Processing math: 81%
Research article

Hopf bifurcation and hybrid control of a delayed diffusive semi-ratio-dependent predator-prey model

  • A delayed diffusive predator-prey system with nonmonotonic functional response subject to Neumann boundary conditions is introduced in this paper. First, we analyze the associated characteristic equation to research the conditions for local stability of the positive equilibrium point and the occurrence of Turing instability induced by diffusion in the absence of delay. Second, we provide conditions for the existence of Hopf bifurcation driven by time delay. By utilizing the normal theory and center manifold theorem, we derive explicit formulas for Hopf bifurcation properties such as direction and stability from the positive equilibrium. Third, a hybrid controller is added to the system. By judiciously adjusting the control parameters, we effectively enhance the stability domain of the system, resulting in a modification of the position of the Hopf bifurcation periodic solutions. Numerical simulations demonstrate the presence of rich dynamical phenomena within the system. Moreover, sensitivity analysis was conducted using Latin hypercube sampling (LHS)/partial rank correlation coefficient (PRCC) to explore the impact of parameter variations on the output of prey and predator populations.

    Citation: Hairong Li, Yanling Tian, Ting Huang, Pinghua Yang. Hopf bifurcation and hybrid control of a delayed diffusive semi-ratio-dependent predator-prey model[J]. AIMS Mathematics, 2024, 9(10): 29608-29632. doi: 10.3934/math.20241434

    Related Papers:

    [1] Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116
    [2] Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406
    [3] Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767
    [4] Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225
    [5] Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah . Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820
    [6] Abdon Atangana, Seda İğret Araz . Extension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equations. AIMS Mathematics, 2024, 9(3): 5763-5793. doi: 10.3934/math.2024280
    [7] Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041
    [8] Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216
    [9] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [10] Muhammad Farman, Aqeel Ahmad, Ali Akgül, Muhammad Umer Saleem, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Dynamical behavior of tumor-immune system with fractal-fractional operator. AIMS Mathematics, 2022, 7(5): 8751-8773. doi: 10.3934/math.2022489
  • A delayed diffusive predator-prey system with nonmonotonic functional response subject to Neumann boundary conditions is introduced in this paper. First, we analyze the associated characteristic equation to research the conditions for local stability of the positive equilibrium point and the occurrence of Turing instability induced by diffusion in the absence of delay. Second, we provide conditions for the existence of Hopf bifurcation driven by time delay. By utilizing the normal theory and center manifold theorem, we derive explicit formulas for Hopf bifurcation properties such as direction and stability from the positive equilibrium. Third, a hybrid controller is added to the system. By judiciously adjusting the control parameters, we effectively enhance the stability domain of the system, resulting in a modification of the position of the Hopf bifurcation periodic solutions. Numerical simulations demonstrate the presence of rich dynamical phenomena within the system. Moreover, sensitivity analysis was conducted using Latin hypercube sampling (LHS)/partial rank correlation coefficient (PRCC) to explore the impact of parameter variations on the output of prey and predator populations.



    Chemical kinetics deals with chemistry experiments and interprets them in terms of a mathematical model. The experiments are done on chemical reactions with the passage of time. The models are differential equations for the rates at which reactants are consumed and products are produced. Chemists are able to understand how chemical reactions take place at the molecular level by combining models with investigation. Molecules react in steps to lead to the overall stoichiometric reaction which is reaction mechanism for collection of reactions. The set of reactions specifies the path (or paths) that reactant molecules take to finally arrive at the product molecules. All species in the reaction appear in at least one step and the sum of the steps gives the overall reaction. The govern the rate of the reaction which leads directly to the mechanism of differential equations [1]. Many processes and phenomena in chemistry generally in sciences can be designated by first-order differential equations. These equations are the most important and most frequently used to describe natural laws. The following examples are discussed: the Bouguer-Lambert-Beer law in spectroscopy, time constants of sensors, chemical reaction kinetics, radioactive decay, relaxation in nuclear magnetic resonance, and the RC constant of an electrode [2]. The induced kinetic differential equations of a reaction network endowed with mass action type kinetics are a system of polynomial differential equations [3]. We review the basic ideas of fractional differential equations and their applications on non-linear biochemical reaction models. We apply this idea to a non-linear model of enzyme inhibitor reactions [4].

    The fractional-order, which involves integration and transect differentiation using fractional calculus is helping to better understand the explanation of real-world problems than ordinary integer order, as well as in the modeling of real phenomena due to a characterization of memory and hereditary properties in [5,6]. Riemann Liouville developed the concept of fractional derivative, which is based on power law, [7,8] offers a novel fractional derivative that makes use of the exponential kernel. Several issues include the non-singular kernel fractional derivative, which covers the trigonometric and exponential functions, and [9,10,11,12] illustrates some relevant techniques for epidemic models. This virus's suggested outbreak efficiently catches the timeline for the COVID-19 disease conceptual model [13]. In the literature, many fractional operators are employed to solve real-world issues [14,15].

    In this paper, section 1 is introduction and section 2 consists of some basic fractional order derivative which are helpful to solve the epidemiological model. Section 3 and 4 consists of generalized from of the model, uniqueness and stability of the model. Fractal Fractional techniques with exponential decay kernel and Mittag-Leffler kernel respectively in section 5. Results and conclusion are discussed in section 6, and 7 respectively.

    Following are the basic definitions [7,8,14,15] used for analysis and solution of the problem.

    Definition 1: Sumudu transform for any function ϕ(t) over a set is given as,

    A={ϕ(t):there exist Λ,τ1,τ2>0,|ϕ(t)|<Λexp(|t|τi),if t(1)j×[0,)}

    is defined by

    F(u)=ST[ϕ(t)]=0exp(t)ϕ(ut)dt,      u(τ1,τ2).

    Definition 2: For a function g(t)W12(0,1),b>a and σ(0,1], the definition of Atangana–Baleanu derivative in the Caputo sense is given by

    ABC0Dσtg(t)=AB(σ)1σt0ddτg(τ)Mσ[σ1σ(tτ)σ]dτ,      n1<σ<n

    where

    AB(σ)=1σ+σΓ(σ).

    By using Sumudu transform (ST) for (1), we obtain

    ST[ABC0Dσtg(t)](s)=q(σ)1σ{σΓ(σ+1)Mσ(11σVσ)}×[ST(g(t))g(0)].

    Definition 3: For a function g(t)W12(0,1),b>a and α1(0,1], the definition of Atangana–Baleanu derivative in the Caputo sense is given by

    ABC0Dα1tg(t)=AB(α1)1α1t0ddτg(τ)Eα1[α11α1(tτ)α1]dτ,

    where

    AB(α1)=1α1+α1Γ(α1).

    Definition 4: Suppose that g(t) is continuous on an open interval (a,b), then the fractal-fractional integral of g(t) of order α1 having Mittag-Leffler type kernel and given by

    FFMJα1,α20,t(g(t))=α1α2AB(α1)Γ(α1)t0sα21g(s)(ts)α1ds+α2(1α1)tα21g(t)AB(α1)

    Robertson introduces this chemical process in [19,20]. Schafer pioneered the following chemical reactions method in 1975 [19,20]. It represents the high irradiance response (HIRES) of photomorphogenesis based on phytochrome. A stiff system of eight non-linear ordinary differential equations is used to create the following mathematical model.

    y1=M1y1+M2y2+M3y3+M4,y2=M1y1M5y2,y3=M6y3+M2y4+M7y5,y4=M3y2+M8y3M9y4,y5=M10y5+M2y6+M2y7,y6=M11y6y8+M12y4+M8y5M2y6+M12y7,y7=M11y6y8M13y7,y8=M11y6y8+M13y7. (1)

    Here M1=1.7,M2=0.43,M3=8.32, M4=0.0007,M5=8.75, M6=10.03,M7=0.035, M8=1.71,M9=1.12,M10=1.745, M11=280,M12=0.69,M13=1.81. The initial values can be represented by y=(1,0,0,0,0,0,0,0.0057)T. By using Atangana-Baleanu in Caputo sense for system (1), we get

    ABC0Dαty1=M1y1+M2y2+M3y3+M4,ABC0Dαty2=M1y1M5y2,ABC0Dαty3=M6y3+M2y4+M7y5,ABC0Dαty4=M3y2+M8y3M9y4,ABC0Dαty5=M10y5+M2y6M2y7,ABC0Dαty6=M11y6y8+M12y4+M8y5M2y6+M12y7,ABC0Dαty7=M11y6y8M13y7,ABC0Dαty8=M11y6y8+M13y7. (2)

    Here OABCDαt is the Atanagana-Baleanue Caputo sense fractional derivative with 0<α1.

