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Abstract: This work studies the behavior of electrical signals in resonant tunneling diodes through
the application of the Lonngren wave equation. Utilizing the method of Lie symmetries, we have
identified optimal systems and found symmetry reductions; we have also found soliton wave solutions
by applying the tanh technique. The bifurcation and Galilean transformation are found to determine
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1. Introduction

The transmission line in this investigation is similar to one that was previously used to examine
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solitary waves. Figure 1 illustrates a segment of the 50-section line. Each section comprises a parallel
resonant circuit with a resonance frequency of v0

2m ∼ 30 MHz in the series Additionally, there is a
reverse-biased p−m junction diode in the shunt branch, and its capacitance varies based on the bias and
signal voltages. The entire length of the line spans 100 cm. The voltage variable W, can be established
by using transmission line equations [1]:

∂J
∂ϖ
+
∂[WDn(W)]

∂ι
= 0,

∂W
∂ϖ
+ L

∂J′

∂ι
= 0,

∂2W
∂ϖ∂ι

+
1
S

(J − J′) = 0.

(1.1)

Figure 1. The nonlinear dispersive transmitting line’s characteristic section.

The quantities L and 1
S have units expressed in henry per unit length and ( 1

f arads ) per unit length
respectively. The nonlinear diode is denoted by H = Dn(W). By utilizing the given information, we
can formulate Eq (1.1) by describing the voltage W as a wave equation:

∂4W
∂ϖ2∂ι2

+
1

LDs

∂2W
∂ϖ2 −

1
Ds

∂2(WH)
∂ι2

= 0. (1.2)

We can confidently state that Dn(W) is equivalent to Dn0(
W
W

)−m. Here, W represents a normalizing
constant, and m is a numerical value. Our analysis will demonstrate that 0 < m < 1,which encompasses
various potential experimental values (in our experiments, m = 1

3 ). Incorporating dimensionless units
into Eq (1.2) transforms it into the following non-linear 4th-order partial differential equation (PDE)
through the use of the nonlinear (spiral) group:

∂4Q
∂ι2 ∂ϖ2 − a

∂2Q
∂ι2
+
∂2Q
∂ϖ2 + 2b

[
(
∂Q
∂ι

)2 + Q
∂2Q
∂ι2

]
= 0. (1.3)
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Equation (1.3) represents the Lonngren wave equation [2], which holds great significance and has
been garnering attention as a captivating mathematical model owing to its extensive applications in
the field of electrical science. This study is based on the use of the Lonngren wave equation which is
a potent numerical technique that helps to model the electrical signals of tunnel diodes. Although it
was developed to reproduce wave propagation in shallow water, the equation may now, also be used
to interpret electrical pulses in a telegraphic system with the use of tunnel diodes. It can be applied as
both a research subject and an object of scientific study. We will explore the role of arbitrary constants
a and b, along with the spatial variable ϖ and the temporal variable ι, in the representation of the
wave function Q (ϖ, ι). The relationship between Q and its components will be thoroughly examined
in our discussion. The constant b also acts as a coefficient to demonstrate the nonlinearity of Eq (1.3).
The mathematical focus for this equation is the behavior of electrical impulses in Sony’s tunnel diode,
which is a type of semiconductor diode [3]. Equation (1.3) may also be used to clarify how energy is
stored in circuits with an electric charge or the way electrical signals, are transferred via materials with
semiconductor properties [4].

In previous studies, Lonngren et al. [3] utilized a non-linear differential equation to describe
a certain physical phenomenon, while Akçaği and Aydemir [5] explored the connection between
their approaches by employing the (G′

G ) expansion method and the modified extended tanh method.
These studies shed light on the understanding and analysis of such an intriguing phenomenon, which
will be further examined in our discussion. Baskonus et al. [6] created novel complex hyperbolic
constructions by employing the sine-Gordon expansion method. Zhang et al. [2] identify traveling
wave solutions, which we classify as trigonometric, and rational by employing exp(−ψ(η)) expansion
function technique.

