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Abstract: A delayed diffusive predator-prey system with nonmonotonic functional response subject
to Neumann boundary conditions is introduced in this paper. First, we analyze the associated
characteristic equation to research the conditions for local stability of the positive equilibrium point
and the occurrence of Turing instability induced by diffusion in the absence of delay. Second, we
provide conditions for the existence of Hopf bifurcation driven by time delay. By utilizing the normal
theory and center manifold theorem, we derive explicit formulas for Hopf bifurcation properties such
as direction and stability from the positive equilibrium. Third, a hybrid controller is added to the
system. By judiciously adjusting the control parameters, we effectively enhance the stability domain
of the system, resulting in a modification of the position of the Hopf bifurcation periodic solutions.
Numerical simulations demonstrate the presence of rich dynamical phenomena within the system.
Moreover, sensitivity analysis was conducted using Latin hypercube sampling (LHS)/partial rank
correlation coefficient (PRCC) to explore the impact of parameter variations on the output of prey
and predator populations.

Keywords: time-delayed; diffusive; Turing instability; Hopf bifurcation; hybrid control
Mathematics Subject Classification: 92D25, 35Q92, 35B32

1. Introduction

The rich dynamics of nonlinear systems have significant implications for modern technology,
advancing developments in fields such as natural sciences and engineering applications. Non-linear
dynamical systems typically serve as mathematical formalizations of conventional scientific concepts
and complex entities, with widespread applications in biology, ecology, and chemistry [1–3]. Zhang
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and Lu [4] studied a type of predator-prey system with a Holling-IV type functional response function
dx1(t)

dt
= x1(t)

[
r1 − b1(t)x1(t) −

a1(t)x2(t)
m2 + nx1(t) + x1(t)2

]
,

dx2(t)
dt
= x2(t)

[
r2 −

a2(t)x2(t)
x1(t)

]
,

(1.1)

where x1(t), x2(t) represent the densities of the prey and the predator at time t, respectively, m , 0, n ≥ 0
are all constant, and r1, r2 represent the intrinsic growth rates of the prey and the predator respectively,
b1(t) is the intra-specific competition rate of the prey. a1(t) is the capturing rate of the predator, a2(t)
is a measure of the food quality that the prey provided for conversion into predator birth [4]. In [4],
Zhang and Lu demonstrated the global stability of the positive equilibrium point using the Lyapunov
function. In [5–7], many scholars have studied the properties of periodic solutions for the semi-ratio-
dependent prey-predator model. Zhao [8] investigated the stability and bifurcation of model (1.1) with
two delays.

With the continuous deepening and expansion of research, scholars have found that in the natural
world, the emergence of many phenomena is not only influenced by the current state but also closely
related to the state of a certain moment or period in the past. This phenomenon is called time delay.
Many scholars have investigated predator-prey models with various types of time delays, such as
infinite delay, time-varying delays, and multiple delays [9–11]. Under specific conditions, delays
induce variations in the stability of equilibrium states, leading to the emergence of bifurcations or
spiral wave patterns in the considered systems [12–17]. Therefore, the application of time delay in
predator-prey models is important for studying the dynamic behavior of ecological systems and
predicting their future development trends.

Reaction-diffusion models are commonly employed to characterize the movement and evolution.
In both macroscopic and microscopic worlds, every particle, such as bacteria, cells, and organisms,
moves in an apparently random manner, commonly referred to as diffusion processes [18]. The
diffusion process may lead to environmental changes. Turing’s initial studies demonstrated that stable
homogeneous states can become unstable under certain conditions in reaction-diffusion systems,
leading to the formation of patterns [19]. The corresponding instability is referred to as
diffusion-driven instability [20]. Li et al. [21, 22] studied the relevant issues of Turing patterns.
Dynamics studies on the stability and bifurcation issues of reaction-diffusion systems have also been
quite extensive [23–27]. Hence, the factor of diffusion is considered.

Stability and bifurcation are crucial considerations in the study of predator-prey models. Hopf
bifurcation is a significant mathematical tool for describing periodic behavior, and studying Hopf
bifurcation contributes to the understanding and modeling of important phenomena in biological
systems such as periodic behavior, stability transitions, and dynamic oscillations [28–31].
Considering the system instability caused by Hopf bifurcation, there has been an increasing depth of
research on bifurcation control by scholars in recent years [32–34]. Control strategies can effectively
enhance dynamic behavior in model research. Jiang et al. [35] proposed a new control scheme that
effectively controls bifurcations. Control strategies such as PD control, state feedback control,
time-delay feedback control, and hybrid control have been continuously evolving [36–39]. The
concept of a hybrid control strategy was initially introduced by Luo et al. [40], research has shown
that compared to pure feedback control, the control parameters in hybrid control can be adjusted over
a wider range, making it more convenient and feasible for practical implementation. Peng [41]
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explored the role of hybrid controllers in predator-prey models within the field of biological systems.
From a biological perspective, adjusting the stable range of bifurcation period solutions enables the
coexistence of two species under oscillatory patterns. These control strategies have predominantly
been formulated and examined based on established principles of ordinary differential equations
(ODEs). However, there has been limited exploration into control in predator-prey systems described
by PDEs. Ghosh [42] investigated a practical approach of utilizing time-delayed feedback for
bifurcation control in reaction-diffusion systems, thus highlighting the substantial theoretical research
significance of the work presented in our paper.

A delayed diffusive system established in this paper is as follows:

∂
∂t u(x, t) = d1∆u(t, x) + u(x, t)

[
r1 − b1u(x, t) − a1v(x,t)

m2+nu(x,t)+u2(x,t)

]
,

x ∈ (0,Ω), t > 0,
∂
∂t v(x, t) = d2∆v(t, x) + v(x, t)

[
r2 −

a2v(x,t−τ)
u(x,t−τ)

]
, x ∈ (0,Ω), t > 0,

ux(0, t) = vx(0, t) = 0, ux(Ω, t) = vx(Ω, t) = 0, t > 0,
u(x, t) = u0(x, t) ≥ 0, v(x, t) = v0(x, t) ≥ 0, (x, t) ∈ [0,Ω] × [−τ, 0],

(1.2)

here u(x, t) and v(x, t) represent the population densities of the prey and predator, respectively.
Parameters of the system (1.2) are regarded as constants. d1 and d2 represent the constant diffusion
coefficient. τ represents that the consumption of prey by predators needs some time to be converted
into effective energy. ∆ represents the Laplacian operator, the system subject to the Neumann
boundary condition, and we assume that area [0,Ω] is closed, where Ω = lπ(l > 0); the population
cannot go through the boundary of the region.

