + bv2 + cξ2 + dη2 +

2
(r1−r2)2 − (a + b) − 2

(r1−r2)2 (c + d)

4
u2

+

2
(r1−r2)2 − (a + b) − 2

(r1−r2)2 (c + d)

4
v2 +

2C0
2

2
(r1−r2)2 − (a + b) − 2

(r1−r2)2 (c + d)
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=

(
a+

2
(r1−r2)2 −(a+b)− 2

(r1−r2)2 (c+d)

4

)
u2+

(
b+

2
(r1−r2)2 −(a+b)− 2

(r1−r2)2 (c+d)

4

)
v2

+ cξ2 + dη2 +
2C0

2

2
(r1−r2)2 − (a + b) − 2

(r1−r2)2 (c + d)
.

Let

a1 = a +

2
(r1−r2)2 − (a + b) − 2

(r1−r2)2 (c + d)

4
≥ 0,

b1 = b +

2
(r1−r2)2 − (a + b) − 2

(r1−r2)2 (c + d)

4
≥ 0,

c1 = c ≥ 0 , d1 = d ≥ 0,

e1 =
2C0

2

2
(r1−r2)2 − (a + b) − 2

(r1−r2)2 (c + d)
≥ 0,

we have
f (r, u, v, ξ)u + g(r, u, v, η)v ≤ a1u2 + b1v2 + c1ξ

2 + d1η
2 + e1,

where (r, u, v) ∈ I × R × R, ξ, η ∈ R+ and (r1−r2)2

2 (a1 + b1) + c1 + d1 =
(r1−r2)2

2 (a+b)+c+d+1
2 < 1.

Hence, f and g satisfy condition (F1), by Theorem 1.1, BVP (1.1) has at least one radial solution.
Next, we prove the uniqueness. Set (u1, v1), (u2, v2) ∈ C2(I) ×C2(I) are the solution of BVP (1.1),

then 
−u′′1 (r) − N−1

r u′1(r) = f (r, u1(r), v1(r), |u′1(r)|), r ∈ I,

−v′′1 (r) − N−1
r v′1(r) = g(r, u1(r), v1(r), |v′1(r)|), r ∈ I,

u1(r1) = u1(r2) = 0, v1(r1) = v1(r2) = 0.

(3.3)


−u′′2 (r) − N−1

r u′2(r) = f (r, u2(r), v2(r), |u′2(r)|), r ∈ I,

−v′′2 (r) − N−1
r v′2(r) = g(r, u2(r), v2(r), |v′2(r)|), r ∈ I,

u2(r1) = u2(r2) = 0, v2(r1) = v2(r2) = 0.

(3.4)

Subtract the first formula of Eq (3.4) and the first formula of Eq (3.3), we get

−(u′′2 (r) − u′′1 (r)) −
N − 1

r
(u′2(r) − u′1(r))

= f (r, u2(r), v2(r), |u′2(r)|) − f (r, u1(r), v1(r), |u′1(r)|), r ∈ I. (3.5)

Similarly, it can be obtained

−(v′′2 (r) − v′′1 (r)) −
N − 1

r
(v′2(r) − v′1(r))

= g(r, u2(r), v2(r), |v′2(r)|) − g(r, u1(r), v1(r), |v′1(r)|), r ∈ I. (3.6)
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Multiply both sides of Eq (3.5) by u2(r) − u1(r), and multiply both sides of Eq (3.6) by v2(r) − v1(r).
Then, add the two formulas together, by condition (F2), for all r ∈ I, we have

− (u′′2 (r) − u′′1 (r))(u2(r) − u1(r)) −
N − 1

r
(u′2(r) − u′1(r))(u2(r) − u1(r))

− (v′′2 (r) − v′′1 (r))(v2(r) − v1(r)) −
N − 1

r
(v′2(r) − v′1(r))(v2(r) − v1(r))

= ( f (r, u2(r), v2(r), |u′2(r)|) − f (r, u1(r), v1(r), |u′1(r)|))(u2(r) − u1(r))
+ (g(r, u2(r), v2(r), |v′2(r)|) − g(r, u1(r), v1(r), |v′1(r)|))(v2(r) − v1(r))
≤ a(u2(r)−u1(r))2+b(v2(r)−v1(r))2+c(|u′2(r)|−|u′1(r)|)2+d(|v′2(r)|−|v′1(r)|)2.