Mathematical techniques are of great importance in the development of models that reflect functions
within different disciplines like physics [7], chemistry [8], and epidemiology [9]. The phenomenon of
ever-increasing scientific community interest in solving nonlinear PDEs (NLPDEs) is in turn a trend
in the modeling of various phenomena for which these equations are applied. This increasing interest
demonstrates the growing significance and relevancy of these equations; thus, researchers, in turn,
continue to further their conduct of a thorough treatment and explore their consequences [10]. The
scientific community is actively engaged in researching the physical interpretation of these solutions
of the NLPDE, as highlighted by Baskonus and Bulut [11]. Numerous NLPDEs, such as the Riemann
wave equation in fluid dynamics [7], Boltzmann equation in statistical mechanics [12], Fitzhugh-
Nagumo equation in biological neuron models [13], and Kadomtsev-Petviashvili equation in shallow
water waves [14], contribute to the understanding and application of these models for various physical
phenomena. The solutions derived in these studies are commonly referred to as soliton solutions [15],
a concept initially introduced by Russell [16] following observations of water waves.

The concept of a soliton, as described by Drazin and Johnson [17], is based on possessing
three significant characteristics. First, a soliton is characterized as a wave that travels consistently
without any alteration in its wave behavior. Second, solitons possess the ability to interact with other
solitons. Solitons are known to be confined to specific regions, and oceanic optic soliton technology
has become an important asset in the smooth transmission of information. Nowadays, the existence
of several electronic channels such as social networking sites, Facebook posts, Twitter comments, and
so on owes much to the soliton technology. Our phenomenon refers to a pulse that maintains its shape
while traveling at a constant velocity.
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The main impetus of the soliton technology research is certainly the significant scientific
applications. Different models for studying and explaining the details that have been also constructed.
Nonlinear models are preeminent, as they use nonlinear differential equations to describe the behavior
of solitons. As researchers continue to employ these equations, there is a proportional increase in
the number of solutions that can be computed; also, the hidden secrets of the solitons are further
revealed. The findings of this research reach beyond the conventional boundaries of the specialized
disciplines, which are now able to employ soliton technology as a key tool across different fields of
science and engineering. Mathematical physics attaches great importance to wave patterns as the most
fundamental tool for the explanation and prediction of various phenomena. Nevertheless, the quest
for exact analytical solutions of nonlinear models is expansive, as such problems have their natural
complexities that are not so easy to handle. However, such difficulties do not stop scientists who are
interested in these problems due to the relevance they are deepening as a branch of science.

Researchers have dedicated their efforts to nonlinear components, devising and employing various
mathematical techniques to generate novel analytical solutions for nonlinear differential equations.
These techniques include the extended direct algebraic method [18, 19], new extended auxiliary
equation method [20], tanh-coth function method [21], sine-cosine technique [22], generalized
Kardashev method [23], exp-function method [24], new Jacobi elliptic functions method [25], and
tan-coth method [26]. These analytical methods have proven to be considerably more reliable and
efficient when it comes to solving PDEs. In recent times, many researchers have utilized Lie analysis
to derive analytical solutions for various nonlinear models. Notable contributions in this regard have
been made by scholars such as Jhangeer et al. [27], Hussain et al. [28], and Dorodnitsyn et al. [29]. The
literature presents a wide range of solutions, including soliton solutions, trigonometric solutions, lump
wave solutions, and more [30, 31]. Solitons, which are waves that maintain their shape while moving
at a constant speed, are particularly interesting in the context of optical solitons. Several nonlinear
models have soliton solutions, including the Noyes field model [32], Boussinesq equation [33], and
sine-Gordon equation [34].

The conservation laws play a fairly important role in dynamic systems of all kinds, and they may
be used across disciplines. They are indispensable in the study of numerous phenomena, ranging from
the physical properties of PDEs that model various processes and interactions to the other phenomena.
They are applied for the discovery of integrability and linearization of PDEs, detection of first integrals
for ordinary differential equations, determination of the potentials, formation of non-locally connected
systems, and verification of numerically computed solutions [35,36]. The fact that various researchers
have developed different ways to derive conservation laws is a testament to their significance in
computing conserved quantities, which is the ultimate issue of mathematicians and physicists.