The main contributions of this paper include: (1) To better approximate real ecological systems, the
semi-ratio-dependent prey-predator model with Holling-IV functional response in ordinary differential
equations is being extended. Time delays and diffusion terms are being introduced into the model.
By analyzing the system’s corresponding characteristic equations, the conditions for Turing instability
induced by diffusion in the absence of time delays are being deduced. (2) The impact of time delays on
the stability of positive equilibrium points in reaction-diffusion systems is being investigated. Sufficient
conditions for the existence of spatially homogeneous and inhomogeneous Hopf bifurcation are being
provided. Utilizing partial differential equation normalization theory and the center manifold theorem,
explicit methodologies for determining the bifurcation direction and the stability of periodic solutions
at positive equilibrium points are being derived. (3) The application of control strategies for Hopf
bifurcations in reaction-diffusion systems formed by partial differential equations is currently limited.
A hybrid controller is being integrated to regulate the bifurcation behavior in reaction-diffusion systems
with a Holling-IV functional response. Results demonstrate that by adjusting control parameters, the
spatial stability range is expanded, leading to modifications in the positions of periodic solutions of the
Hopf bifurcation and enhancing the system’s performance and controllability. (4) Currently, there are
few researchers conducting sensitivity analysis on the reaction-diffusion prey-predator system, at least
from our current perspective. Thus sensitivity analysis of the system is being carried out using Latin
hypercube sampling/partial rank correlation coefficient (LHS/PRCC), exploring the parameter space
of the model. This analysis offers valuable insights for comprehending the uncertainty and intricacy of
the system.

The paper is arranged as follows: In Section 2, we analyze the stability of the model with the
inclusion of reaction-diffusion terms and the conditions that lead to Turing instability; We also study the
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existence of spatially homogeneous and inhomogeneous Hopf bifurcations. In Section 3, We present
the properties of the Hopf bifurcation. In Section 4, the dynamical behavior and control strategy of a
controlled diffusion system are investigated by incorporating a hybrid controller into the prey-predator
model. In Section 5, numerical simulations are accomplished to substantiate conclusions. At last, it is
a conclusion of this paper.

2. Stability of equilibrium points and Hopf bifurcation analysis

It is calculated that the system (1.2) has two possible equilibrium points.
(1) The boundary equilibrium E1 = ( r1

b1
, 0).

(2) The coexisting equilibrium point E∗ = (u∗, v∗), which v∗ =
r2u∗
a2

and the following equation have at

least one positive root u∗ .

b1u3 + (nb1 − r1)u2 + (
a1r2

a2
− nr1 + m2b1)u − m2r1 = 0. (2.1)

Let u(t) = u(x, t), v(t) = v(x, t), u(t − τ) = u(x, t − τ), and v(t − τ) = v(x, t − τ). The system (1.2) is
linearized at (u∗, v∗): 

∂u
∂t
∂v
∂t

 = D∆
(

u(t)
v(t)

)
+ L1

(
u(t)
v(t)

)
+ L2

(
u(t − τ)
v(t − τ)

)
, (2.2)

where

D =
(

d1 0
0 d2

)
, L1 =

(
a11 −a12

0 0

)
, L2 =

(
0 0

a21 −a22

)
,

and

a11 = r1 − 2b1u∗ −
a1v∗m2 − a1u2

∗v∗
(m2 + nu∗ + u2

∗)2 , a12 =
a1u∗

m2 + nu∗ + u2
∗

,

a21 =
a2v2
∗

u2
∗

, a22 =
a2v∗
u∗

.

The characteristic equation of (3.1) is

det(λI − Mk − L1 − L2e−λτ) = 0, (2.3)

where I =
(

1 0
0 1

)
, and Mk = −

k2

l2 D2 for k ∈ {0, 1, 2, ...} := N0. Then we have

λ2 + Akλ + Bk + λa22e−λτ +Cke−λτ = 0, (2.4)

where

Ak =
k2

l2 (d1 + d2) − a11, Bk =
k4

l4 d1d2 −
k2

l2 d2a11, Ck =
k2

l2 d1a22 − a11a22 + a12a21.
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2.1. Stability of the equilibria as τ = 0

(1) The characteristic equation to E1 = ( r1
b1
, 0) is

(λ +
k2

l2 d1 + r1)(λ +
k2

l2 d2 − r2) = 0, k ∈ N0. (2.5)

Obviously,

λ1 = −
k2

l2 d1 − r1 < 0, λ2 = −
k2

l2 d2 + r2 ≤ r2, k ∈ N0.

There is at least one positive characteristic root of (2.5), hence E1 = ( r1
b1
, 0) is unstable.

(2) When τ = 0, the characteristic equation to E∗ = (u∗, v∗) is

λ2 + [
k2

l2 (d1 + d2) − a11 + a22]λ +
k4

l4 d1d2 −
k2

l2 (d2a11 − d1a22) + a12a21 − a11a22 = 0. (2.6)

Define

σk = −(d1 + d2)
k2

l2 + a11 − a22,

φk =
k4

l4 d1d2 −
k2

l2 (d2a11 − d1a22) + a12a21 − a11a22.

(2.7)

Assume that
(H1) a11 − a22 < 0, a12a21 − a11a22 > 0.

When d1 = d2 = 0 and τ = 0, all roots of (2.6) have negative real parts under hypothesis (H1),
E∗ = (u∗, v∗) is locally asymptotically stable.

Here are the three cases for dividing the parameters,

Case1 : d2a11 − d1a22 ≤ 0;
Case2 : d2a11 − d1a22 > 0, and (d2a11 − d1a22)2 − 4d1d2(a12a21 − a11a22) < 0;
Case3 : d2a11 − d1a22 > 0, and (d2a11 − d1a22)2 − 4d1d2(a12a21 − a11a22) > 0.

Denote
S = {k|φk < 0, k ∈ N+}.

Theorem 1. Suppose (H1) holds and τ = 0.

(1) In Case1(or Case2), E∗ = (u∗, v∗) of system (1.2) is locally asymptotically stable.
(2) In Case3, when k ∈ S, then E∗ = (u∗, v∗) of system (1.2) is Turing unstable.