Multiply both sides of the above formula by rN−1, we have

−
(
rN−1(u′2(r) − u′1(r))

)′
(u2(r) − u1(r)) −

(
rN−1(v′2(r) − v′1(r))

)′
(v2(r) − v1(r))

≤ rN−1
(
a(u2(r)−u1(r))2+b(v2(r)−v1(r))2+c(|u′2(r)|−|u′1(r)|)2+d(|v′2(r)|−|v′1(r)|)2

)
≤ r2

N−1
(
a(u2(r)−u1(r))2+b(v2(r)−v1(r))2+c(|u′2(r)|−|u′1(r)|)2+d(|v′2(r)|−|v′1(r)|)2

)
.

By integrating on I, by Lemma 2.1 we have

r1
N−1(‖u′2 − u′1‖

2
2 + ‖v′2 − v′1‖

2
2)

= r1
N−1

( ∫ r2

r1

(u′2(r) − u′1(r))2dr +

∫ r2

r1

(v′2(r) − v′1(r))2dr
)

≤

∫ r2

r1

rN−1(u′2(r) − u′1(r))2dr +

∫ r2

r1

rN−1(v′2(r) − v′1(r))2dr

≤ r2
N−1

(
a‖u2 − u1‖

2
2 + b‖v2 − v1‖

2
2 + c‖u′2 − u′1‖

2
2 + d‖v′2 − v′1‖

2
2

)
≤ r2

N−1
( (r1 − r2)2

2
(a + b) + c + d

)
(‖u′2 − u′1‖

2
2 + ‖v′2 − v′1‖

2
2),

namely,

0 ≤
(
1 −

r2
N−1

r1
N−1

( (r1 − r2)2

2
(a + b) + c + d

))
(‖u′2 − u′1‖

2
2 + ‖v′2 − v′1‖

2
2) ≤ 0.

Hence,
‖u′2 − u′1‖

2
2 + ‖v′2 − v′1‖

2
2 = 0,

namely u′2 − u′1 = 0, v′2 − v′1 = 0, then, u2 − u1 = C1, v2 − v1 = C2, where C1, C2 are constants. From
the boundary conditions, C1 = C2 = 0, namely, u2 = u1, v2 = v1. Thus, BVP (1.1) has a unique radial
solution.

The proof of Theorem 1.2 is completed. �
Example 3.1. Consider the elliptic boundary value problem

−4u = −u3v2 + u − u|∇u|2 + sin |x|, x ∈ Ω,

−4v = −v3 − u2v + 3v − 2v|∇v|2 + 1,

u|∂Ω = 0, v|∂Ω = 0.

(3.7)
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The corresponding nonlinear term of Eq (3.7) are

f (r, u, v, ξ) = −u3v2 + u − uξ2 + sin r, g(r, u, v, η) = −v3 − u2v + 3v − 2vη2 + 1.

It is easy to see that f and g are quadratic growth with respect to ξ and η respectively, satisfying
condition (F0). We next verify that f and g satisfy condition (F1), take r1 = 1

2 , r2 = 1, a = 1 + ε, b =

3 + ε, c = d = 0, e = 1
2ε . When ε < 2, we have (r1−r2)2

2 (a + b) < 1, f and g satisfy

f (r, u, v, ξ)u + g(r, u, v, η)v
= − u4v2 + u2 − u2ξ2 + u sin r − v4 − u2v2 + 3v2 − 2v2η2 + v

≤ u2 + 3v2 + |u| sin r + |v|

= u2 + 3v2 + 2 ·
√
ε|u| ·

sin r
2
√
ε

+ 2 ·
√
ε|v| ·

1
2
√
ε

≤ u2 + 3v2 + εu2 +
sin2 r

4ε
+ εv2 +

1
4ε

≤ (1 + ε)u2 + (3 + ε)v2 +
1
2ε

= au2 + bv2 + e.

Thus, f (r, u, v, ξ) and g(r, u, v, η) satisfy condition (F1). By Theorem 1.1, BVP (3.7) has at least
one radial solution.

4. Conclusions

It is well known that elliptic equations arises in many different areas of applied mathematics and
physics, for instance, incineration theory of gases, solid state physics, variational methods and optimal
control. Due to the appearance of the gradient term in the nonlinearity, the equation system has no
variational structure and the variational method cannot be applied to it directly. Therefore, we given
existence and uniqueness results of radial solution in the case of f and g superlinear or sublinear, we
replace the previous independent conditions with the correlation conditions of f and g. In this paper,
we just consider the existence of solutions. However, the properties of the solution have not been fully
discussed.
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