    With given initial conditions

    yi(0)0,i=1,2,3,,8 (3)

    Theorem 3.1: The solution of the proposed fractional-order model (1) along initial conditions is unique and bounded in R+8.

    Proof: In (1), we can get its existence and uniqueness on the time interval (0, ∞). Afterwards, we need to show that the non-negative region R+8 is a positively invariant region. For this

    ABC0Dαty1|y1=0=M2y2+M3y3+M40,
    ABC0Dαty1|y2=0=M1y10,
    ABC0Dαty1|y3=0=M2y4+M7y50,
    ABC0Dαty1|y4=0=M3y2+M8y30,
    ABC0Dαty1|y5=0=M2y6M2y70,
    ABC0Dαty1|y6=0=M12y4+M8y5+M12y70,
    ABC0Dαty1|y7=0=M11y6y80,
    ABC0Dαty1|y8=0=M13y70

    If (y1(0)), (y2(0)), (y3(0)), (y4(0)), (y5(0)), (y6(0)), (y7(0)), (y8(0)) ϵ R8+, then from above expression, the solution cannot escape from the hyperplane. Also on each hyperplane bounding the non-negative orthant, the vector field points into R8+, i.e., the domain R8+ is a positively invariant set.

    Now, with the help of Sumudu transform definition, we get

    QEα(11αPα)ST{y1(t)y1(0)}=ST[M1y1+M2y2+M3y3+M4],QEα(11αPα)ST{y2(t)y2(0)}=ST[M1y1M5y2],QEα(11αPα)ST{y3(t)y3(0)}=ST[M6y3+M2y4+M7y5],QEα(11αPα)ST{y4(t)y4(0)}=ST[M3y2+M8y3M9y4],QEα(11αPα)ST{y5(t)y5(0)}=ST[M10y5+M2y6M2y7],QEα(11αPα)ST{y6(t)y6(0)}=ST[M11y6y8+M12y4+M8y5M2y6+M12y7],QEα(11αPα)ST{y7(t)y7(0)}=ST[M11y6y8M13y7],QEα(11αPα)ST{y8(t)y8(0)}=ST[M11y6y8+M13y7]. (4)

    Where Q=M(α)αΓ(α+1)1α

    Rearranging, we get

    ST(y1(t))=y1(0)+H×ST[M1y1+M2y2+M3y3+M4],ST(y2(t))=y2(0)+H×ST[M1y1M5y2],ST(y3(t))=y3(0)+H×ST[M6y3+M2y4+M7y5],ST(y4(t))=y4(0)+H×ST[M3y2+M8y3M9y4],ST(y5(t))=y5(0)+H×ST[M10y5+M2y6M2y7],ST(y6(t))=y6(0)+H×ST[M11y6y8+M12y4+M8y5M2y6+M12y7],ST(y7(t))=y7(0)+H×ST[M11y6y8M13y7],ST(y8(t))=y8(0)+H×ST[M11y6y8+M13y7]. (5)

    Using the inverse Sumudu transform on both sides of the system (5), we obtain

    y1(t)=y1(0)+ST1[H×ST[M1y1+M2y2+M3y3+M4]],y2(t)=y2(0)+ST1[H×ST[M1y1M5y2]],y3(t)=y3(0)+ST1[H×ST[M6y3+M2y4+M7y5]],y4(t)=y4(0)+ST1[H×ST[M3y2+M8y3M9y4]],y5(t)=y5(0)+ST1[H×ST[M10y5+M2y6M2y7]],y6(t)=y6(0)+ST1[H×ST[M11y6y8+M12y4+M8y5M2y6+M12y7]],y7(t)=y7(0)+ST1[H×ST[M11y6y8M13y7]],y8(t)=y8(0)+ST1[H×ST[M11y6y8+M13y7]]. (6)

    We next obtain the following recursive formula.

    y1(n+1)(t)=y1(n)(0)+ST1[H×ST{M1y1(n)+M2y2(n)+M3y3(n)+M4}],y2(n+1)(t)=y2(n)(0)+ST1[H×ST{M1y1(n)M5y2(n)}],y3(n+1)(t)=y3(n)(0)+ST1[H×ST{M6y3(n)+M2y4(n)+M7y5(n)}],y4(n+1)(t)=y4(n)(0)+ST1[H×ST{M3y2(n)+M8y3(n)M9y4(n)}],y5(n+1)(t)=y5(n)(0)+ST1[H×ST{M10y5(n)+M2y6(n)M2y7(n)}],y6(n+1)(t)=y6(n)(0)+ST1[H×ST{M11y6(n)y8(n)+M12y4(n)+M8y5(n)M2y6(n)+M12y7(n)}],y7(n+1)(t)=y7(n)(0)+ST1[H×ST{M11y6(n)y8(n)M13y7(n)}],y8(n+1)(t)=y8(n)(0)+ST1[H×ST{M11y6(n)y8(n)+M13y7(n)}]. (7)

    Where H=1αM(α)αΓ(α+1)Eα(11αPα)

    And the solution of system is provided by

    y1(t)=limny1(n)(t),    y2(t)=limny2(n)(t),    y3(t)=limny3(n)(t),
    y4(t)=limny4(n)(t),    y5(t)=limny5(n)(t),    y6(t)=limny6(n)(t),
    y7(t)=limny7(n)(t),    y8(t)=limny8(n)(t).

    Theorem 4.1: Define K be a self-map is given by

    K[y1(n+1)(t)]=y1(n+1)(t)=y1(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M1y1(n)+M2y2(n)+M3y3(n)+M4}],K[y2(n+1)(t)]=y2(n+1)(t)=y2(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M1y1(n)M5y2(n)}],K[y3(n+1)(t)]=y3(n+1)(t)=y3(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M6y3(n)+M2y4(n)+M7y5(n)}],K[y4(n+1)(t)]=y4(n+1)(t)=y4(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M3y2(n)+M8y3(n)M9y4(n)}],K[y5(n+1)(t)]=y5(n+1)(t)=y5(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M10y5(n)+M2y6(n)M2y7(n)}],K[y6(n+1)(t)]=y6(n+1)(t)=y6(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11y6(n)y8(n)+M12y4(n)+M8y5(n)M2y6(n)+M12y7(n)}],K[y7(n+1)(t)]=y7(n+1)(t)=y7(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11y6(n)y8(n)M13y7(n)}],K[y8(n+1)(t)]=y8(n+1)(t)=y8(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11y6(n)y8(n)+M13y7(n)}]. (8)

    Proof: By using triangular inequality with the definition of norms, we get

    ||K[y1(n)(t)]K[y1(m)(t)]||||y1(n)(t)y1(m)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M1||y1(n)y1(m)||+M2||y2(n)y2(m)||+M3||y3(n)y3(m)||+M4}],||K[y2(n)(t)]K[y2(m)(t)]||||y2(n)(t)y2(m)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M1||y1(n)y1(m)||M5||y2(n)y2(m)||}],||K[y3(n)(t)]K[y3(m)(t)]||||y3(n)(t)y3(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M6||y3(n)y3(m)||+M2||y4(n)y4(m)||+M7||y5(n)y5(m)||}],||K[y4(n)(t)]K[y4(m)(t)]||||y4(n)(t)y4(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M3||y2(n)y2(m)||+M8||y3(n)y3(m)||M9||y4(n)y4(m)||}],||K[y5(n)(t)]K[y5(m)(t)]||||y5(n)(t)y5(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M10||y5(n)y5(m)||+M2||y6(n)y6(m)||M2||y7(n)y7(m)||}],||K[y6(n)(t)]K[y6(m)(t)]||||y6(n)(t)y6(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11||y6(n)y8(n)y6(m)y8(m)||+M12||y4(n)y4(m)||+M8||y5(n)y5(m)||M2||y6(n)y6(m)||+M12||y7(n)y7(m)||}],||K[y7(n)(t)]K[y7(m)(t)]||||y7(n)(t)y7(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11||y6(n)y8(n)y6(m)y8(m)||M13||y7(n)y7(m)||}],||K[y8(n)(t)]K[y8(m)(t)]||||y8(n)(t)y8(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11||y6(n)y8(n)y6(m)y8(m)||+M13||y7(n)y7(m)||}].