Proof. If Case1(or Case2) hold, we have σk < 0 and φk > 0 for k ∈ N0, the above (1) holds. If Case3
hold, we have φk < 0 for k ∈ S. This ensures Eq (2.6) has a positive real part root, so E∗ = (u∗, v∗) of
system (1.2) undergoes Turing bifurcation. □

Remark 1. The system (1.2) exhibits an unstable predator-free equilibrium point, which may not occur
in natural systems. At the positive equilibrium point E∗ = (u∗, v∗), there is a richer dynamic behavior.
According to the conditions of Turing, spatial diffusion can lead to the destabilization of the stable
equilibrium of the ordinary differential equations corresponding to reaction-diffusion systems, forming
regular pattern structures in space, known as diffusion-induced instability. Example 1 of numerical
simulations can illustrate the occurrence of Turing instability.
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2.2. Hopf bifurcation (τ > 0)

We will derive the conditions for the Hopf bifurcation. Suppose iω(ω > 0) be a solution of Eq (2.4),
then

−ω2 + iωAk + Bk + (iωa22 +Ck)(cos(ωτ) − isin(ωτ)) = 0. (2.8)

Then we have {
Ckcos(ωτ) + ωa22sin(ωτ) = ω2 − Bk,

ωa22cos(ωτ) −Cksin(ωτ) = −Akω,
(2.9)

which lead to
ω4 + ω2(A2

k − 2Bk − a2
22) + B2

k −C2
k = 0. (2.10)

Let z = ω2, then (2.10) becomes

z2 + z(A2
k − 2Bk − a2

22) + B2
k −C2

k = 0, (2.11)

where

A2
k − 2Bk − a2

22 =
k4

l4 (d2
1 + d2

2) −
2k2

l2 a11d1 + a2
11 − a2

22,

B2
k −C2

k =

[k4

l4 d1d2 −
k2

l2 (d2a11 − d1a22) + (a12a21 − a11a22)
][k4

l4 d1d2 −
k2

l2 (d2a11

+ d1a22) − (a12a21 − a11a22)
]
.

(2.12)

We have B2
0 − C2

0 < 0 , there must exist some k0 ∈ {1, 2, · · · } satisfied B2
k − C2

k < 0 for k ∈
{0, 1, 2, · · · , k0 − 1}, and B2

k −C2
k ≥ 0 for k ∈ {k0, k0 + 1, · · · }.

When a11 ∈ (−∞,−a22), then we have −A2
k + 2Bk + a2

22 ≤ a2
22 − a2

11 < 0 for any k ∈ N0.
When a11 ∈ (−a22, a22), we make the following assumption:

(H2) −
k4

0

l4 (d2
1 + d2

2) +
2k2

0

l2 a11d1 + a2
22 − a2

11 < 0.

If (H2) holds, then we have

−A2
k + 2Bk + a2

22 ≤ −
k4

0

l4 (d2
1 + d2

2) +
2k2

0

l2 a11d1 + a2
22 − a2

11 < 0,

for any k ≥ k0. These imply that there are no purely imaginary roots in Eq (2.4).
Since B2

k − C2
k < 0 , when k ∈ {0, 1, 2, · · · , k0 − 1}, the equation (2.11) has one positive root zk,

namely

zk =
−(A2

k − 2Bk − a2
22) +

√
(A2

k − 2Bk − a2
22)2 − 4(B2

k −C2
k )

2
.

Equation (2.4) has a pair of roots with purely imaginary ±iωk at τ j
k(k ∈ {0, 1, 2, · · · , k0 − 1}, j ∈ N0),

where

ωk =

√√
−(A2

k − 2Bk − a2
22) +

√
(A2

k − 2Bk − a2
22)2 − 4(B2

k −C2
k )

2
,
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and

τ
j
k =

1
ωk

arccos
ω2

k(Ck − a22Ak) − BkCk

C2
k + ω

2
ka2

22

+
2 jπ
wk

, j ∈ N0. (2.13)

Obviously τ0
k = min

j∈N0
{τ

j
k}. Denote

τ̃ = min
k∈{0,1,2,··· ,k0−1}

{τ0
k}. (2.14)

Let λk(τ) = αk(τ) ± iωk(τ) be the root of (2.4) near τ = τ
j
k, k ∈ {0, 1, 2, · · · , k0 − 1} satisfying

αk(τ
j
k) = 0 for ωk(τ

j
k) = ωk.

Lemma 1. The following traversal condition holds: Re(
dλ
dτ

)|τ=τ j
k
> 0.

Proof. Take the derivative of both sides of (2.4) with respect to τ, and we have

2λ
dλ
dτ
+ Ak

dλ
dτ
− e−λττ(λa22 +Ck)

dλ
dτ
− λe−λτ(λa22 +Ck) + e−λτa22

dλ
dτ
= 0,

(
dλ
dτ

)−1 =
2λ + Ak + a22e−λτ

λe−λτ(λa22 +Ck)
−
τ

λ
,

then

Re
(dλ
dτ

)−1
τ=τ

j
k
= Re[

(2iωk + Ak)(cosωkτ + isinωkτ) + a22

iωk(iωka22 +Ck)
]τ=τ j

k
,

= [
2ω2

k − 2Bk + A2
k − a2

22

C2
k + ω

2
ka2

22

]τ=τ j
k
,

=

√
(A2

k − 2Bk − a2
22)2 − 4(B2

k −C2
k )

C2
k + ω

2
ka2

22

> 0.

□

These critical values τ
j
k for j ∈ {0, 1, 2, · · · }; k ∈ {0, 1, 2, · · · , k0 − 1} are possible Hopf bifurcations.

Suppose τi
k1
, τ

j
k2

for any i, j ∈ {0, 1, 2, · · · }; k1, k2 ∈ {0, 1, 2, · · · , k0 − 1}. Based on the above, we
derive the main result.

Theorem 2. When a11 ∈ (−∞,−a22) , if (H1) holds; When a11 ∈ (−a22, a22) , if (H1)(H2) hold, there
are the following conclusions.

(1) When τ ∈ [0, τ̃), the coexisting equilibrium E∗ = (u∗, v∗) of system (1.2) is locally asymptotically
stable, where τ̃ is defined in (2.14).

(2) System (1.2) undergoes a Hopf bifurcation at the equilibrium E∗ = (u∗, v∗) when τ = τ
j
k, j =

0, 1, 2, · · · ; k = 0, 1, 2, · · · , k0 − 1. Furthermore, when k = 0 , bifurcating periodic solutions are
spatially homogeneous; otherwise, they are spatially inhomogeneous.
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3. Stability and direction of Hopf bifurcation

We will apply Wu [23] and Hassard’s [28] method to compute properties of periodic solutions for
system (1.2). For fixed k ∈ {0, 1, 2, · · · , k0−1}, j ∈ N0, we denote τ∗ = τ j

k. We perform a transformation
u(x, t) = u(x, τt) − u∗ and v(x, t) = v(x, τt) − v∗, but we still use u(x, t), v(x, t) instead of u(x, t), v(x, t).
Then (1.2) can be transformed into the following system:

∂u
∂t
= τ[d1∆u + (u + u∗)

(
r1 − b1(u + u∗) −

a1(v + v∗)
m2 + n(u + u∗) + (u + u∗)2

)
],

∂v
∂t
= τ[d2∆v + (v + v∗)

(
r2 −

a2v(t − 1) + v∗
u(t − 1) + u∗

)
],

(3.1)

for x ∈ (0, lπ), and t > 0. Let

τ = τ∗ + µ, u1(t) = u(·, t), u2(t) = v(·, t) and U = (u1, u2)T .