This paper is organized as follows. Section 2 presents preliminary details. Section 3 discusses
the reduction of symmetries and the construction of traveling wave patterns, as well as presents the
graphical results. In Section 4, we detail a bifurcation analysis of the proposed model. Hamiltonian
dynamics is utilized in Section 5 to classify the obtained equilibrium points. Section 6 focuses on
the analysis of quasiperiodic and chaotic behaviors, which is accompanied by corresponding phase
portraits. The Lyapunov characteristic exponent is examined in Section 7 to assess the chaotic behavior
of the model. Detailed sensitivity analysis under the initial conditions is presented in Section 8,
followed by a multistability analysis in Section 9. Additionally, in Section 10, we detail the use of
the multiplier method to derive a comprehensive set of conservation laws for Eq (1.2). Finally, the
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results of the study are summarized in the conclusion in Section 11.

2. Lie symmetry analysis

A one-parameter Lie group with infinitesimal transformation is depicted [37]:

W = α(ϖ, ι,Q)
∂

∂ϖ
+ β(ϖ, ι,Q)

∂

∂ι
+ γ(ϖ, ι,Q)

∂

∂Q
, (2.1)

where the infinitesimal generators are α(ϖ, ι,Q), β(ϖ, ι,Q) and γ(ϖ, ι,Q).
By imposing certain symmetry conditions, a symmetry for Eq (1.3) can be achieved for the vector

field associated with Eq (2.1):

Pr[4]W(σ)|σ=0= 0,

Pr[4]W = W + γι(ϖ, ι,Q)
∂

∂Qι

+ γϖϖ(ϖ, ι,Q)
∂

∂Qϖϖ

+ γιι(ϖ, ι,Q)
∂

∂Qιι

+ γιιϖϖ(ϖ, ι,Q)
∂

∂Qιιϖϖ

,

γm
j1, j2,..., jm = D ji(γ

m−1
j1, j2,..., jm−1

) − (D jmα
i)Q j1, j2,..., jm−1i, ji = 1, 2, 3, . . . , n, for i = 1, 2, . . . ,m,

with j1, j2, . . . , jm = {ϖ, ι}, m = 2, 3, 4,

σ =
∂4Q

∂ι2∂ϖ2 − a
∂2Q
∂ι2
+
∂2Q
∂ϖ2 + 2b

(∂Q
∂ι

)2

+ Q
∂2Q
∂ι2

 .
(2.2)

Regarding ϖ and ι, D ji (m = 1, 2, 3, 4) is a total operator.

Theorem 1.

Three generators constitute the three-dimensional Lie algebra in Eq (1.3):

W1 =
∂

∂ι
, W2 =

∂

∂ϖ
, W3 = (−2bQ + a)

∂

∂Q
+ bϖ

∂

∂ϖ
.

By implementing into consideration Theorem 1, the associated ordinary differential equations, and the
initial assumptions, we have:

dϖ̄
dζ
= α(ϖ̄, ῑ, Q̄), with ϖ̄|ζ=0= ϖ ,

dῑ
dζ
= β(ϖ̄, ῑ, Q̄), with ῑ|ζ=0= ι ,

dQ̄
dζ
= γ(ϖ̄, ῑ, Q̄), with Q̄|ζ=0= Q.

(2.3)

Using W j, we have the following one-parameter groups H j:

H1 : (ϖ, ι,Q)→(ϖ, ι + ζ,Q),
H2 : (ϖ, ι,Q)→(ϖ + ζ, ι,Q),

H3 : (ϖ, ι,Q)→(ϖebζ , ι, (Q −
a

2b
)e−2bζ +

a
2b

).
(2.4)
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Subsequently, the following outcome is derived.

Theorem 2.

Suppose that Q(ϖ, ι) represents a solution to Eq (1.3); then, there exists an additional solution that
is expressed as follows:

H1 : (ϖ, ι) =(ϖ, ι − ζ),H2 : (ϖ, ι) = (ϖ − ζ, ι),

H3 : (ϖ, ι) =
[
Q(ϖe−bζ , ι) −

a
2b

]
e2bζ +

a
2b
.

(2.5)

Utilizing the definition of the Lie bracket, denoted by [Wx,Wy] = WxWy −WyWx, the commutators can
be expressed as follows:

[W1,W1] =[W2,W2] = [W3,W3] = 0,
[W1,W2] = − [W2,W1] = 0,
[W1,W3] = − [W3,W1] = 0,
[W2,W3] = − [W3,W2] = bW2.

(2.6)

Theorem 3.

Theorem 1 allows for the formation of a three-dimensional symmetry Lie algebra H through the
application of W j (where j = 1, 2, 3).