    Hence satisfied given conditions.

    θ=(0,0,0,0,0,0,0,0),θ={||y1(n)(t)y1(m)(t)||×||(y1(n)(t)+y1(m)(t))||M1||y1(n)y1(m)||+M2||y2(n)y2(m)||+M3||y3(n)y3(m)||+M4||y2(n)(t)y2(m)(t)||×||(y2(n)(t)+y2(m)(t))||+M1||y1(n)y1(m)||M5||y2(n)y2(m)||||y3(n)(t)y3(m)(t)||×||(y3(n)(t)+y3(m)(t))||M6||y3(n)y3(m)||+M2||y4(n)y4(m)||+M7||y5(n)y5(m)||||y4(n)(t)y4(m)(t)||×||(y4(n)(t)+y4(m)(t))||+M3||y2(n)y2(m)||+M8||y3(n)y3(m)||M9||y4(n)y4(m)||||y5(n)(t)y5(m)(t)||×||(y5(n)(t)+y5(m)(t))||M10||y5(n)y5(m)||+M2||y6(n)y6(m)||M2||y7(n)y7(m)||||y6(n)(t)y6(m)(t)||×||(y6(n)(t)+y6(m)(t))||M11||y6(n)y8(n)y6(m)y8(m)||+M12||y4(n)y4(m)||+M8||y5(n)y5(m)||M2||y6(n)y6(m)||+M12||y7(n)y7(m)||||y7(n)(t)y7(m)(t)||×||(y7(n)(t)+y7(m)(t))||+M11||y6(n)y8(n)y6(m)y8(m)||M13||y7(n)y7(m)||||y8(n)(t)y8(m)(t)||×||(y8(n)(t)+y8(m)(t))||M11||y6(n)y8(n)y6(m)y8(m)||+M13||y7(n)y7(m)||

    Hence the system is stable.

    Theorem 4.2: Unique singular solution with the iterative method for the special solution of system (2).

    Proof: Considering the Hilbert space H=L2((p,q)×(0,T)) which can be defined as

    h:(p,q)×(0,T)R,ghdgdh<.

    For this purpose, we consider the following operator

    θ(0,0,0,0,0,0,0,0),θ={M1y1+M2y2+M3y3+M4,M1y1M5y2,M6y3+M2y4+M7y5,M3y2+M8y3M9y4,M10y5+M2y6M2y7,M11y6y8+M12y4+M8y5M2y6+M12y7,M11y6y8M13y7,M11y6y8+M13y7.

    By using inner product, we get

    T((y1(11)y1(12),y2(21)y2(22),y3(31)y3(32),y4(41)y4(42),y5(51)y5(52),y6(61)        y6(62),y7(71)y7(72),y8(81)y8(82)),(V1,V2,V3,V4,V5,V6,V7,V8)).

    Where

    (y1(11)y1(12),y2(21)y2(22),y3(31)y3(32), y4(41)y4(42),y5(51)y5(52), y6(61)y6(62), y7(71)y7(72), y8(81)y8(82)), are the special solutions of the system. Taking into account the inner function and the norm, we have

    {M1(y1(11)y1(12))+M2(y2(21)y2(22))+M3(y3(31)y3(32))+M4,V1}M1||y1(11)y1(12)||||V1||+M2||y2(21)y2(22)||||V1||+M3||y3(31)y3(32)||||V1||+M4||V1||,{M1(y1(11)y1(12))M5(y2(21)y2(22)),V2}M1||y1(11)y1(12)||||V2||+M5||y2(21)y2(22)||||V2||,{M6(y3(31)y3(32))+M2(y4(41)y4(42))+M7(y5(51)y5(52)),V3}M6||(y3(31)y3(32))||||V3||+M2||(y4(41)y4(42))||||V3||+M7||(y5(51)y5(52))||||V3||,{M3(y2(21)y2(22))+M8(y3(31)y3(32))M9(y4(41)y4(42)),V4}M3||(y2(21)y2(22))||||V4||+M8||(y3(31)y3(32))||||V4||+M9||(y4(41)y4(42))||||V4||,{M10(y5(51)y5(52))+M2(y6(61)y6(62))M2(y7(71)y7(72)),V5}M10||(y5(51)y5(52))||||V5||+M2||(y6(61)y6(62))||||V5||+M2||(y7(71)y7(72))||||V5||,{M11(y6(61)y6(62))(y8(81)y8(82))+M12(y4(41)y4(42))+M8(y5(51)y5(52))M2(y6(61)y6(62))+M12(y7(71)y7(72)),V6}M11||(y6(61)y6(62))||||(y8(81)y8(82))||||V6||+M12||(y4(41)y4(42))||||V6||+M8||(y5(51)y5(52))||||V6||+M2||(y6(61)y6(62))||||V6||+M12||(y7(71)y7(72))||||V6||,{M11(y6(61)y6(62))(y8(81)y8(82))M13(y7(71)y7(72)),V7}M11||(y6(61)y6(62))||||(y8(81)y8(82))||||V7||+M13||(y7(71)y7(72))||||V7||,{M11(y6(61)y6(62))(y8(81)y8(82))+M13(y7(71)y7(72)),V8}M11||(y6(61)y6(62))||||(y8(81)y8(82))||||V8||+M13||(y7(71)y7(72))||||V8||.

    In the case for large number e1,e2,e3,e4,e5,e6,e7ande8, both solutions happen to be converged to the exact solution. Employing the topology concept, we can obtain eight positive very small parameters (χe1,χe2,χe3,χe4,χe5,χe6,χe7andχe8).

    ||y1y1(11)||,||y1y1(12)||χe1ϖ,||y2y2(21)||,||y2y2(22)||χe2ς,
    ||y3y3(31)||,||y3y3(32)||χe3υ,||y4y4(41)||,||y4y4(42)||χe4κ,
    ||y5y5(51)||,||y5y5(52)||χe5ϱ,||y6y6(61)||,||y6y6(62)||χe6ζ,
    ||y7y7(71)||,||y7y7(72)||χe7ν,||y8y8(81)||,||y8y8(82)||χe8ε.

    Where

    ϖ=8(M1||y1(11)y1(12)||+M2||y2(21)y2(22)||+M3||y3(31)y3(32)||+M4)||V1||
    ς=8(M1||y1(11)y1(12)||+M5||y2(21)y2(22)||)||V2||
    υ=8(M6||(y3(31)y3(32))||+M2||(y4(41)y4(42))||+M7||(y5(51)y5(52))||)||V3||
    κ=8(M3||(y2(21)y2(22))||+M8||(y3(31)y3(32))||+M9||(y4(41)y4(42))||)||V4||
    ϱ=8(M10||(y5(51)y5(52))||+M2||(y6(61)y6(62))||+M2||(y7(71)y7(72))||)||V5||
    ζ=8(M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M12||(y4(41)y4(42))||+M8||(y5(51)y5(52))||+M2||(y6(61)y6(62))||+M12||(y7(71)y7(72))||)||V6||
    ν=8(M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M13||(y7(71)y7(72))||)||V7||
    ε=8(M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M13||(y7(71)y7(72))||)||V8||

    But, it is obvious that

    (M1||y1(11)y1(12)||+M2||y2(21)y2(22)||+M3||y3(31)y3(32)||+M4)0
    (M1||y1(11)y1(12)||+M5||y2(21)y2(22)||)0
    (M6||(y3(31)y3(32))||+M2||(y4(41)y4(42))||+M7||(y5(51)y5(52))||)0
    (M3||(y2(21)y2(22))||+M8||(y3(31)y3(32))||+M9||(y4(41)y4(42))||)0
    (M10||(y5(51)y5(52))||+M2||(y6(61)y6(62))||+M2||(y7(71)y7(72))||)0
    (M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M12||(y4(41)y4(42))||+M8||(y5(51)y5(52))||+M2||(y6(61)y6(62))||+M12||(y7(71)y7(72))||)0
    (M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M13||(y7(71)y7(72))||)0
    (M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M13||(y7(71)y7(72))||)0

    where ||V1||,||V2||,||V3||,||V4||,||V5||,||V6||,||V7||,||V8||0.