We use C := C([−1, 0], X) to represent the phase space, then (3.1) can be written as an abstract
differential equation.

dU(t)
dt
= τ∗D∆U(t) + L(τ∗) (Ut) + F (Ut, µ) , (3.2)

where L(τ)(ϕ) : C → X and F(ϕ, µ) : C × R→ X are defined by

L(µ)(ϕ) = µ
(

a11ϕ1(0) − a12ϕ2(0)
a21ϕ1(−1) − a22ϕ2(−1)

)
, (3.3)

F(ϕ, µ) = µD∆ϕ + L(µ)(ϕ) + f (ϕ, µ), (3.4)

with
f (ϕ, µ) = (τ∗ + µ) (F1(ϕ, µ), F2(ϕ, µ))T , (3.5)

F1(ϕ, µ) = a13ϕ
2
1(0) + a14ϕ1(0)ϕ2(0) + a15ϕ

3
1(0) + a16ϕ

2
1(0)ϕ2(0) + o(4),

F2(ϕ, µ) = a23ϕ
2
1(−1) + a24ϕ1(−1)ϕ2(0) + a25ϕ2(−1)ϕ2(0) + a27ϕ

3
1(−1)

+ a28ϕ
2
1(−1)ϕ2(0) + a29ϕ

2
1(−1)ϕ2(−1)

+ a30ϕ1(−1)ϕ2(0)ϕ2(−1) + o(4), (3.6)

where

a13 = −b1 −
a1u3

∗v∗ − a1m2nv∗ − 3a1m2u∗v∗
(m2 + nu∗ + u2

∗)3 , a14 =
a1u2

∗ − a1m2

(m2 + nu∗ + u2
∗)2 ,

a15 =
a1u∗v∗(u3

∗ − 4m2n − 6u∗v∗m2) + a1v∗m(m2 − n2)
(m2 + nu∗ + u2

∗)4 ,

a16 =
3a1u∗m2 − a1u3

∗ + a1m2n
(m2 + nu∗ + u2

∗)3 , a23 = −
a2v2
∗

u3
∗

, a24 =
a2v∗
u2
∗

,

a25 = −
a2

u∗
, a26 =

a2v∗
u2
∗

, a27 =
a2v2
∗

u4
∗

, a28 = −
a2v∗
u3
∗

,
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a29 = −
a2v∗
u3
∗

, a30 =
a2

u2
∗

,

with ϕ(θ) = (ϕ1(θ), ϕ2(θ))T ∈ C.
Consider the linear equation

dU(t)
dt
= τ∗D∆U(t) + L(τ∗) (Ut) . (3.7)

Clearly, (0, 0) is an equilibrium point of the system (3.1). Consider the functional differential equation

ż = −τ∗D
k2

l2 z(t) + L(τ∗)(zt). (3.8)

By the Riesz representation, there exists a bounded variation function η(θ, τ∗)(−1 ≤ θ ≤ 0), such
that

−τ∗D
k2

l2 ϕ(0) + L (τ∗) (ϕ) =
∫ 0

−1

[
dη (θ, τ∗)

]
ϕ(θ), for ϕ ∈ C

(
[−1, 0],R2

)
. (3.9)

We choose

η(θ, τ∗) =


τ∗

 a11 − d1
k2

l2 −a12

0 −d2
k2

l2

, θ = 0,

0, θ ∈ (−1, 0),

−τ∗
(

0 0
a21 −a22

)
, θ = −1.

(3.10)

For ϕ ∈ C1
(
[−1, 0],R2

)
, ψ ∈ C1

(
[0, 1],R2

)
, we define

A(µ)ϕ =


dϕ(θ)

dθ
,−1 ≤ θ < 0,

∫ 0

−1
dη(θ, µ)ϕ(θ), θ = 0,

A∗(µ)ψ =


−

dψ(s)
ds

, 0 < s ≤ 1,

∫ 0

−1
dηT (s, µ)ψ(−s), s = 0.

Define the following bilinear pairing

(ψ, ϕ) = ψ(0)ϕ(0) −
∫ 0

−1

∫ θ

ϵ=0
ψ(ϵ − θ)dη(θ, 0)ϕ(ϵ)dϵ

= ψ(0)ϕ(0) + τ∗
∫ 0

−1
ψ(ϵ + 1)

(
0 0

a21 −a22

)
ϕ(ϵ)dϵ.

(3.11)

Through the above analysis, ±iωkτ
∗ are the eigenvalues of A (τ∗) and A∗. Let P and P∗ be the two-

dimensional center spaces of A (τ∗) and A∗ associated with ±iωkτ
∗ , then P∗ is the adjoint space of P.
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Let p1(θ) = (1, ξ)T eiωkτ
∗θ and p2(θ) = p1(θ)(θ ∈ [−1, 0]) be the bases of A (τ∗) and A∗ corresponding

to iωkτ
∗,−iωkτ

∗ respectively. By calculations, we have

ξ =
1

a12

(
a11 − iωk − d1

k2

l2

)
, η =

a12

iωk − d1k2/l2 .

Let Φ = (Φ1,Φ2) , and Ψ∗ =
(
Ψ∗1,Ψ

∗
2

)T
with

Φ1(θ) =
p1(θ) + p2(θ)

2
=

 Re
(
eiωkτ

∗θ
)

Re
(
ξeiωkτ

∗θ
)  ,Φ2(θ) =

p1(θ) − p2(θ)
2i

=

 Im
(
eiωkτ

∗θ
)

Im
(
ξeiωkτ

∗θ
)  ,

for θ ∈ [−1, 0], and

Ψ∗1(t) =
q1(t) + q2(t)

2
=

 Re
(
e−iωkτ

∗t
)

Re
(
ηe−iωkτ

∗t
)  ,Ψ∗2(t) =

q1(t) − q2(t)
2i

=

 Im
(
e−iωkτ

∗t
)

Im
(
ηe−iωkτ

∗t
)  ,

for t ∈ [0, 1].

Now we define (Ψ∗,Φ) =


(
Ψ∗1,Φ1

) (
Ψ∗1,Φ2

)(
Ψ∗2,Φ1

) (
Ψ∗2,Φ2

)  , and it can be computed by (3.11), then we

construct a new basis P∗ by
Ψ = (Ψ1,Ψ2)T = (Ψ∗,Φ)−1

Ψ∗.

Then (Ψ,Φ) = I2. In addition, define fk :=
(
α1

k , α
2
k

)
, where

α1
k =

(
cos k

l x
0

)
, α2

k =

(
0

cos k
l x

)
.

Define
c · fk = c1α

1
k + c2α

2
k , for c = (c1, c2)T

∈ C.