In the subsequent step, we aim to find the adjoint representations of the vector fields by using the
following Lie series as a basis for our search:

Adexp(ζW j )(Wi) = W j − ζ[W j,Wi] + (
1
2

)[W j, [W j,Wi]] − .... for ζ ∈ R.

By employing the system given by Eq (2.6), we subsequently obtain:

Adexp(ζW j)
(W j) =W j + O(ζ2), j = 1, 2, 3.

Adexp(ζW1)(W2) =W2 + O(ζ2), Adexp(ζW2)(W1) = W1 + O(ζ2),

Adexp(ζW3)(W1) =W1 + O(ζ2), Adexp(ζW1)(W3) = W3 + O(ζ2),

Adexp(ζW2)(W3) =W3 − ζbW2 + O(ζ2), Adexp(ζW3)(W2) = W2 + ζbW2 + O(ζ2).

(2.7)

The optimal systems can be derived from the adjoint representations defined in Eq (2.7) as follows.

Theorem 4.

We can derive a one-parameter optimal system by mapping the operators {W1,W2,W3, ∆1W1+∆2W2,

∆3W1 + ∆4W3} to the Lie algebra G, where ∆1,∆2,∆3,∆4 denote arbitrary constants.

3. Reducing symmetries and travelling wave patterns

The subsequent analysis focuses on examining the symmetry reductions and precise solutions for
Eq (1.3).
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3.1. Reduction by W1

The generator W1 yields

Q = g(ϵ1), ϵ1 = ι. (3.1)

Upon substituting Eq (3.1) into Eq (1.3), we obtain an ordinary differential equation represented by

−a(
dg
dϵ1

) + 2b
[
(

dg
dϵ1

)2 + g(
d2g
dϵ2

1

)
]
= 0.

3.2. Reduction by W2

The generator W2 yields

Q = g(ϵ2), ϵ2 = ϖ. (3.2)

Substituting Eq (3.2) into Eq (1.3) yields a trivial result.

3.3. Dynamical wave solutions

We will introduce the following wave transformation to simplify the scenario as a first step towards
solving the problem:

Q = G(ϵ), ϵ = k(cι −ϖ). (3.3)

After substituting Eq (3.3) into Eq (1.3), we get the non-linear ordinary differential equation
represented by

k4c2(
d2G
dϵ2 ) + k4c2(bG2

k2 −
aG
k2 +

G
k2c2

)
= 0. (3.4)

In the following analysis, we will employ the tanh technique to derive a soliton solution for the ordinary
differential equation-based Lonngren wave equation, as follows [38]:

G(ϵ) = b0 +

B∑
i1=1

bi1 Pi1 , bB ̸= 0. (3.5)

To determine the index B, we will compare the highest-order nonlinear term G2 with the highest-order
linear term G′′, which yields the value B = 2. Consequently, the equation takes the following form:

G(ϵ) = b0 + b1P + b2P2, b2 ̸= 0. (3.6)

By substituting Eq (3.6) into Eq (3.4), we can derive an equation expressed in terms of the powers of
P. By organizing the coefficients of similar powers of P, we can establish a set of algebraic equations.
After computation using Maple, we can acquire the resultant solutions for Eq (1.3):
Family 1:

b0 =
−1 + (8k2 + a)c2

2bc2 , b1 = 0, k = k, b2 =
−6k2

b
,

Q(ϖ, ι) =
−1 + (8k2 + a)c2

2bc2 −
6k2

b
(tanh(k(cι −ϖ)))2. (3.7)
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3.4. Graphical behavior

In this section, we present visual representations of the obtained solutions. By choosing suitable
parameter values, we were able to derive both two-dimensional and three-dimensional graphical
interpretations of Eq (1.3) with k = 1, a = 1, b = 1, and c = 1, as shown in Figures 2 and 3. For
k > 0, the solution exhibits an anti-kink shape.

Similarly, by employing appropriate parameter values, we were able to derive the two-dimensional
and three-dimensional graphical representations of Eq (1.3) with k = −1, a = 1, b = 1, and c = 1, as
shown in Figures 4 and 5. For k < 0, the solution takes on a kink shape.

Figure 2. 3D graphics. Figure 3. 2D graphics.

Figure 4. 3D graphics. Figure 5. 2D graphics.