    Therefore, we have

    ||y1(11)y1(12)||=0,||y2(21)y2(22)||=0,||y3(31)y3(32)||=0,
    ||(y4(41)y4(42))||=0,||(y5(51)y5(52))||=0,||(y6(61)y6(62))||=0,
    ||(y7(71)y7(72))||=0,||(y8(81)y8(82))||=0.

    Which yields that

    y1(11)=y1(12),y2(21)=y2(22),y3(31)=y3(32),y4(41)=y4(42),y5(51)=y5(52),y6(61)=y6(62),y7(71)=y7(72),y8(81)=y8(82)

    This completes the proof of uniqueness.

    An operator B:ZZ can be defined as:

    B(φ)(t)=φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(t,φ(t))dλ (10)

    If £(t,φ(t)) satisfies the Lipschitz condition and the following extension then

    ● For every φZ there exists constants L£>0 and M£ such that

    |£(t,φ(t))|L£|φ(t)|+M£ (11)

    ● For every φ,¯φZ, there exists a constant M£>0 such that

    |£(t,φ(t))£(t,¯φ(t))||M£|φ(t)¯φ(t)| (12)

    Theorem 4.2: If the condition of (11) holds then for the function £:[0,T]×ZR there exists at least one solution for the (1).

    Proof: Since £ in (10) is continuous function, so B is also a continuous. Assume M={φ||φ||R,R>0}, then for φZ, we have

    B(φ)(t)=maxt[0,T]|φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(t,φ(t))dλ
    |φ(0)+μTμ1(1α1)AB(α1)(L£||φ(t)||+M£)+maxt[0,T]μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(t,φ(t))dλ|
    φ(0)+μTμ1(1α1)AB(α1)(L£||φ(t)||+M£)+μα1AB(α1)Γ(α1)(L£||φ(t)||+M£)Tμ+α11M(μ,α1)R.

    Hence, B is uniformly bounded, and M(μ,α1) is a beta function. For equicontinuity of B, we take t1<t2T, then consider

    B(φ)(t2)B(φ)(t1)=|μt2μ1(1α1)AB(α1)£(t2,φ(t2))+μα1AB(α1)Γ(α1)
    t20λμ1(t2λ)μ1£(t,φ(t))dλμt1μ1(1α1)AB(α1)£(t1,φ(t1))            +μα1AB(α1)Γ(α1)t20λμ1(t1λ)μ1£(t,φ(t))dλ|
    μt2μ1(1α1)AB(α1)(L£|φ(t)|+M£)+μα1AB(α1)Γ(α1)(L£|φ(t)|+M£)t2μ+α11M(μ,α1)
    μt1μ1(1α1)AB(α1)(L£|φ(t)|+M£)μα1AB(α1)Γ(α1)(L£|φ(t)|+M£)t1μ+α11M(μ,α1)

    If t1t2 then ||B(φ)(t2)B(φ)(t1)0|| Consequently ||B(φ)(t2)B(φ)(t1)0||,ast1t2. Hence B is equicontinous. Thus, by Arzela-Ascoli theorem B is completely continuous. Consequently, by the result of Schauder's fixed point, it has at least one solution.

    Theorem 4.3: If η=μTμ1(1α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α11M(μ,α1)M£<1 and the condition (12) holds, then η has a unique solution.

    Proof: For φ,¯φZ, we have

    |B(φ)B(¯φ)|=maxt[0,T]|μtμ1(1α1)AB(α1)[£(t,φ(t))|£(t,¯φ(t))]
    +μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1[£(t,φ(t))|£(t,¯φ(t))]dλ|
    [μTμ1(1α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α11M(μ,α1)]||B(φ)B(¯φ)||
    η||B(φ)B(¯φ)||.

    Hence, B is a contraction. So, by the principle of Banach contraction, it has a unique solution.

    Ulam-Hyres stability

    The proposed model is Ulam-Hyres stable if there exists Bμ,α10 such that for every ε>0 and for every φ(L[0,T],R) satisfies the following inequality FFMJμ,α10,t(φ(t))£(t,φ(t))ε,t[0,T] such that |φ(t)£(t)|Bμ,α1ε,t[0,T].

    Suppose a perturbation ωL[0,T],R then ω(0)=0 and

    ● For every ε>0ω(t)ε|

    0FFMJμ,α1t(φ(t))=£(t,φ(t))+ω(t).

    Lemma 4.4: The solution of the perturbed model 0FFMJμ,α1t(φ(t))=£(t,φ(t))+ω(t),φ(0)=φ0 fulfills the relation

    B(t)[φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,φ(λ))dλ        α1α1,με

    Where α1α1,με=μTμ1(1α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α11M(μ,α1).

    Lemma 4.5: By using condition (12) with lemma (4.4), proposed model is Ulam-Hyres stable if η<1.

    Proof: Suppose α1Z be a solution and φZ be any solution of (1), then

    |φ(t)α1(t)|=|φ(t)[α1(0)+μtμ1(1α1)AB(α1)£(t,α1(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,α1(λ))dλ]|
    |φ(t)[φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,φ(λ))dλ]|            +|φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))            +μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,φ(λ))dλ|
    |α1(0)+μtμ1(1α1)AB(α1)£(t,α1(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,α1(λ))dλ|
    α1α1,με+(μTμ1(1α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α11)L£|φ(t)α1(t)|
    α1α1,με+η|φ(t)α1(t)|.

    Consequently,

    ||φα1||α1α1,με+η||φ(t)α1(t)||.

    So, we can write it as

    ||φα1||Bα1,με,

    Where Bα1,με=α1α1,μ1η. Hence the solution is Ulam-Hyres stable.

    In this section, we present the Hires problem model (1) using fractal-fractional Atangana-Baleanu derivative. We have

    FFDα1,α20,ty1=M1y1+M2y2+M3y3+M4,FFDα1,α20,ty2=M1y1M5y2,FFDα1,α20,ty3=M6y3+M2y4+M7y5,FFDα1,α20,ty4=M3y2+M8y3M9y4,FFDα1,α20,ty5=M10y5+M2y6M2y7,FFDα1,α20,ty6=M11y6y8+M12y4+M8y5M2y6+M12y7,FFDα1,α20,ty7=M11y6y8M13y7,FFDα1,α20,ty8=M11y6y8+M13y7. (13)

    With initial conditions

    y1(0)=y1(0),y2(0)=y2(0),y3(0)=y3(0),y4(0)=y4(0),y5(0)=y5(0),y6(0)=y6(0),y7(0)=y7(0),y8(0)=y8(0).

    We present the numerical algorithm for the fractal-fractional Hires problem model (13). The following is obtained by integrating the system (13).

    y1(t)y1(0)=(1α1)C(α1)α2tα21{M1y1(t)+M2y2(t)+M3y3(t)+M4}+α1α2C(α1)Γ(α1)t0τα21{M1y1(τ)+M2y2(τ)+M3y3(τ)+M4}(tτ)α11dτ,y2(t)y2(0)=(1α1)C(α1)α2tα21{M1y1(t)M5y2(t)}+α1α2C(α1)Γ(α1)t0τα21{{M1y1(τ)M5y2(τ)}}(tτ)α11dτ,y3(t)y3(0)=(1α1)C(α1)α2tα21{M6y3(t)+M2y4(t)+M7y5(t)}+α1α2C(α1)Γ(α1)t0τα21{M6y3(τ)+M2y4(τ)+M7y5(τ)}(tτ)α11dτ,y4(t)y4(0)=(1α1)C(α1)α2tα21{M3y2(t)+M8y3(t)M9y4(t)}+α1α2C(α1)Γ(α1)t0τα21{M3y2(τ)+M8y3(τ)M9y4(τ)}(tτ)α11dτ,y5(t)y5(0)=(1α1)C(α1)α2tα21{M10y5(t)+M2y6(t)M2y7(t)}+α1α2C(α1)Γ(α1)t0τα21{{M10y5(τ)+M2y6(τ)M2y7(τ)}}(tτ)α11dτ,y6(t)y6(0)=(1α1)C(α1)α2tα21{M11y6(t)y8(t)+M12y4(t)+M8y5(t)M2y6(t)+M12y7(t)}+α1α2C(α1)Γ(α1)t0τα21{M11y6(τ)y8(τ)+M12y4(τ)+M8y5(τ)M2y6(τ)+M12y7(τ)}(tτ)α11dτ,y7(t)y7(0)=(1α1)C(α1)α2tα21{M11y6(t)y8(t)M13y7(t)}+α1α2C(α1)Γ(α1)t0τα21{M11y6(τ)y8(τ)M13y7(τ)}(tτ)α11dτ,y8(t)y8(0)=(1α1)C(α1)α2tα21{M11y6(t)y8(t)+M13y7(t)}+α1α2C(α1)Γ(α1)t0τα21{{M11y6(τ)y8(τ)+M13y7(τ)}}(tτ)α11dτ, (14)

    Let

    k(t,y1(t))=α2tα21{M1y1(t)+M2y2(t)+M3y3(t)+M4},
    k(t,y2(t))=α2tα21{M1y1(t)M5y2(t)},
    k(t,y3(t))=α2tα21{M6y3(t)+M2y4(t)+M7y5(t)},
    k(t,y4(t))=α2tα21{M3y2(t)+M8y3(t)M9y4(t)},
    k(t,y5(t))=α2tα21{M10y5(t)+M2y6(t)M2y7(t)},
    k(t,y6(t))=α2tα21{M11y6(t)y8(t)+M12y4(t)+M8y5(t)M2y6(t)+M12y7(t)},
    k(t,y7(t))=α2tα21{M11y6(t)y8(t)M13y7(t)},
    k(t,y8(t))=α2tα21{M11y6(t)y8(t)+M13y7(t)}.