We have PCNC to represent the center space of (3.7), where

PCNC(ϕ) = Φ (Ψ, ⟨ϕ, fk⟩) · fk, ϕ ∈ C. (3.12)

And C = PCNC ⊕ PSC, here PSC and PCNC are complementary in C, where

⟨u, v⟩ :=
1
lπ

∫ lπ

0
u1v1dx +

1
lπ

∫ lπ

0
u2v2dx,

for u = (u1, u2)T , v = (v1, v2)T , u, v ∈ X and ⟨ϕ, fk⟩ =
(〈
ϕ, α1

k

〉
,
〈
ϕ, α2

k

〉)T
.

Let Aτ∗ be the infinitesimal generator generated by the solution of the linear Eq (3.7), and
rewrite (3.1) as

dU(t)
dt
= Aτ∗Ut + R (Ut, µ) , (3.13)

where

R (Ut, µ) =
{

0, θ ∈ [−1, 0),
F (Ut, µ) , θ = 0.

(3.14)

AIMS Mathematics Volume 9, Issue 10, 29608–29632.



29618

Induced by C = PCNC ⊕ PSC, the solution can be obtained as

Ut = Φ

(
x1

x2

)
fk + h (x1, x2, µ) , (3.15)

where
(

x1

x2

)
= (Ψ, ⟨Ut, fk⟩), h (x1, x2, µ) ∈ PSC, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0. The solution

of (3.2) can be obtained as

Ut = Φ

(
x1(t)
x2(t)

)
fk + h (x1, x2, 0) . (3.16)

Let z = x1 − ix2, and notice that p1 = Φ1 + iΦ2, then

Φ

(
x1

x2

)
fk = (Φ1,Φ2)

( z+z
2

i(z−z)
2

)
fk =

1
2

(p1z + p1z) fk, (3.17)

and (3.16) can be transformed into

Ut =
1
2

(p1z + p1z) fk +W(z, z), (3.18)

where

W(z, z) = h
(
z + z

2
,

i(z − z)
2

, 0
)
≜ W20

z2

2
+W11zz +W02

z2

2
+ · · · . (3.19)

From [23], z satisfies
ż = iωkτ

∗z + g(z, z), (3.20)

where

g(z, z) = (Ψ1(0) − iΨ2(0)) ⟨F (Ut, 0) , fk⟩ ≜ g20
z2

2
+ g11zz + g02

z2

2
+ · · · , (3.21)

from Eqs (3.18) and (3.19), we have

ut(0) =
1
2

(z + z) cos
(
kx
l

)
+W (1)

20 (0)
z2

2
+W (1)

11 (0)zz +W (1)
02 (0)

z2

2
+ · · · ,

vt(0) =
1
2

(ξ + ξz) cos
(
kx
l

)
+W (2)

20 (0)
z2

2
+W (2)

11 (0)zz +W (2)
02 (0)

z2

2
+ · · · ,

ut(−1) =
1
2

(
ze−iωkτ∗ + zeiωkτ∗

)
cos

(
kx
l

)
+W (1)

20 (−1)
z2

2
+W (1)

11 (−1)zz +W (1)
02 (−1)

z2

2
+ · · · ,

vt(−1) =
1
2

(
ξze−iωkτ∗ + ξzeiωkτ∗

)
cos

(
kx
l

)
+W (2)

20 (−1)
z2

2
+W (2)

11 (−1)zz +W (2)
02 (−1)

z2

2
+ · · · .

Hence

F1 (Ut, 0) = cos2

(
kx
l

) (
z2

2
c11 + zzc12 +

z2

2
c11

)
+

z2z
2

(
c13 cos

kx
l
+ c14 cos3 kx

l

)
+ · · ·,

F2 (Ut, 0) = cos2

(
kx
l

) (
z2

2
c21 + zzc22 +

z2

2
c21

)
+

z2z
2

(
c23 cos

kx
l
+ c24 cos3 kx

l

)
+ · · ·,

(3.22)
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⟨F (Ut, 0) , fk⟩ = τ
∗
(
F1 (Ut, 0)α1

k + F2 (Ut, 0)α2
k

)
=

z2

2
τ∗

(
c11

c21

)
χ + zzτ∗

(
c12

c22

)
χ +

z2

2
τ∗

(
c11

c21

)
χ +

z2z
2
τ∗

(
ς1

ς2

)
+ · · · ,

(3.23)

with

χ =
1
lπ

∫ lπ

0
cos3

(
kx
l

)
dx,

ς1 =
c13

lπ

∫ lπ

0
cos2

(
kx
l

)
dx +

c14

lπ

∫ lπ

0
cos4

(
kx
l

)
dx,

ς2 =
c23

lπ

∫ lπ

0
cos2

(
kx
l

)
dx +

c24

lπ

∫ lπ

0
cos4

(
kx
l

)
dx,

c11 =
1
2

(a13 + ξa14) , c12 =
1
4

(
2a13 + (ξ + ξ)a14

)
,

c13 = W (1)
11 (0) (2a13 + ξa14) +W (1)

20 (0)
(
a13 +

1
2
ξa14

)
+W (2)

11 (0)a14 +
1
2

W (2)
20 (0)a14,

c14 =
1
4

(
3a15 + (ξ + 2ξ)a16

)
,

c21 =
1
2

(a23 + a26ξ)e−2iωkτ
∗

+
1
2

(a24ξ + a25ξ
2)e−iωkτ

∗

,

c22 =
1
2

a23 +
1
4

(a24ξ + a25ξξ)eiωkτ
∗

+
1
4

(a24ξ + a25ξξ)e−iωkτ
∗

+
1
4

a26(ξ + ξ),

c23 = W (1)
20 (−1)(a23eiωkτ

∗

+
1
2

a26ξ +
1
2

a24ξ) +W (1)
11 (−1)(2a23e−iωkτ

∗

+ a24 + a26ξe−iωkτ
∗

)

+
1
2

W (2)
20 (0)(a24eiωkτ

∗

+ a25ξ + a25ξeiωkτ
∗

) +W (2)
11 (0)e−iωkτ

∗

(a24 + a25ξ)

+W (2)
11 (−1)(a25ξ + a26e−iωkτ

∗

) +
1
2

a26W (2)
20 (−1)eiωkτ

∗

,

c24 =
1
2

a27(e−iωkτ
∗

+
1
2

eiωkτ
∗

) +
1
2

a28(ξ +
1
2
ξe−2iωkτ

∗

) +
1
2

a29e−iωkτ
∗

(ξ +
1
2
ξ)

+
1
4

a30(ξ2 + ξξe−2iωkτ
∗

+ ξξ).

Let (ν1, ν2) = Ψ1(0) − iΨ2(0), and notice that

1
lπ

∫ lπ

0
cos3 kx

l
dx = 0,

1
lπ

∫ lπ

0
cos4 kx

l
dx =

3
8
, k = 1, 2, 3, . . .

Then, by the (3.19) and (3.21), we can obtain the following quantities:

g20 =

{
0, k ∈ N,
ν1c11τ

∗ + ν2c21τ
∗, k = 0,

g11 =

{
0, k ∈ N,
ν1c12τ

∗ + ν2c22τ
∗, k = 0,

g02 =

{
0, k ∈ N,
ν1c11τ

∗ + ν2c21τ
∗, k = 0,
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g21 = ν1ς1τ
∗ + ν2ς2τ

∗, k ∈ N0.

To calculate g21, we need to find W20(θ),W11(θ) for θ ∈ [−1, 0]. From (3.19) we have

Ẇ(z, z) = W20zż +W11ż +W11zż +W02z ż + · · ·,

Aτ∗W(z, z) = Aτ∗W20
z2

2 + Aτ∗W11zz + Aτ∗W02
z2

2 + · · ·,

(3.24)

and by [23], Ẇ(z, z) satisfy
Ẇ = Aτ∗W + H(z, z), (3.25)

where

H(z, z) = H20
z2

2
+ H11zz + H02

z2

2
+ · · ·

= X0F (Ut, 0) − Φ (Ψ, ⟨X0F (Ut, 0) , fk⟩ · fk) ,
(3.26)

and X0 : [−1, 0]→ B(X, X) is given by X0(θ) =
{

0, −1 ≤ θ < 0,
I, θ = 0.

Hence, we have

(2iωkτ
∗ − Aτ∗) W20 = H20, −Aτ∗W11 = H11, (−2iωkτ

∗ − Aτ∗) W02 = H02, (3.27)

that is

W20 = (2iωkτ
∗ − Aτ∗)

−1 H20, W11 = −A−1
τ∗ H11, W02 = (−2iωkτ

∗ − Aτ∗)
−1 H02. (3.28)

From (3.26), we have that for θ ∈ [−1, 0],

H(z, z) = −Φ(0)Ψ(0) ⟨F (Ut, 0) , fk⟩ · fk

= −

(
p1(θ) + p2(θ)

2
,

p1(θ) − p2(θ)
2i

) (
Ψ1(0)
Ψ2(0)

)
⟨F (Ut, 0) , fk⟩ · fk

= −
1
2

[
p1(θ) (Ψ1(0) − iΨ2(0)) + p2(θ) (Ψ1(0) + iΨ2(0))

]
⟨F (Ut, 0) , fk⟩ · fk

= −
1
2

[(
p1(θ)g20 + p2(θ)g02

) z2

2
+

(
p1(θ)g11 + p2(θ)g11

)
zz +

(
p1(θ)g02 + p2(θ)g20

) z2

2

]
+ · · ·

(3.29)
Therefore, by (3.26), for θ ∈ [−1, 0]

H20(θ) =

 0, k ∈ N,

−
1
2

(
p1(θ)g20 + p2(θ)g02

)
· f0, k = 0,

H11(θ) =

 0, k ∈ N,

−
1
2

(
p1(θ)g11 + p2(θ)g11

)
· f0, k = 0,

H02(θ) =

 0, k ∈ N,

−
1
2

(
p1(θ)g02 + p2(θ)g20

)
· f0, k = 0,
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and
H(z, z)(0) = F (Ut, 0) − Φ (Ψ, ⟨F (Ut, 0) , fk⟩) · fk,

where

H20(0) =


τ∗

(
c11

c21

)
cos2

(
kx
l

)
, k ∈ N.

τ∗
(

c11

c21

)
−

1
2

(
p1(0)g20 + p2(0)g02

)
· f0, k = 0,

(3.30)

H11(0) =


τ∗

(
c12

c22

)
cos2

(
kx
l

)
, k ∈ N,

τ∗
(

c12

c22

)
−

1
2

(
p1(0)g11 + p2(0)g11

)
· f0, k = 0.

(3.31)

By the definition of Aτ∗ and (3.27), we have

Ẇ20 = Aτ∗W20 = 2iωkτ
∗W20 +

1
2

(
p1(θ)g20 + p2(θ)g02

)
· fk, −1 ≤ θ < 0.

That is

W20(θ) =
i

2ωkτ∗

(
g20 p1(θ) +

g02

3
p2(θ)

)
· fk + E1e2iωkτ

∗θ,

where

E1 =


W20(0), k ∈ N,

W20(0) − i
2ωkτ∗

(
g20 p1(θ) +

g02

3
p2(θ)

)
· f0, k = 0.

(3.32)

Using the definition of Aτ∗ and (3.27), we have that for −1 ≤ θ < 0,

2iωkτ
∗

[
ig20

2ωkτ∗
p1(0) · f0 +

ig02

6ωkτ∗
p2(0) · f0 + E

]
−τ∗D∆

[
ig20

2ωkτ∗
p1(0) · f0 +

ig02

6ωkτ∗
p2(0) · f0 + E

]
−L (τ∗)

[
ig20

2ωkτ∗
p1(θ) · f0 +

ig02

6ωkτ∗
p2(θ) · f0 + Ee2iωkτ

∗θ

]
= τ∗

(
c11

c21

)
−

1
2

(
p1(0)g20 + p2(0)g02

)
· f0.

(3.33)

Notice that {
τ∗D∆

[
p1(0) · f0

]
+ L (τ∗)

[
p1(θ) · f0

]
= iω0τ

∗p1(0) · f0,

τ∗D∆
[
p2(0) · f0

]
+ L (τ∗)

[
p2(θ) · f0

]
= −iω0τ

∗p2(0) · f0.

We have

2iωkτ
∗E1 − τ

∗D∆E1 − L (τ∗)
(
E1e2iωkτ

∗θ
)
= τ∗

(
c11

c12

)
cos2

(
kx
l

)
, k ∈ N0.

Therefore

E1 = τ
∗

 2iωkτ
∗ + d1

k2

l2 − a11 a12

−a21e−2iωkτ
∗

2iωkτ
∗ + d2

k2

l2 + a22e−2iωkτ
∗

−1 (
c11

c12

)
cos2

(
kx
l

)
.
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Similarly, we have

W11(θ) =
i

2ωkτ∗
(
p1(θ)g11 − p1(θ)g11

)
+ E2.

Calculate W20 using the same method, we have

E2 = τ
∗

 d1
k2

l2 − a11 a12

−a21 d2
k2

l2 + a22

−1 (
c12

c22

)
cos2

(
kx
l

)
.

Thus, we can evaluate the following values:

c1(0) =
i

2ωkτ∗

(
g20g11 − 2 |g11|

2
−
|g02|

2

3

)
+

1
2

g21,

µ2 = −
Re (c1(0))
Re (λ′ (τ∗))

, β2 = 2 Re (c1(0)) ,

T2 = −
1

ωkτ∗
[
Im (c1(0)) + µ2 lm

(
λ′ (τ∗)

)]
.

Theorem 3. For any critical value τ j
k, we have the Hopf bifurcation is forward (µ2 > 0) or backward

(µ2 < 0). The bifurcating periodic solutions are orbitally asymptotically stable (β2 < 0) or unstable
(β2 > 0). The period increases (T2 > 0) or decreases (T2 < 0).

4. Hybrid control of bifurcation

In this section, we design a hybrid controller to control Hopf bifurcations and expand the stability
range of equilibrium points. The system (1.2) with hybrid controller control can be described as
follows: 

∂
∂t u(x, t) = d1∆u(t, x) + u(x, t)

[
r1 − b1u(x, t) − a1v(x,t)

m2+nu(x,t)+u2(x,t)

]
,

∂
∂t v(x, t) = d2∆v(t, x) + Kv(x, t)

[
r2 −

a2v(x,t−τ)
u(x,t−τ)

]
+ (1 − K)(v(x, t − τ) − v∗),

x ∈ (0,Ω), t > 0,

(4.1)

where the parameter K is treated as a feedback parameter, and v∗ represents the value of v(t, x) at the
equilibrium point.

Linearize the system affected by the hybrid controller at the equilibrium point, and obtain the
linearized controlled model as follows:

∂u
∂t
∂v
∂t

 = D∆
(

u(t)
v(t)

)
+ L1

(
u(t)
v(t)

)
+ L3

(
u(t − τ)
v(t − τ)

)
, (4.2)

where

D =
(

d1 0
0 d2

)
, L1 =

(
a11 −a12

0 0

)
, L3 =

(
0 0

b21 b22

)
,
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and

a11 = r1 − 2b1u∗ −
a1v∗m2 − a1u2

∗v∗
(m2 + nu∗ + u2

∗)2 , a12 =
a1u∗

m2 + nu∗ + u2
∗

,

b21 =
Ka2v2

∗

u2
∗

, b22 =
−Ka2v∗

u∗
+ (1 − K).

The characteristic equation of (4.2) is

det(λI + Dk2 − L1 − L3e−λτ) = 0, (4.3)

then we have
λ2 + λ(Λ − b22e−λτ) + Θ + Υe−λτ = 0, (4.4)

where

Λ(k2) = (d1 + d2)k2 − a11,

Θ(k2) = k2(d1d2k2 − a11d2),
Υ(k2) = −d1b22k2 + a11b22 + a12b21.

When τ > 0, let iω̃(ω̃ > 0) be a solution of Eq (4.4), then decompose into the real and imaginary parts,
we have {

Υcos(ω̃τ) − ω̃b22sin(ω̃τ) = ω̃2 − Θ,

ω̃b22cos(ω̃τ) − Υsin(ω̃τ) = Λω̃,
(4.5)

which lead to
ω̃4 + ω̃2(Λ2 − 2Θ − b2

22) + Θ2 − Υ2 = 0, (4.6)

where

Pk = 2Θ + b2
22 − Λ

2 = −(d2
1 + d2

2)k4 + 2a11d1k2 + b2
22 − a2

11,

Qk = Θ
2 − Υ2 = (d1d2k4 − a11b22k2)2 − (a11d22 + a12d21 − d2b22k2)2.

We propose the following hypotheses:

(H3) (d1d2 − a11b22)2 − (a11b22 + a12d21 − d2b22)2 > 0;
(H4) a11d1 ≤ d2

1 + d2
2, and P1 < 0; or

(H5) a11d1 > d2
1 + d2

2, and a2
11d2

1 < (d2
1 + d2

2)(a2
11 − b2

22).

Suppose (H3) holds, Qk > 0,∀k ≥ 1; Suppose (H4) or (H5) holds, Pk < 0,∀k ≥ 1. These imply that
there are no purely imaginary roots in Eq (4.6) for k ≥ 1. On the other hand, when k = 0, we have
Q0 < 0, then the Eq (4.6) has one positive root :

ω0 = [
1
2

(b2
22 − a2

11 +

√
(b2

22 − a2
11)2 + 4(a11b22 + a12b21)2)]

1
2 .
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On account of (4.5), it is obvious that

cosω0τ =
ω2

0a12b21

a11b22 + a12b21
2 + ω2

0b2
22

.

Therefore

τ
j
0 =

1
ω0

arccos
ω2

0a12b21

a11b22 + a12b21
2 + ω2

0b2
22

+
2 jπ
w0

, j ∈ N0. (4.7)

Denote τ0
0 = min

j∈N0
{τ

j
0} .

Let λ(τ) = α(τ) ± iω(τ) be the root of (4.4) near τ = τ
j
0, j = 0, 1, 2, · · · , satisfying α(τ j

0) = 0 for
ω(τ j

0) = ω0 . Take the derivative of both sides of (4.4) with respect to τ, and we have

(
dλ
dτ

)−1 =
2λ − (b22 + Υτ − b22τλ)e−λτ

(Υ − b22λ)λe−λτ
.

Then

Re
(dλ
dτ

)−1
τ=τ

j
0
=
ΛΥω0 − 2b22ω

3
0sinω0τ

j
0 + (Λb22ω

2
0 + 2Υω2

0)cosω0τ
j
0 − b22ω

2
0

Υ2ω2
0 + ω

4
0b2

22

.

If Re
(dλ

dτ

)−1
τ=τ

j
0
, 0, the traversal condition will hold. Based on the above, we derive the main result.

Theorem 4. Assume that (H1)(H3)(H4) or (H1)(H3)(H5) hold. There are the following conclusions.

(1) The coexisting equilibrium E∗ = (u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ0
0).

(2) The coexisting equilibrium E∗ = (u∗, v∗) is unstable for τ ∈ (τ0
0,+∞). And system (4.1) undergoes

a Hopf bifurcation at the equilibrium E∗ = (u∗, v∗) when τ = τ
j
0, j = 0, 1, 2, · · · .

Remark 2. The above analysis demonstrates that by adjusting the feedback control gains, it is possible
to change the values of the Hopf bifurcation without altering the original equilibrium point. This allows
the system to transition from its original unstable state back to a stable state, effectively expanding the
stability region and maintaining the predator-prey dynamic equilibrium (see Section 5).

5. Numerical simulations

Example 1. Consider system (1.2) with the following parameters: d1 = 0, d2 = 0, r1 = 0.35,
r2 = 0.22, b1 = 0.27, a1 = 0.57, a2 = 0.11,m = 0.36, n = 0.30, and τ = 0. Hypothesis (H1) is
satisfied, then (u∗, v∗) = (0.043, 0.086) is locally asymptotically stable (Figure 1). We take
d1 = 5, d2 = 12, by Theorem 1, (u∗, v∗) = (0.043, 0.086) is still locally asymptotically stable
(Figure 2). We choose d1 = 0.01, d2 = 5, and we have that (u∗, v∗) = (0.043, 0.086) is Turing unstable,
and Turing patterns appear (Figures 3 and 4).
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Figure 1. The numerical results are acquired with τ = 0, d1 = d2 = 0.

Figure 2. Behaviors of appearance for Turing stable conditions with τ = 0, d1 = 5, d2 = 12.

Figure 3. Behaviors of appearance for Turing unstable conditions with τ = 0, d1 = 0.01, d2 =

5.

(a) (b)

Figure 4. Pattern appearance of (a) prey and (b) predator for Turing unstable conditions with
τ = 0, d1 = 0.01, d2 = 5.
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Example 2. Consider system (1.2) with the following parameters: d1 = 0.49, d2 = 0.8, r1 = 0.97,
r2 = 0.96, b1 = 0.14, a1 = 0.42, a2 = 0.92,m = 0.79 and n = 0.96 . The system (1.2) has a unique
coexisting equilibrium (u∗, v∗) = (6.5, 6.5) , we compute that the critical value is τ̃ ≈ 1.5551 . By
Theorem 2, system (1.2) is locally asymptotically stable for τ = 1.4 ∈ [0, τ̃] (Figure 5). As τ = 1.8 >
τ̃ , the system (1.2) undergoes oscillations (Figure 6). In addition, we calculate Re(C1(0)) = −12.687,
then we have µ2 > 0,β2 < 0.

Figure 5. The coexisting equilibrium E∗ is locally stable where τ = 1.4 < τ̃.

Figure 6. The periodic solutions bifurcating from the coexisting equilibrium E∗ where
τ = 1.8 > τ̃.

In the process of selecting parameter values for numerical simulations of the model, there exists a
certain degree of uncertainty in parameter selection. In order to identify parameters that significantly
impact the densities of prey and predator populations, those parameters that have a substantial effect
on model outputs, precise values should be assigned, while parameters with minor impacts on model
outputs can be assigned rough estimates [43, 44]. This allocation of values is crucial for assessing the
sensitivity of the model relative to parameter manipulations. We employed Latin hypercube
sampling/partial rank correlation coefficient (LHS/PRCC) sensitivity analysis [45] to explore the
entire parameter space of the model. In this study, parameter values were obtained from Example 2
with a reference deviation of ±25%, and a uniform spread was assigned to each model parameter.
Each LHS run consisted of 200 simulations, and the sampling was conducted autonomously. The
PRCC values range between -1 and 1, where positive and negative PRCC values respectively reveal
the positive or negative correlation between model parameters and model outputs, while the
magnitude indicates the strength of the linear relationship.

From Figure 7, it can be observed that the growth rate of the prey, food conversion rate, and digestion
delay have a positive impact on the prey population density. That is, an increase in these parameters
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will lead to an increase in the output of the prey population density. On the other hand, the internal
competition rate and predation rate have a negative impact on the prey population density. A decrease
in these parameters will result in a decrease in the output of the prey population density. Additionally,
we find that the intrinsic growth rate of both the prey and predator has a significant positive effect
on the predator population density. The competition rate within the prey population, digestion delay,
and the diffusion coefficient of the prey have a significant negative impact on the predator population
density, and the predator population is more sensitive to theses parameters.
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Figure 7. Impact of uncertainty of system (1.2) on (a) prey population and (b) predator
population.

Example 3. We consider the influence of the hybrid bifurcation control strategy of system (4.1). We
choose K = 0.83, other parameters remain the same as in Example 2; the bifurcation critical point of
the controlled system (4.1) is τ0

0 ≈ 2.3. By Theorem 4 that when τ = 1.8 < τ0
0, the controlled

system (4.1) returns to locally stability at the equilibrium point (Figure 8), when τ = 2.5 > τ0
0, the

system (4.1) undergoes oscillations (Figure 9). Therefore, adjusting the controller coefficient can
effectively expand the stable region and change the position of the bifurcation point. It is evident that
reducing the feedback gain leads to a faster convergence of the system towards a stable state; in other
words, a smaller feedback gain results in better control of the controller’s impact on Hopf bifurcation
(Figure 10).

Figure 8. Waveform plots of the controlled system (4.1) with τ = 1.8 < τ0
0 = 2.3; the

feedback gain is K = 0.83. The controlled model (4.1) returns to stability at equilibrium
point E∗ .
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Figure 9. Waveform plots of controlled system (4.1) with τ = 2.5 > τ0
0 = 2.3; the feedback

gain is K = 0.83.
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Figure 10. Waveform plots of controlled system (4.1), the feedback gain is K = 0.9,K =
0.83,K = 0.78 for τ = 2.5. The control effect increases as the feedback gain decreases.

6. Conclusions

This paper delves into a delayed diffusive semi-ratio-dependent predator-prey model. We first
analyzed how diffusion can lead to Turing instability for the system without time delay. Second, we
considered the time delay τ as a parameter for bifurcation and provided conditions for the occurrence
of Hopf bifurcation. Our results indicated that time delay can induce complex dynamical phenomena;
the model can bifurcate from the normal equilibrium solution to spatially homogeneous and
inhomogeneous periodic solutions. The time delay effect causes the system to transition from a stable
state to periodic oscillations, reflecting a dynamic imbalance between predator and prey populations.
Over time, the populations of predators and prey alternate between increase and decrease, forming a
periodic fluctuation pattern. Furthermore, through calculations, it was determined that the Hopf
bifurcation is forward and the system possesses stable branch periodic solutions. This implies that the
interaction between prey and predators is regulated through stable periodic oscillations, maintaining
ecological balance and species diversity. Third, a hybrid controller has been incorporated into the
system (4.1) to optimize the dynamic characteristics of the predator-prey model. With the addition of
a hybrid controller and reasonable parameter adjustment, the previously oscillating waveforms regain
stability. This signifies that the introduction of the controller has effectively controlled the range of
model stability. Loading the controller onto the predator and adjusting its control parameters can
achieve objectives such as population control, population dynamics regulation, and ecosystem
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management, playing a significant role in the fields of biology and ecology. Furthermore, through
PRCC analysis, we have obtained the sensitivity relationships between the two population densities
and the parameters. It is evident that the inclusion of diffusion and time delay has a more significant
impact on the predator population density. Finally, numerical examples are introduced to validate the
theoretical results.

The bifurcation studied in this paper is limited to one-dimensional space. To be more realistic,
future research will continue to explore higher codimension branching problems, such as Turing-Hopf
bifurcations of codimension two or even three, and their more complex dynamical phenomena. We
also will explore the analysis and comparison of alternative control strategies and their corresponding
simulation scenarios, thereby enriching the development of the current stage of research.
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