4. Bifurcation analysis

Here, we detail the construction of the system of equations shown below through the application of
the Galilean transformation to the constructed ordinary differential equation in Eq (3.4):

dG
dϵ
= S ,

dS
dϵ
= Ω1G −Ω2G2,

(4.1)
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where Ω1 = ( a
k2 −

1
k2c2 ),Ω2 =

b
k2 . The objective in this scenario is to carry out a thorough bifurcation

analysis, which involves looking at phase portraits for the system described by Eq (4.1). We can
generate the following system by using Eq (4.1): S = 0,

Ω1G −Ω2G2 = 0.

The equilibrium points that have been identified are:

Q1 = (0, 0), Q2 =
(Ω1

Ω2
, 0

)
.

The Jacobian matrix of the system given by Eq (4.1) establishes that

J(G, S ) =

∣∣∣∣∣∣ 0 1
Ω1 − 2Ω2G 0

∣∣∣∣∣∣
= 2Ω2G −Ω1.

According to the principles of planar dynamical systems, the following statements are true
(1) The center point is located at (G, S ) if J(G, S ) > 0.
(2) The saddle point is located at (G, S ) if J(G, S ) < 0.
(3) The cusp point is located at (G, S ) if J(G, S ) = 0.
In what follows, we present the possible results that may be generated by altering the appropriate
parameters:
Category 1: Ω1 > 0, and Ω2 > 0.

In Figure 6a, for a = 2, b = 1, c = 1, and k = 1, the system has two fixed points: Q1a = (0, 0) and
Q2a = (1, 0). It follows that

J(Q1a) = −1 < 0, J(Q2a) = 1 > 0.

Here, Q1a acts as a saddle point, while Q2a serves as a center point. These specific points are depicted
in Figure 6a. Nonlinear periodic trajectory structures can be computed by using the Runge-Kutta
method, and they are illustrated in Figure 6a.
Category 2: Ω1 > 0, and Ω2 < 0.

In Figure 6b, for a = 2, b = −1, c = 1, and k = 1, the system has two fixed points: Q1b = (0, 0) and
Q2b = (−1, 0). It follows that

J(Q1b) = −1 < 0, J(Q2b) = 1 > 0.

Here, Q1b functions as a saddle point, while Q2b acts as a center point. These specific points are shown
in Figure 6b. The Runge-Kutta method can be employed to compute structures of nonlinear periodic
trajectories, as illustrated in Figure 6b.
Category 3: Ω1 < 0, and Ω2 > 0.

In Figure 6c, for a = −0.1, b = 1, c = 1, and k = 1, the system has two fixed points: Q1c = (0, 0)
and Q2c = (−1.1, 0). It follows that

J(Q1c) = 1.1 > 0, J(Q2c) = −1.1 < 0.
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Here, Q1c acts as a center point, while Q2c functions as a saddle point. These specific points are
depicted in Figure 6c. Nonlinear periodic trajectory structures can be computed by using the Runge-
Kutta method, as illustrated in Figure 6c.
Category 4: Ω1 < 0, and Ω2 < 0.

In Figure 6d, for a = −0.1, b = −1, c = 1, and k = 1, the system has two fixed points: Q1d = (0, 0)
and Q2d = (1.1, 0). It follows that

J(Q1d) = 1.1 > 0, J(Q2d) = −1.1 < 0.

Here, Q1d functions as a center point, while Q2d acts as a saddle point. These specific points are shown
in Figure 6d. The Runge-Kutta method can be employed to compute structures of nonlinear periodic
trajectories, as illustrated in Figure 6d.

(a) For Ω1 > 0 and Ω2 > 0. (b) For Ω1 > 0 and Ω2 < 0.

(c) For Ω1 < 0 and Ω2 > 0. (d) For Ω1 < 0 and Ω2 < 0.

Figure 6. Phase portraits for the dynamical system given by Eq (4.1).

5. Hamiltonian dynamics

Through the application of Hamilton’s equations of classical mechanics, we have the following
system:

dA
dι
= X(G, S ),

dB
dι
= Y(G, S ). (5.1)

The system is generally referred to as Hamiltonian if a function H(G, S ) exists such that

X =
∂H
∂S

and Y = −
∂H
∂G

. (5.2)

The Hamiltonian function [39] for the specified system is thus denoted by H.
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Definition 1.

The following criteria must be met for the dynamical system given by Eq (5.1) to be Hamiltonian:

∂X

∂G
+
∂Y

∂S
= 0.

Equation (4.1) is the Hamiltonian dynamical system, according to the definition, since both meet the
criteria for the following state equation:

∂

∂G
(dG

dϵ
)
+

∂

∂S
(dS

dϵ
)
= 0.

To do this, we write the Hamiltonian function for Eq (4.1) as follows:

H(G, S ) =
S 2

2
−
Ω1G2

2
+
Ω2G3

3
.

Definition 2.

Assuming that the equilibrium point of H(G, S ) is (G0, S 0), and that the partial derivatives HGG,HS S ,
and HGS are continuous on some interval (G0, S 0), then the following equation holds at this point

Θ(G, S ) = HGG × HS S − (HGS )2.

Type 1: When Θ(G, S ) is greater than zero, Θ(G, S ) reaches a either maximum or minimum value at
the point (G, S ).
Type 2: If Θ(G, S ) is less than zero, Θ(G, S ) exhibits a saddle point at (G, S ).
Type 3: When Θ(G, S ) equals zero, various methods are required to determine the nature of the critical
point. If the dynamical system’s phase can be expressed by the contours of H(G, S ), then the center
node described in Type 1 will be the equilibrium point at (G, S ), and the saddle node in Type 1.

A complete classification is presented in Table 1.

Table 1. Phase portrait classification.
Figure State Points Θ(G, S ) Classification

6a Q1a -1 Unstable and saddle
6a Q1b 1 Stable and center
6b Q2a -1 Unstable and saddle
6b Q2b 1 Stable and center
6c Q3a 1.1 Stable and center
6c Q3b -1.1 Unstable and saddle
6d Q4a 1.1 Stable and center
6d Q4b -1.1 Unstable and saddle
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6. Quasiperiodic and chaotic patterns

Here, we investigate the potential for quasiperiodic and chaotic behavior in the system described
by Eq (4.1) through the introduction of a disturbance. Our analysis involves the study of both two-
dimensional and three-dimensional phase diagrams that are specific to this system. We shall delve into
the dynamics of the aforementioned system [40]:


dG
dϵ
= S ,

dS
dϵ
= Ω1G −Ω2G2 + e0 cos(e1ϵ).

(6.1)

The amplitude is denoted by e0, while the frequency is denoted by e1. Upon analyzing the system’s
sensitivity to the parameter e1, one can find that the phase diagrams reveal an interesting pattern that
highlights the system’s susceptibility to variations in the parameter e1.

Case 1: If Ω1 > 0 and Ω2 > 0 with e1 = 1 and e1 = 0.09, the system described by Eq (6.1) exhibits
quasi-periodic behavior, as shown in Figures 7a–8c. The statements in the phase diagrams appear as
perfectly balanced, repetitive plots, suggesting stable and reliable dynamics.

Case 2: The behavior observed in the nonlinear system in which Ω1 < 0 and Ω2 > 0, or Ω1 < 0
and Ω2 < 0, with e0 = 1.2 and e1 = 3, governed by Eq (6.1), is of particular significance due to
its manifestation of chaotic behavior, as shown in Figures 9a–10c. Chaotic behavior manifests when
e0 = 1.2 and e1 = 3.

In this scenario, the system displays non-periodic behavior, instead of exhibiting chaotic
characteristics. The trajectories converge and reveal a strong dependence on the initial states of the
dynamic processes. The unexpected behavior of this system is solely influenced by the parameter
e1. This behavior comprises fluctuations and chaos that can be observed for different values of e1,
highlighting the complex influence of the perturbed term e0 cos(e1ϵ) on the system. The introduction
of this perturbation initiates a transition from ordered periodic patterns to chaotic motion, illustrating
the intricate interplay of parameters within the system.
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Figure 7. Phase portraits of the suggested system given by Eq (6.1) are depicted under the
condition that Ω1 > 0, Ω2 > 0, e0 = 0.02 and e1 = 1.
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Figure 8. Phase portraits of the suggested system given by Eq (6.1) are depicted under the
condition that Ω1 > 0 , Ω2 > 0, e0 = 0.02 and e1 = 1.
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Figure 9. Phase portraits of the suggested system given by Eq (6.1) are depicted under the
condition that Ω1 < 0 , Ω2 > 0, e0 = 1.2 and e1 = 3.
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Figure 10. Phase portraits of the suggested system given by Eq (6.1) are depicted under the
condition that Ω1 < 0 , Ω2 < 0, e0 = 1.2 and e1 = 3.

7. Lyapunov exponent

The Lyapunov exponent in Figure 11 estimates the rates of increase of distance between initially
close trajectories in phase space. A positive index is usually associated with chaos while a negative
exponent is associated with stability. A zero index means that stability margins are marginal. The
maximum positive influence leads to the occurrence of deterministic patterns, and the changes look
random throughout history. Instability, for example, is depicted as orbits that drift or collide, which
symbolizes chaos. The Lyapunov exponent has wide-ranging applicability in, engineering, biology,
and economics, and it is broadly used for such complex systems as weather patterns and financial
markets [41].
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Figure 11. Dynamics of Lyapunov exponents of Eq (4.1).

8. Sensitivity discussion

Sensitivity analysis is an indispensable tool for delineating how changes in inputs or parameters
affect the outcome of a system change: as it provides vital information that allows for comprehension
of its behavior. A tipping point has been reached in the structural engineering practice, as sensitivity
analysis has become a vital tool because of its ability to explore how structural behavior is affected
by changes in physical properties or conditions. For our structural engineering model, we consider
the sensitivity analysis features that would allow us to track the structure’s reliability and understand
the effects of changing the material properties or initial conditions on its dynamic response [42]. A
detailed analysis is reported in Tables 2 and 3.

Furthermore, the analysis goes beyond just considering how changing the initial conditions affects
the overall dynamical structure. Instead, it entails conducting a thorough examination to reveal intricate
details regarding the system vectors and mechanisms of response. Through the methodical exploration
and examination of this phenomenon, we ultimately aimed to elucidate the intricate interplay between
the initial conditions and the dynamic structure’s development, broadening our understanding and thus,
proffering to the advancement of the structural engineering body of knowledge.

Table 2. Values of parameters utilized in sensitivity analysis.
Figure Red Curve Green Curve Condition

12a (0.45,0.03) (0.47,0.04) Ω1 < 0,Ω2 > 0, a < 0
12b (0.30,0.03) (0.35,0.04) Ω1 > 0,Ω2 > 0, a > 0
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Table 3. Values of parameters utilized in sensitivity analysis.
Figure Red Curve Green Curve Blue Curve Condition

12c (0.40,0.03) (0.30,0.04) (0.35,0.04) Ω1 < 0,Ω2 > 0, a = 0
12d (0.40,0.03) (0.35,0.04) (0.30,0.04) Ω1 > 0,Ω2 < 0, b < 0

(a) (b)

(c) (d)

Figure 12. Sensitivity plots generated for the dynamical system given by Eq (4.1) for the
parameters and initial conditions listed in Tables 2 and 3.

9. Multistability

A dynamical system may exhibit multiple solutions simultaneously, depending on the specified set
of initial parameters and variables. We explored this phenomenon known as multistability distribution
in our research [43]. The methodologies involved analyzing phase portraits and time series graphs to
understand various multistability behaviors of the system given by Eq (4.1).

To test our software function, we set specific parameter values: a = 0.1, b = −1, c = 1, k = 1, e0 =

1.2, and e1 = 3, as depicted in Figure 13. These plots illustrate the phase portrait results corresponding
to the initial conditions (G, S ) = (0.10, 0.01), shown in red, (G, S ) = (0.20, 0.01), shown in blue, and
(G, S ) = (0.40, 0.01), shown in pink. Initially, the tested system exhibited chaotic or periodic behavior.

Figure 14 shows the results of utilizing a = 2, b = 1, c = 1, k = 1, e0 = 1.2, and e1 = 3, two
distinct phase portraits were generated in red and green for the initial conditions (R,G) = (0.04, 0.1)
and (R,G) = (0.01, 0.1), respectively by using unique parameter values. The system exhibited a quasi-
periodic behavior for these initial values.
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Figure 13. Multistability of the nonlinear dynamical system given by Eq (4.1) with Ω1 < 0,
and Ω2 < 0.
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Figure 14. Multistability of the nonlinear dynamical system given by Eq (4.1) with Ω1 < 0,
and Ω2 > 0.

10. Conservation laws

Conservation laws hold a crucial role in the examination of dynamic systems and have diverse
applications across different disciplines. They are generally employed to describe essential physical
properties of PDEs that represent various phenomena. These laws are utilized in practical scenarios to
identify the integrability and linearization of PDEs, determine first integrals for ordinary differential
equations, locate potentials, construct non-locally connected systems, and evaluate the precision of
numerically calculated solutions. Consider the following equation:

B[Q] =
∂4Q

∂ι2 ∂ϖ2 − a
∂2Q
∂ι2
+
∂2Q
∂ϖ2 + 2b

[
(
∂Q
∂ι

)2 + Q
∂2Q
∂ι2

]
= 0. (10.1)

The objective was to establish a local conservation law of the divergence type for Eq (10.1) in the
following form:

D jΨ
j[Q] = D1Ψ

1[Q] + D2Ψ
2[Q] = 0.

For the derived solutions of Eq (10.1), only total derivative operators were considered, resulting in the
inclusion of a conservation law multiplier µ[Q] = µ(ϖ, ι,Q) that satisfies

µ[H]B[Q] = D jΨ
j[H].
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Here, ψ represents an arbitrary variable without any specific constraints or limitations.

Theorem 5.

Considering the expression of divergence D jψ
j[Q], the following equality is valid [44]:

EQ(D jψ
j[Q]) = 0,

where EQ shows the Euler operator that is,

EQ =
∂

∂Q
− D j

∂

∂Q j
+ D ji

∂

∂Q ji
− D jik

∂

∂Q jik
+ ... + (−1)pD j1 ...D jp

∂

∂Q j1 .... jp

.

Theorem 6.

If a conservation law multiplier µ(ϖ, ι) is available, then it is possible to derive a divergence
expression for Eq (10.1):

EQ(µ(ϖ, ι))B[Q] = 0. (10.2)

Theorem 7.

When considering the arbitrary constants a and b, Eq (10.1) allows for the existence of local
conservation laws:

Dϖ(Qϖ) + Dι(2bQQι + Qιϖϖ) = 0,
Dϖ(ϖQϖ − Q) + Dι(2bϖQQι − aϖQι +ϖQϖϖι) = 0,
Dϖ(ιQϖ) + Dι(2bιQQι − aιQι − bQ2 + aQ + ιQιϖϖ − Qϖϖ) = 0,
Dϖ(ιϖQϖ − ιQ) + Dι(2bιϖQQι − aιϖQι − bϖQ2 + aϖQ + ιϖQιϖϖ −ϖQϖϖ) = 0.

The complete set of local conservation laws for Eq (1.3) with constants a and b can be established
as {µ1, µ2, µ3, µ4} = {1, ϖ, ι,ϖι}. These conservation law multipliers apply to the entirety of the local
conservation laws for the given equation.
Proof. By utilizing the information presented in Eq (10.2), we can deduce the system of equations
µιι = 0, µϖϖ = 0, µQ = 0. Subsequently, the following solution can be obtained:

µ = r1 + r2ϖ + ι(r3 + r4ϖ). (10.3)

The constants denoted by r j (where j = 1, 2, 3, 4) are arbitrary in nature. The solution given by
Eq (10.3) allows for a subsequent demonstration that Theorem 7 holds true when the set of conservation
law multipliers {µ1, µ2, µ3, µ4} is defined as {1, ϖ, ι,ϖι} respectively.

11. Conclusions

This paper details an analysis of the Lonngren wave equation within the field of semiconductor
physics through the use of Lie symmetry analysis to address its complexities. Through the computation
of Lie point symmetries and the identification of one-dimensional conjugacy classes, we have designed
an approach for the reduction of the model and find new wave solutions. We applied the tanh technique,
which applies to all of the analytical solutions that contain logarithmic and exponential functions.
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Moreover, applying the Galilean transformation allowed us to project the equation onto a spatial
dynamical system, pinpoint the equilibrium points, and investigate the chaos phenomena via sensitivity
analysis. Numerical simulation results indicate that the model is highly sensitive to changes in the
frequency and intensity of the perturbation. Lastly, we have presented a complete set of local
conservation laws and employed a graphical analysis system to illustrate the variation in nonlinear
equation solutions, which has afforded a deep understanding of the problem.
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