    Then system (14) becomes

    y1(t)y1(0)=(1α1)C(α1)k(t,y1(t))+α1C(α1)Γ(α1)t0k(τ,y1(τ))(tτ)α11dτ,y2(t)y2(0)=(1α1)C(α1)k(t,y2(t))+α1C(α1)Γ(α1)t0k(τ,y2(τ))(tτ)α11dτ,y3(t)y3(0)=(1α1)C(α1)k(t,y3(t))+α1C(α1)Γ(α1)t0k(τ,y3(τ))(tτ)α11dτ,y4(t)y4(0)=(1α1)C(α1)k(t,y4(t))+α1C(α1)Γ(α1)t0k(τ,y4(τ))(tτ)α11dτ,y5(t)y5(0)=(1α1)C(α1)k(t,y5(t))+α1C(α1)Γ(α1)t0k(τ,y5(τ))(tτ)α11dτ,y6(t)y6(0)=(1α1)C(α1)k(t,y6(t))+α1C(α1)Γ(α1)t0k(τ,y6(τ))(tτ)α11dτ,y7(t)y7(0)=(1α1)C(α1)k(t,y7(t))+α1C(α1)Γ(α1)t0k(τ,y7(τ))(tτ)α11dτ,y8(t)y8(0)=(1α1)C(α1)k(t,y8(t))+α1C(α1)Γ(α1)t0k(τ,y8(τ))(tτ)α11dτ, (15)

    At tn+1=(n+1)Δt, we have

    y1(tn+1)y1(0)=(1α1)C(α1)k(tn,y1(tn))+α1C(α1)Γ(α1)tn+10k(τ,y1(τ))(tn+1τ)α11dτ,y2(tn+1)y2(0)=(1α1)C(α1)k(tn,y2(tn))+α1C(α1)Γ(α1)tn+10k(τ,y2(τ))(tn+1τ)α11dτ,y3(tn+1)y3(0)=(1α1)C(α1)k(tn,y3(tn))+α1C(α1)Γ(α1)tn+10k(τ,y3(τ))(tn+1τ)α11dτ,y4(tn+1)y4(0)=(1α1)C(α1)k(tn,y4(tn))+α1C(α1)Γ(α1)tn+10k(τ,y4(τ))(tn+1τ)α11dτ,y5(tn+1)y5(0)=(1α1)C(α1)k(tn,y5(tn))+α1C(α1)Γ(α1)tn+10k(τ,y5(τ))(tn+1τ)α11dτ,y6(tn+1)y6(0)=(1α1)C(α1)k(tn,y6(tn))+α1C(α1)Γ(α1)tn+10k(τ,y6(τ))(tn+1τ)α11dτ,y7(tn+1)y7(0)=(1α1)C(α1)k(tn,y7(tn))+α1C(α1)Γ(α1)tn+10k(τ,y7(τ))(tn+1τ)α11dτ,y8(tn+1)y8(0)=(1α1)C(α1)k(tn,y8(tn))+α1C(α1)Γ(α1)tn+10k(τ,y8(τ))(tn+1τ)α11dτ. (16)

    Also, we have

    y1(tn+1)=y1(0)+(1α1)C(α1)k(tn,y1(tn))+α1C(α1)Γ(α1)nj=0tj+1tjk(τ,y1(τ))(tn+1τ)α11dτ,y2(tn+1)=y2(0)+(1α1)C(α1)k(tn,y2(tn))+α1C(α1)Γ(α1)nj=0tj+1tjk(τ,y2(τ))(tn+1τ)α11dτ,y3(tn+1)=y3(0)+(1α1)C(α1)k(tn,y3(tn))+α1C(α1)Γ(α1)nj=0tj+1tjk(τ,y3(τ))(tn+1τ)α11dτ,y4(tn+1)=y4(0)+(1α1)C(α1)k(tn,y4(tn))+α1C(α1)Γ(α1)nj=0tj+1tjk(τ,y4(τ))(tn+1τ)α11dτ,y5(tn+1)=y5(0)+(1α1)C(α1)k(tn,y5(tn))+α1C(α1)Γ(α1)nj=0tj+1tjk(τ,y5(τ))(tn+1τ)α11dτ,y6(tn+1)=y6(0)+(1α1)C(α1)k(tn,y6(tn))+α1C(α1)Γ(α1)nj=0tj+1tjk(τ,y6(τ))(tn+1τ)α11dτ,y7(tn+1)=y7(0)+(1α1)C(α1)k(tn,y7(tn))+α1C(α1)Γ(α1)nj=0tj+1tjk(τ,y7(τ))(tn+1τ)α11dτ,y8(tn+1)=y8(0)+(1α1)C(α1)k(tn,y8(tn))+α1C(α1)Γ(α1)nj=0tj+1tjk(τ,y8(τ))(tn+1τ)α11dτ. (17)

    In general, approximating the function k(τ,y(τ)), using the Newton polynomial, we have

    Pn(τ)=k(tn,y(tn))tntn1(τtn1)+k(tn1,y(tn1))tntn1(τtn)=k(tn,y(tn))h(τtn1)k(tn1,y(tn1))h(τtn). (18)

    Using Eq (18) into system (17) we have

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\int_{{t}_{j}}^{{t}_{j+1}} \{k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)+\\ \frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\left(\tau -{t}_{j-2}\right)+\frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\left(\tau -{t}_{j-2}\right)(\tau -\\ {t}_{j-1})\}{\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \end{array} (19)

    Rearranging the above equation, we have

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}[\int_{{t}_{j}}^{{t}_{j+1}} k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \int_{{t}_{j}}^{{t}_{j+1}} \frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \int_{{t}_{j}}^{{t}_{j+1}} \frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau ], \end{array} (20)

    Writing further system (20) we have

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\int_{{t}_{j}}^{{t}_{j+1}} {\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \end{array} (21)

    Now, calculating the integrals in system (21) we get

    \int_{{t}_{j}}^{{t}_{j+1}} {\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}}}{{\alpha }_{1}}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right],
    \begin{array}{l} \int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}+1}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)}[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-{\left(n-j+1\right)}^{{\alpha }_{1}}(n-\\ j+3+3{\alpha }_{1})], \end{array}
    \begin{array}{l} \int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}+2}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)\left({\alpha }_{1}+2\right)}[{\left(n-j+1\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\\ \left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\right\}-{\left(n-j\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+\\ 18{\alpha }_{1}+12\}]. \end{array}

    Inserting them into system (21) we get

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+1\right)}\sum _{j = 2}^{n}k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right]+\\ \frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+2\right)}\sum _{j = 2}^{n}\left[k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\right][{(n-j+1)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-(n-j+\\ 1)^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)]+\frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{2\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+3\right)}\sum _{j = 2}^{n}\left[k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\right][(n-\\ j+1)^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\right\}-{\left(n-j\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+(5{\alpha }_{1}+\\ 10)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}] \end{array} (22)

    Finally, we have the following approximation:

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{1}{y}_{1}(t)+{M}_{2}{y}_{2}(t)+{M}_{3}{y}_{3}(t)+{M}_{4}\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+{M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-1}+{M}_{2}{{y}_{2}}^{j-1}+{M}_{3}{{y}_{3}}^{j-1}+{M}_{4}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+\\ {M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j}+{M}_{2}{{y}_{2}}^{j}+{M}_{3}{{y}_{3}}^{j}+{M}_{4}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-1}+{M}_{2}{{y}_{2}}^{j-1}+\\ {M}_{3}{{y}_{3}}^{j-1}+{M}_{4}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+{M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+\\ (3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+\\ 18{\alpha }_{1}+12\}], \\ {{y}_{2}}^{n+1} = {{y}_{2}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{1}{y}_{1}(t)-{M}_{5}{y}_{2}(t)\}+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-\\ {M}_{5}{{y}_{2}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-1}-{M}_{5}{{y}_{2}}^{j-1}\}-\\ {t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-{M}_{5}{{y}_{2}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+\\ 3{\alpha }_{1})]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j}-{M}_{5}{{y}_{2}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-1}-{M}_{5}{{y}_{2}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-{M}_{5}{{y}_{2}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-\\ {(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{3}}^{n+1} = {{y}_{3}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{6}{y}_{3}(t)+{M}_{2}{y}_{4}(t)+{M}_{7}{y}_{5}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+{M}_{7}{{y}_{5}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-1}+{M}_{2}{{y}_{4}}^{j-1}+{M}_{7}{{y}_{5}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+\\ {M}_{7}{{y}_{5}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j}+{M}_{2}{{y}_{4}}^{j}+\\ {M}_{7}{{y}_{5}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-1}+{M}_{2}{{y}_{4}}^{j-1}+{M}_{7}{{y}_{5}}^{j-1}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+\\ {M}_{7}{{y}_{5}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-\\ j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{4}}^{n+1} = {{y}_{4}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{3}{y}_{2}(t)+{M}_{8}{y}_{3}(t)-{M}_{9}{y}_{4}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-{M}_{9}{{y}_{4}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-1}+{M}_{8}{{y}_{3}}^{j-1}-{M}_{9}{{y}_{4}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-\\ {M}_{9}{{y}_{4}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j}+{M}_{8}{{y}_{3}}^{j}-{M}_{9}{{y}_{4}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-1}+{M}_{8}{{y}_{3}}^{j-1}-{M}_{9}{{y}_{4}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-{M}_{9}{{y}_{4}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{5}}^{n+1} = {{y}_{5}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{10}{y}_{5}(t)+{M}_{2}{y}_{6}(t)-{M}_{2}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+{M}_{2}{{y}_{6}}^{j-2}-{M}_{2}{{y}_{7}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-1}+{M}_{2}{{y}_{6}}^{j-1}-{M}_{2}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+{M}_{2}{{y}_{6}}^{j-2}-\\ {M}_{2}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j}+{M}_{2}{{y}_{6}}^{j}-\\ {M}_{2}{{y}_{7}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-1}+{M}_{2}{{y}_{6}}^{j-1}-{M}_{2}{{y}_{7}}^{j-1}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+\\ {M}_{2}{{y}_{6}}^{j-2}-{M}_{2}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+\\ 10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+\\ 10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+\\ 12\}], \end{array} (23)
    \begin{array}{l} {{y}_{6}}^{n+1} = {{y}_{6}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{11}{y}_{6}(t){y}_{8}(t)+{M}_{12}{y}_{4}(t)+{M}_{8}{y}_{5}(t)-{M}_{2}{y}_{6}(t)+{M}_{12}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+{M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}[(n-\\ j+1)^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{12}{{y}_{4}}^{j-1}+{M}_{8}{{y}_{5}}^{j-1}-\\ {M}_{2}{{y}_{6}}^{j-1}+{M}_{12}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+\\ {M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}+{M}_{12}{{y}_{4}}^{j}+{M}_{8}{{y}_{5}}^{j}-{M}_{2}{{y}_{6}}^{j}+{M}_{12}{{y}_{7}}^{j}\}-\\ 2{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{12}{{y}_{4}}^{j-1}+{M}_{8}{{y}_{5}}^{j-1}-{M}_{2}{{y}_{6}}^{j-1}+{M}_{12}{{y}_{7}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+{M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2(n-\\ j)^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+\\ 6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \end{array}
    \begin{array}{l} {{y}_{7}}^{n+1} = {{y}_{7}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{11}{y}_{6}(t){y}_{8}(t)-{M}_{13}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}-{M}_{13}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}][(n-\\ j+1)^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}-{M}_{13}{{y}_{7}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}-{M}_{13}{{y}_{7}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \end{array}
    \begin{array}{l} {{y}_{8}}^{n+1} = {{y}_{8}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{y}_{6}\left(t\right){y}_{8}\left(t\right)+{M}_{13}{y}_{7}\left(t\right)\right\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+1\right)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{13}{{y}_{7}}^{j-2}\right\}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+2\right)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{13}{{y}_{7}}^{j-1}\right\}-{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+\\ {M}_{13}{{y}_{7}}^{j-2}\}]\left[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)\right]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{2\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+3\right)}\sum _{j = 2}^{n}\left[{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}+{M}_{13}{{y}_{7}}^{j}\right\}-2{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{13}{{y}_{7}}^{j-1}\right\}+\\ {t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{13}{{y}_{7}}^{j-2}\right\}\right][{\left(n-j+1\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{\left(n-j\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\right\}]. \end{array}

    A fractional-order model is proposed for analysis and simulation, to observe the concentration of chemicals in chemistry kinematics problems with a stiff differential equation. For this purpose, we used ABC with Mittage-Lefffier law, Atangana-Tufik scheme, and fractal fractional derivative for hires problem with given initial conditions. Details of parameters values of real data are also given in [18,19] which will consider for simulation analysis for the proposed study. Solution of compartment shows in Figures 1 to 8 with fractional fractal operator at different order. Effect of fraction order can easily be observed in simulation of the compartments having a concentration of chemical reaction with stiff differential equations. The concentration {y}_{1} and {y}_{8} of the chemical species start decreasing by decreasing fractional values respectively while concentration {y}_{2}, {y}_{3} , {y}_{4} , {y}_{5} , {y}_{6} and {y}_{7} of the chemical species start increasing by decreasing fractional values. These concentrations of chemical species converge to our desired value according to steady state by decreasing the fractional values which shows that it provides us appropriate results at non integer value. We can get better concentration of the components by using the fractional derivative which are very important for chemical problem to check the actual behavior of the concentration of the chemical with smallest changes in derivative with respect to time. It is also very important for solutions of nonlinear problems which are commonly used researcher and scientist in kinetics chemistry.

    Figure 1.  Simulation of {y}_{1}\left(t\right) with fractal fractional derivative.
    Figure 2.  Simulation of {y}_{2}\left(t\right) with fractal fractional derivative.
    Figure 3.  Simulation of {y}_{3}\left(t\right) with fractal fractional derivative.
    Figure 4.  Simulation of {y}_{4}\left(t\right) with fractal fractional derivative.
    Figure 5.  Simulation of {y}_{5}\left(t\right) with fractal fractional derivative.
    Figure 6.  Simulation of {y}_{6}\left(t\right) with fractal fractional derivative.
    Figure 7.  Simulation of {y}_{7}\left(t\right) with fractal fractional derivative.
    Figure 8.  Simulation of {y}_{8}\left(t\right) with fractal fractional derivative.

    We examine the hires problems with stiff systems of nonlinear ordinary equations that rely on the concentration of chemical reaction of components in this study. The advanced techniques of fractional operator have been implemented for initial value problem arising from chemical reactions composed of large systems of stiff ordinary differential equations. The arbitrary derivative of fractional order has been taken with Atangana-Toufik scheme and fractal fractional derivative. Solutions have been obtained efficiently within limited time which shows the actual behavior of kinetic chemical reactions. Existence and uniqueness of results have been verified by fixed point theorem. Simulations are carried out for different fractional values. New chemical reactions can be done with the help of these analyses. These concepts are very important to use for real life problems like Brine tank cascade, Recycled Brine tank cascade, pond pollution, home heating and biomass transfer problem.

    Research Supporting Project number (RSP-2021/167), King Saud University, Riyadh, Saudi Arabia.

    No conflict of interest.



    [1] X. He, X. Zhao, T. Feng, Z. Qiu, Dynamical behaviors of a prey-predator model with foraging arena scheme in polluted environments, Math. Slovaca, 71 (2021), 235–250. http://doi.org/10.1515/ms-2017-0463. doi: 10.1515/ms-2017-0463
    [2] Y. Zhang, Q. Zhang, X. G. Yan, Complex dynamics in a singular Leslie-Gower predator-prey bioeconomic model with time delay and stochastic fluctuations, Phys. A: Stat. Mech. Appl., 404 (2014), 180–191. http://doi.org/10.1016/j.physa.2014.02.013 doi: 10.1016/j.physa.2014.02.013
    [3] X. Q. Zhao, Dynamical systems in population biology, Berlin: Springer, 2003 http://doi.org/10.1007/978-0-387-21761-1
    [4] L. Zhang, C. Lu, Periodic solutions for a semi-ratio-dependent predator-prey system with Holling IV functional response, J. Appl. Math. Comput., 32 (2010), 465–477. https://doi.org/10.1007/s12190-009-0264-3 doi: 10.1007/s12190-009-0264-3
    [5] X. Xiu, A note on periodic solutions for semi-ratio-dependent predator-prey systems, Appl. Math. J. Chin. Univ., 25 (2010), 1–8. http://doi.org/10.1007/s11766-010-2106-3 doi: 10.1007/s11766-010-2106-3
    [6] B. Dai, Y. Li, Z. Luo, Multiple periodic solutions for impulsive Gause-type ratio-dependent predator-prey systems with non-monotonic numerical responses, Appl. Math. Comput., 217 (2011), 7478–7487. http://doi.org/10.1016/j.amc.2011.02.049 doi: 10.1016/j.amc.2011.02.049
    [7] J. K. Zhuang, Periodicity for a semi-rati–dependent predator-prey system with delays on time scales, Int. J. Comput. Math. Sci., 4 (2010), 44–47.
    [8] M. Zhao, Hopf bifurcation analysis for a semiratio-dependent predator-prey system with two delays, Abst. Appl. Anal., 9 (2013), 1140–1174. http://doi.org/10.1155/2013/495072 doi: 10.1155/2013/495072
    [9] J. Pradeesh, C. Vijayakumar, On the asymptotic stability of Hilfer fractional neutral stochastic differential systems with infinite delay, Qual. Theory Dyn. Syst., 23 (2024), 153. http://doi.org/10.1007/s12346-024-01007-x doi: 10.1007/s12346-024-01007-x
    [10] V. Gokulakrishnan, R. Srinivasan, Exponential input-to-state stabilization of stochastic nonlinear reaction-diffusion systems with time-varying delays and exogenous disturbances via boundary control, Comput. Appl. Math., 4 (2023), 308. http://dx.doi.org/10.1007/s40314-023-02447-y doi: 10.1007/s40314-023-02447-y
    [11] H. Achouri, C. Aouiti, Bogdanov-Takens and triple zero bifurcations for a neutral functional differential equations with multiple delays, J. Dyn. Diff. Equat., 35 (2023), 355–380. https://doi.org/10.1007/s10884-021-09992-2 doi: 10.1007/s10884-021-09992-2
    [12] A. Martin, S. Ruan, Predator-prey models with delay and prey harvesting, J. Math. Biol., 43 (2001), 247–267. https://doi.org/10.1007/s002850100095 doi: 10.1007/s002850100095
    [13] J. Wang, J. Wei, Bifurcation analysis of a delayed predator-prey system with strong Allee effect and diffusion, Appl. Anal., 91 (2012), 1219–1241. https://doi.org/10.1080/00036811.2011.563737 doi: 10.1080/00036811.2011.563737
    [14] R. Yuan, W. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting, J. Math. Anal. Appl., 422 (2015), 1072–1090. https://doi.org/10.1016/j.jmaa.2014.09.037 doi: 10.1016/j.jmaa.2014.09.037
    [15] Q. Chen, J. Gao, Hopf bifurcation and chaos control for a Leslie-Gower type generalist predator model, Adv. Differ. Equ., 2019 (2019), 315. https://doi.org/10.1186/s13662-019-2239-5 doi: 10.1186/s13662-019-2239-5
    [16] A. Kashkynbayev, A. Issakhanov, M. Otkel, J. Kurths, Finite-time and fixed-time synchronization analysis of shunting inhibitory memristive neural networks with time-varying delays, Chaos Solitons Fract., 156 (2022), 111866. https://doi.org/10.1016/j.chaos.2022.111866 doi: 10.1016/j.chaos.2022.111866
    [17] Y. Lv, L. Chen, F. Chen, Z. Li, Stability and bifurcation in an SI epidemic model with additive Allee effect and time delay, Int. J. Bifurc. Chaos, 31 (2021), 2150060. https://doi.org/10.1142/S0218127421500607 doi: 10.1142/S0218127421500607
    [18] S. Busenberg, W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differ. Equ., 124 (1996), 80–107. https://doi.org/10.1006/jdeq.1996.0003 doi: 10.1006/jdeq.1996.0003
    [19] A. M. Turing, The chemical basis of morphogenesisPhil, Trans. R. Soc. Lond. B, 237 (1952), 37–72. http://doi.org/10.1098/rstb.1952.0012 doi: 10.1098/rstb.1952.0012
    [20] V. V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern, Phys. Rev. Lett., 64 (1990), 2953–2956. https://doi.org/10.1103/PhysRevLett.64.2953 doi: 10.1103/PhysRevLett.64.2953
    [21] T. Y. Li, Q. R. Wang, Turing patterns in a predator-prey reaction-diffusion model with seasonality and fear effect, J. Nonlinear Sci., 33 (2023), 86. https://doi.org/10.1007/s00332-023-09938-6 doi: 10.1007/s00332-023-09938-6
    [22] P. Kumar, G. Gangopadhyay, Energetic and entropic cost due to overlapping of Turing-Hopf instabilities in the presence of cross diffusion, Phys. Rev. E, 101 (2020), 042204. https://doi.org/10.1103/PhysRevE.101.042204 doi: 10.1103/PhysRevE.101.042204
    [23] J. Wu, Theory and applications of partial functional differential equations, Berlin: Springer, 1996. https://doi.org/10.1007/978-1-4612-4050-1
    [24] X. Zhang, H. Zhao, Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters, J. Theoret. Biol., 363 (2014), 390–403. https://doi.org/10.1016/j.jtbi.2014.08.031 doi: 10.1016/j.jtbi.2014.08.031
    [25] Y. Song, Q. Shi, Stability and bifurcation analysis in a diffusive predator-prey model with delay and spatial average, Math. Meth. Appl. Sci., 46 (2023), 5561–5584. http://doi.org/10.1002/mma.8853 doi: 10.1002/mma.8853
    [26] J. Liu, X. Zhang, Stability and Hopf bifurcation of a delayed reaction-diffusion predator-prey model with anti-predator behaviour, Nonlinear Anal.: Model. Control, 24 (2019), 387–406. http://doi.org/10.15388/NA.2019.3.5 doi: 10.15388/NA.2019.3.5
    [27] T. Wen, X. Wang, G. Zhang, Hopf bifurcation in a two-species reaction-diffusion-advection competitive model with nonlocal delay, Commun. Pure Appl. Anal., 22 (2023), 1517–1544. http://doi.org/10.3934/cpaa.2023036 doi: 10.3934/cpaa.2023036
    [28] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge: Cambridge University Press, 1981. http://doi.org/10.1090/conm/445
    [29] Y. Qu, J. Wei, Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure, Nonlinear Dyn., 49 (2007), 285–294. http://doi.org/10.1007/s11071-006-9133-x doi: 10.1007/s11071-006-9133-x
    [30] T. Y. Li, Q. R. Wang, Stability and Hopf bifurcation analysis for a two-species commensalism system with delay, Qual. Theory Dyn. Syst., 20 (2021), 83. https://doi.org/10.1007/s12346-021-00524-3 doi: 10.1007/s12346-021-00524-3
    [31] B. T. Mulugeta, L. Yu, Q. Yuan, J. Ren, Bifurcation analysis of a predator-prey model with strong Allee effect and Beddington-DeAngelis functional response, Discr. Cont. Dyn. Syst. B, 28 (2023), 1938–1963. http://doi.org/10.3934/dcdsb.2022153 doi: 10.3934/dcdsb.2022153
    [32] C. Huang, H. Li, J. Cao, A novel strategy of bifurcation control for a delayed fractional predator-prey model, Appl. Math. Comput., 347 (2019), 808–838. http://doi.org/10.1016/j.amc.2018.11.031 doi: 10.1016/j.amc.2018.11.031
    [33] S. Y. Li, Nonlinear delay-control of Hopf bifurcation and stability switches in a generlized logistic model, Annu. Int. Confer. Network Inform. Syst. Comput. (ICNISC), 8 (2022), 280–283. http://doi.org/10.1109/ICNISC57059.2022.00063 doi: 10.1109/ICNISC57059.2022.00063
    [34] T. Y. Li, Q. R. Wang, Bifurcation analysis for two-species commensalism (amensalism) systems with distributed delays, Int. J. Bifurc. Chaos Appl. Sci. Eng., 32 (2022), 2250133. http://doi.org/10.1142/S0218127422501334 doi: 10.1142/S0218127422501334
    [35] X. W. Jiang, X. Y. Chen, T. W. Huang, H. C. Yan, Bifurcation and control for a predator-prey system with two delays, IEEE Trans. Circ. Syst. II: Express Briefs, 68 (2021), 376–380,
    [36] A. Abta, H. Laarabi, T. Hamad, The Hopf bifurcation analysis and optimal control of a delayed SIR epidemic model, Int. J. Anal., 23 (2014), 1–10. http://doi.org/10.1155/2014/940819 doi: 10.1155/2014/940819
    [37] X. W. Jiang, X. Y. Chen, M. Chi, J. Chen, On Hopf bifurcation and control for a delay systems, Appl. Math. Comput., 370 (2020), 124906. https://doi.org/10.1016/j.amc.2019.124906 doi: 10.1016/j.amc.2019.124906
    [38] M. Xiao, G. Jiang, L. Zhao, State feedback control at Hopf bifurcation in an exponential RED algorithm model, Nonlinear Dyn., 76 (2014), 1469–1484. https://doi.org/10.1007/s11071-013-1221-0 doi: 10.1007/s11071-013-1221-0
    [39] W. Xu, T. Hayat, J. Cao, M. Xiao, Hopf bifurcation control for a fluid flow model of internet congestion control systems via state feedback, IMA J. Math. Control Inform., 33 (2016), 69–93. https://doi.org/10.1093/imamci/dnu029 doi: 10.1093/imamci/dnu029
    [40] X. S. Luo, G. Chen, B. H. Wang, J. Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Solitons Fract., 18 (2003), 775–783. https://doi.org/10.1016/s0960-0779(03)00028-6 doi: 10.1016/s0960-0779(03)00028-6
    [41] M. Peng, Z. Zhang, X. Wang, Hybrid control of Hopf bifurcation in a Lotka-Volterra predator-prey model with two delays, Adv. Diff. Equ., 1 (2017), 387. https://doi.org/10.1186/s13662-017-1434-5 doi: 10.1186/s13662-017-1434-5
    [42] P. Ghosh, Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 84 (2011), 016222. https://doi.org/10.1103/PhysRevE.84.016222 doi: 10.1103/PhysRevE.84.016222
    [43] R. R. Patra, S. Maitra, S. Kundu, Stability, bifurcation and control of a predator-prey ecosystem with prey herd behaviour against generalist predator with gestation delay, preprint paper, 2021. https://doi.org/10.48550/arXiv.2103.16263
    [44] R. R. Patra, S. Kundu, S. Maitra, Effect of delay and control on a predator-prey ecosystem with generalist predator and group defence in the prey species, Eur. Phys. J. Plus, 137 (2022), 128. https://doi.org/10.1140/epjp/s13360-021-02225-x doi: 10.1140/epjp/s13360-021-02225-x
    [45] B. Mondal, A. Sarkar, S. S. Santra, D. Majumder, T. Muhammad, Sensitivity of parameters and the impact of white noise on a generalist predator-prey model with hunting cooperation, Eur. Phys. J. Plus, 138 (2023), 1070. https://doi.org/10.1140/epjp/s13360-023-04710-x doi: 10.1140/epjp/s13360-023-04710-x
  • This article has been cited by:

    1. Hira Soomro, Nooraini Zainuddin, Hanita Daud, Joshua Sunday, Noraini Jamaludin, Abdullah Abdullah, Mulono Apriyanto, Evizal Abdul Kadir, Variable Step Block Hybrid Method for Stiff Chemical Kinetics Problems, 2022, 12, 2076-3417, 4484, 10.3390/app12094484
    2. Zeeshan Ali, Faranak Rabiei, Kamyar Hosseini, A fractal–fractional-order modified Predator–Prey mathematical model with immigrations, 2023, 207, 03784754, 466, 10.1016/j.matcom.2023.01.006
    3. Sümeyra Uçar, Analysis of hepatitis B disease with fractal–fractional Caputo derivative using real data from Turkey, 2023, 419, 03770427, 114692, 10.1016/j.cam.2022.114692
    4. Mohammad Partohaghighi, Ali Akgül, Rubayyi T. Alqahtani, New Type Modelling of the Circumscribed Self-Excited Spherical Attractor, 2022, 10, 2227-7390, 732, 10.3390/math10050732
    5. G.M. Vijayalakshmi, Roselyn Besi. P, A fractal fractional order vaccination model of COVID-19 pandemic using Adam’s moulton analysis, 2022, 8, 26667207, 100144, 10.1016/j.rico.2022.100144
    6. SHAIMAA A. M. ABDELMOHSEN, SHABIR AHMAD, MANSOUR F. YASSEN, SAEED AHMED ASIRI, ABDELBACKI M. M. ASHRAF, SAYED SAIFULLAH, FAHD JARAD, NUMERICAL ANALYSIS FOR HIDDEN CHAOTIC BEHAVIOR OF A COUPLED MEMRISTIVE DYNAMICAL SYSTEM VIA FRACTAL–FRACTIONAL OPERATOR BASED ON NEWTON POLYNOMIAL INTERPOLATION, 2023, 31, 0218-348X, 10.1142/S0218348X2340087X
    7. D.A. Tverdyi, R.I. Parovik, A.R. Hayotov, A.K. Boltaev, Распараллеливание численного алгоритма решения задачи Коши для нелинейного дифференциального уравнения дробного переменного порядка с помощью технологии OpenMP, 2023, 20796641, 87, 10.26117/2079-6641-2023-43-2-87-110
    8. Khalid Hattaf, A New Class of Generalized Fractal and Fractal-Fractional Derivatives with Non-Singular Kernels, 2023, 7, 2504-3110, 395, 10.3390/fractalfract7050395
    9. Ali Raza, Ovidiu V. Stadoleanu, Ahmed M. Abed, Ali Hasan Ali, Mohammed Sallah, Heat transfer model analysis of fractional Jeffery-type hybrid nanofluid dripping through a poured microchannel, 2024, 22, 26662027, 100656, 10.1016/j.ijft.2024.100656
    10. Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen, New solutions of time-space fractional coupled Schrödinger systems, 2023, 8, 2473-6988, 27033, 10.3934/math.20231383
    11. Muhammad Shahzad, Soma Mustafa, Sarbaz H A Khoshnaw, Inference of complex reaction mechanisms applying model reduction techniques, 2024, 99, 0031-8949, 045242, 10.1088/1402-4896/ad3291
    12. B. El Ansari, E. H. El Kinani, A. Ouhadan, Symmetry analysis of the time fractional potential-KdV equation, 2025, 44, 2238-3603, 10.1007/s40314-024-02991-1
    13. Muhammad Farman, Changjin Xu, Perwasha Abbas, Aceng Sambas, Faisal Sultan, Kottakkaran Sooppy Nisar, Stability and chemical modeling of quantifying disparities in atmospheric analysis with sustainable fractal fractional approach, 2025, 142, 10075704, 108525, 10.1016/j.cnsns.2024.108525
    14. Hira Khan, Gauhar Rahman, Muhammad Samraiz, Kamal Shah, Thabet Abdeljawad, On Generalized Fractal-Fractional Derivative and Integral Operators Associated with Generalized Mittag-Leffler Function, 2025, 24058440, e42144, 10.1016/j.heliyon.2025.e42144
    15. Emmanuel Kengne, Ahmed Lakhssassi, Dynamics of stochastic nonlinear waves in fractional complex media, 2025, 542, 03759601, 130423, 10.1016/j.physleta.2025.130423
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(554) PDF downloads(36) Cited by(0)

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog