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Abstract: This paper introduces a novel numerical approach for tackling the nonlinear fractional
Phi-four equation by employing the Homotopy perturbation method (HPM) and the Adomian
decomposition method (ADM), augmented by the Shehu transform. These established techniques are
adept at addressing nonlinear differential equations. The equation’s complexity is reduced by applying
the Shehu Transform, rendering it amenable to solutions via HPM and ADM. The efficacy of this
approach is underscored by conclusive results, attesting to its proficiency in solving the equation. With
extensive ramifications spanning physics and engineering domains like fluid dynamics, heat transfer,
and mechanics, the proposed method emerges as a precise and efficient tool for resolving nonlinear
fractional differential equations pervasive in scientific and engineering contexts. Its potential extends
to analogous equations, warranting further investigation to unravel its complete capabilities.
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Nomenclature

w : Independent variable; ¢ : Time; v(w, ¢) : Dependent function representing the physical quantity;
a : Fractional order; S : Shehu transform; S ' : Inverse Shehu transform; € : Perturbation parameter
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1. Introduction

In recent years, the utilization of non-integer order derivatives, also known as fractional derivatives,
has gained remarkable traction across various scientific and engineering disciplines due to its ability to
model complex phenomena with more accuracy and flexibility [1,2]. Fractional calculus provides an
extended framework that goes beyond the restrictions of typical integer-order derivatives, allowing for
a more comprehensive modeling of processes with memory effects and long-range interactions [3,4].
Mathematicians that study fractional calculus extend the idea of integrals and derivatives of integer
orders to non-integer orders. The creation of fractional differential equations is the result of this
concept’s multiple applications in a variety of scientific and technical fields. Differential equations
involving fractional derivatives of an unknown function are known as fractional differential equations.
Complex processes that cannot be modelled using integer-order differential equations can be described
by these equations. Numerous physical, biological, and engineering systems, including viscoelastic
materials, diffusion processes, wave propagation, and control systems, have been modelled using
them [5-7].

Nonlinear fractional differential equations are a specific category of fractional differential equations
that demonstrate nonlinear characteristics, wherein the unknown function is present in nonlinear
expressions [8,9]. The resolution of these equations presents a greater level of difficulty compared
to their linear equivalents, necessitating the utilisation of advanced analytical and numerical methods
[10, 11]. In recent years, there has been significant interest in the examination of nonlinear fractional
differential equations, with numerous academics dedicating their efforts to exploring their properties,
solutions, and applications [12, 13]. Various techniques are employed to solve these equations,
encompassing numerical methods, analytical methods such as fractional calculus, and perturbation
methods [14,15]. In brief, fractional nonlinear differential equations play a crucial role in the modelling
of intricate systems that demonstrate nonlinear dynamics. These entities possess a wide range of
applications across diverse disciplines and want advanced methodologies for their examination and
resolution [16-21].

The fractional Phi-four equation is a non-linear partial differential equation that characterises the
temporal and spatial evolution of a field variable. The equation under consideration can be seen as a
fractional extension of the widely recognised Phi-four equation, which holds significant importance in
the field of mathematical physics due to its relevance in the analysis of solitons and nonlinear waves.
The equation known as the fractional Phi-four equation is characterised by the inclusion of a fractional
derivative of the field variable with respect to time, a second-order derivative of the field variable with
respect to space, and a cubic nonlinear factor. The inclusion of the fractional derivative in the system
introduces a memory component, so enabling the manifestation of non-local characteristics and long-
range interactions [22].

The fractional Phi-four equation is very important in the study of mathematical physics because
of its capacity to demonstrate many dynamics and its wide applicability in many physics disciplines.
The equation demonstrates a number of dynamic phenomena that are dependent on the parameters and
starting circumstances, such as the formation of solitons, chaotic behaviour, and turbulence. In recent
years, there has been a significant amount of study done on the aforementioned equation, owing to
its relevance in a variety of areas such as condensed matter physics, statistical mechanics, nonlinear
dynamics, and fluid mechanics [23,24]. Researchers are presently investigating the equation and its
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many versions, employing fresh analytical and numerical methodologies to examine its behaviour
under various situations [25-28]. Furthermore, research into the fractional Phi-four equation has made
substantial contributions to the advancement of fractional calculus, a solid mathematical framework
used for the analysis of complex systems showing memory and non-local phenomena. Because of
its numerous applications, fractional calculus is widely used in a variety of scientific and engineering
areas, including physics, chemistry, biology, and finance [29]. Depending on the parameter values and
beginning conditions, the fractional Phi-four equation exhibits a variety of dynamic phenomena such
as soliton production, chaotic behaviour, and turbulence. Several analytical and numerical techniques,
such as the homotopy analysis method [30] and others [31, 32] have been developed to explore the
dynamics of the fractional Phi-four equation.

In the field of nonlinear differential equation solving, the Homotopy Perturbation Method (HPM)
and the Adomian Decomposition Method (ADM) are widely used numerical techniques. Liao
proposed the HPM (Homotopy Perturbation Method) as a mathematical technique in 1992 [33].
Adomian, on the other hand, developed the ADM (Adomian Decomposition Method) as an alternate
approach in 1988 [34]. The HPM (Homotopy Perturbation Method) includes creating a homotopy,
or continuous transformation, that connects a linear problem with a known solution to the nonlinear
problem under inquiry [35-38]. Particular advantages of High Performance Computing (HPC)
technology may be seen in scientific research. This method works well for handling nonlinear problems
with precision while avoiding the requirement for linearization. Utilising a homotopy parameter, the
Homotopy Perturbation Method (HPM) simplifies complex nonlinear problems into more manageable
linear ones, making it applicable in a variety of situations. It’s important to remember that researchers
can alter the convergence of solution series, which expands their practical applications. Because of its
versatility, HPM may be easily integrated with a variety of methods, which improves its accuracy and
effectiveness. The solution is obtained by working through a series of linear issues while progressively
raising the homotopy parameter from zero to one. Numerous nonlinear problems, such as Burgers’
equation [39], heat transport in porous media [40], and fractional differential equations [41], have been
solved using the homotropy perturbation method, or HPM.

Numerous nonlinear issues, such as the nonlinear Schrédinger equation, have been tackled with the
ADM approach [42]. A useful method for making nonlinear differential equations easier to solve using
the HPM and ADM processes is the Shehu Transform. Numerous nonlinear scenarios, including the
Duffing equation [43], the nonlinear Black-Scholes equation [44], and the Boussinesq equation [45],
have been solved using the Shehu Transform.

This work is summarised in the following. We start Section 2 by providing a definition and
description of the Shehu transform, which we employ in this study. The solution mechanism of the
Shehu transform decomposition method (STDM) is explained in Section 3. The solution approach for
the homotopy perturbation transform technique (HPTM) is explained in Section 4. For our current
study, the results of numerical simulations are shown and discussed in Section 5. Lastly, the results of
our investigation are presented in Section 6.
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2. Basic definitions
Definition 2.1. Fractional derivative of f € C", is given in the sense of Caputo as the following [45,46]:

dv(.9) a=neN

DSv(w, ¢) = a¢"
o 9) { s [, ¢ =9 (W, 9)d9, n-1<a<nneN

Definition 2.2. Shehu transform is defined as follows [45,46]:

S[O(@)] = fo =% 0(¢)dg.

Shehu transform will be transformed into Laplace transform by considering @ = 1,
Shehu transform will be transformed into Yang transformed by considering ¢ = 1, where S is
considered a Shehu Transform operator.

Definition 2.3. The Inverse Shehu transform operator is defined as [45,46]
Let S[Q(¢)] = J(p, @) and S‘I[J(@,W)] o),

then Q(¢) = S ' [J(p, @)] = lim, 0 5= fﬂw‘f 2 J(p, w)dg,
where ¢ and w are considered as Shehu transform variables and S is a real constant.

Lemma 2.4. Linearity property of Shehu transform [45,46]:

IfS [01(p)] = Ji(p, @) and S [Qr(¢)] = Jo(p, @),
Then S [a101(¢) + 202(¢)] = 1S [Q1(P)] + @S [O2(w, 9)],

S [a101(9) + 2 0x(P)] = a1 Ji(p, @) + @28 Jr(p, @),
where | and a, are the arbitrary constants.

Lemma 2.5. Linearity property of inverse Shehu transform [45,46]:
If S~ [Ji(p, @)1 = Q1(¢) and S~ [Na(p, @)] = Q(¢h), then,

S Haydi(p, @) + arda(p, @)] = 1S ' [i(p, @)] + S ! [Na(p, @)],
S~ aJi(p, @) + ardao(p, @) = a1 01(d) + a2 0:(9).

Definition 2.6. Shehu transform of Caputo fractional derivative (C.E.D) [45,46]
-1

S1Qm.¢)] - Z(g)w_l Q" (m,0), 6=1,2,3--

r=

@

S |Dsom.9)| =

Definition 2.7. Mittag-LefHler function considered for two parameters [45,46]

sl k

n
E,u,w(n) = kzz(; m,

where E| ;(n) = exp(n) and E; (nz) = cos(n).

AIMS Mathematics Volume 8, Issue 11, 27175-27199.



27179

3. Solution procedure of Shehu transform decomposition method (STDM)

In this section, we consider the nonlinear FDEs to demonstrate the basic idea of the projected
algorithm as given

Dyv(w,¢) = Pi(w,¢) + Qi(w, ¢), 1 <a <2, (3.1
and
v(w,0) = &(w), ¢v(w ,0) = {(w).
where Dy = (;, signifies fractional Caputo operator, £, Q; are respectively linear and non-linear
operators.
Now we apply ST to obtain
S[Dyv(w, $)] = S[P1(w, §) + Qi(w, P)],
@ S\ 3.2)
TSt el - 3 (2] @0 = SIPiw.9) + Qw9
(o) —\w
Now by employing inverse ST, I get
6-1 a-r—1
@)= (2] @0+ 5 IESIPI@.0) + Q.9 (3.3)
r=0 w K)
Now the solution is as "
(W, ) = ) Unl(w, 9). (3.4)
m=0
The nonlinear terms Q; is discarded as
Q(w, ) = Z P
(3.5)

Sfifolgea)]

Using Eqgs (3.4) and (3.5) into (3.3), [ have .

0 6-1 a—r—
> @)= (2) S (@0)+ 5 { 1(Zwm)+25ﬂ }] (3.6)
m=0 r=0 m=0

Comparing both sides allows for a straightforward approximation to be obtained.
61

wiw.d)= 3 (2] vwo

r=0

vi(w,¢) =S~ [%S+{Pl(wo) + Ao},

The general recursive equation can be derived as follows:

Uni1(@,¢) =S~ [Z—:S+{P1(wm) + ﬂm}] :
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4. Solution procedure of homotopy perturbation transform method (HPTM)

The basic idea of the projected algorithm is demonstrated by considering the nonlinear FDE:s in this
section.

Div(w, ¢) = Pilwlv(w, ¢) + Q wlv(w, ), 1 <a <2, 4.1)

and

v(w,0) = &(w), ¢v(w ,0) = {(w).

The given expression involves the fractional Caputo operator Dj, where « represents the order
of differentiation, and ¢ represents the variable with respect to which differentiation is performed.
Additionally, #;[w] and @, [w] are the linear and nonlinear operators, respectively.

Using the ST, we obtain

SIDju(, §)] = S [P [wlvw, ) + Qwlvw, Pl (4.2)
S{)Ct -1 %) a-r-1
st al- (2] @0 = SIPwluw.9) + Qilolw, o)l (4.3)
(o) —\w

By applying the inverse of ST, we get:

-1 a-r—1 et
W@ =) (2] @0+ ISPl + Qo dll. @)
r=0 @ 9

By HPM, we get

(o)

Uw,9) = ) vulw, ). (4.5)

k=0
The nonlinear terms are neglected, with € serving as the homotopy parameter ranging from O to 1.

(9

Qlwlv(,¢) = ) éH,w), (4.6)

k=0

with H,(v) representing the He’s polynomials

H,(vg, vy, ...,u,) = fn +1) E[QI(ZGUI)] 4.7)

k=0 e=0

k _
with D¢ = Z=.

Using Eqgs (4.5) and (4.7) in Eq (4.4), we obtain

-1

s 51(2)

r=0

a-r-1

V' (w,0) + € X [S-l [Z—:S{Pl D v, ) + Z ¢ H ()} D (4.8)

k=0
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When we compare the € coeflicients, we arrive at the following conclusion:

€ : vo(w, @) = v(0) + v (0),

e tui(w,¢) =S [%S(Pl[w]vo(w, ¢) + Ho(v))],

€ :n(w,g)=S" [%S(Pl[w]vl(w, ¢) + HI(U))] :
4.9)

e uw, P) = s [Z—ZS (Pilwlvi-1(w, @) + Hk_l(v))] , k>0,keN.

Thus, the analytical solution is

M
v(w.$) = lim > vi(w.9).
k=1

Theorem 4.1. Convergence analysis. Let X be a Banach space and let v,,(w, ) and v(u,y) be in
X. Suppose ©® € (0, 1), then the series solution {v,,(w,®)},._, which is defined from Y, _, Un(w, P)
converges to the solution of Eq. (7) whenever v,,(w, $) < Ou,,_(w, p)¥Vm > N, that is for any given
e > 0 there exists a positive number N such that ||Uy,(w, )| < e¥Vm,n > N. Besides, the absolute
erroris [46]

m+1

1-6

llvo(w, ) -

v(©,$) = ) (@, ¢>H <
n=0

5. Numerical solutions

The phi-four equation, a nonlinear partial differential equation, finds practical applications across
physics and mathematics. It is crucial in describing phenomena like phase transitions in particle physics
and condensed matter, guiding insights into superfluidity and superconductivity. In fields such as
nonlinear optics, it models optical pulse propagation through solitons in optical fibers. Additionally, the
equation’s relevance extends to fluid dynamics, cosmology, and mathematical modeling, showcasing
its versatility in explaining phenomena ranging from wave behavior to early universe processes, making
it an invaluable tool in understanding a wide array of complex systems.

5.1. Example 1

Suppose that we consider the Phi-four equation in fractional form [22]:

0“v(w, 0’
”a(;" D _ (@ 0) — (0. 9) — 2 (@.9), 1 <a <2 (5.1)

with

| 1 0 o X3 ) 1
O e O e R e R R e
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Implementation of the HPTM
On taking the ST, we have

aw 82
S (a(;) = [ 3 (W(w, ) — 1w, ¢) = x2v' (W, ¢)] (5.2)

0—

a-r— o?
S, ¢)] - Z(ﬁ) v(w,0)=S[w(v(w,aﬁ))—le(w,¢)—)(zv3(w,¢)]- (5.3)

r=0

Now by employing inverse ST, we get

-1 a-r-1
v, =571 (2] w0+ [ { [ U(w,¢))—X1U(w,¢)—X2U3(w,¢)]}],
r=0

2 1
v(w, P) = (\ /% tanh()(l 1 /2002 ¢)(1p\f sech2 )(1 ,/ e 1)a)))+
0

g 2
5! [Z— {s [ﬁ(v«», )~ x1v(w.8) ~ x2 w. ¢>]}]

5.4

By HPM, we attain

N - / / / 1
kzz(; Ev(w, ) = ( le tanh( 2(p2 - ox1p ) sech2 m ))

G(S“[Z—:S[(Zekvk(w,@) _Xl(zékvk(wa¢))_X2( eka(v))+ )
ww k=0

k=0 k=0
(5.5)
The polynomial Hy(v) is used to discard the nonlinear terms.
> EHw) =, (5.6)
k=0
Certain terms are computed as
Hy(v) = v,

H\(v) = 3vév1.
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Comparing the € coefficients, we obtain

/ f / 1 / 1
eozvo(w,qb):( Xitanh()(l 207 = - dx1p 7 (pz—l) sech2 )(1 =1 ))
2 2 g X1W | = 2
1. _ Xip ¢ 6 “P Xi Xi
e S S T @ D) SeCh( ( A i e A
, 2
2\/_)(1p¢ _a cosh(\/_)(lgb ! + \/_leqb cosh(2 ‘/§X1¢ 2)
X2 = Px2 V TP V){z—p)(z \j—1+p
_X% . 1 2 X1
ZﬂX—zsmh(\/E)(l 2(_1—_|_p2)w)+6¢( Xz) zsmh(\/_)(],fz( T+ 00 w)
f Xi 1
+ _)Z smh(2\/_/\(1 —( 1+p2)w))

Therefore, the analytical solution is

v(w, ¢) = vy(w, ¢) + vy (w, ¢) 4.

A O ooy
v(w, P) = o anh |y, 2(,0 —x1p Tt —1) 1)0)

X%pZQba X1 —1+p Xl
81+ @+ 1) sech® ( ( 3\/_X1p¢\f +2\/§ 1p¢ ,0)(2

2
2 V2x 10 it COSh V2x16 + \/_)(1P¢ ————cosh (2 V2x16
X2~ P2 —1 +p - X2 1+
/ X2 X1 . /

2 Esmh(\/_)(] 2(_1 ) ( Xz) Qsmh( 3C 1+,0 w)

Xi 1
+ \f—)z smh(2 V21 mw))+

Implementation of the STDM
On taking the ST, we have

s 12U _ 62 o, ) = it ) — o0 (@, 6) 57)
a(pa - awz Uw’¢ X1V w7¢ X2U (U,¢ s ( .
8{)“ o-1 %) a-r-1 o2

S luw, )1 - Z(; (g) V' (@,0) = S [@w(w, ) - x1v(w, ) — 20 (. ¢>] .58
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Now by employing inverse ST, we get

w(l

v(w,¢) =S~ [ZZ (g)w_1 V (w,0)] + S~ [@“

-Xi 1 X1 2 1
v(w, p) = Etanh X1 mw - ox1p msech X1 mw

82
{S [W(U(O), ¢)) _le(w’ ¢) _XZUS(O')’ ¢)]}] ’
w

s s |2 3
+ E @(U(QL ¢)) — X1 U(CL), ¢) — X2V (CL), ¢) .
5.9
Now the solution is
Uw,9) = ) vn(w, 9). (5.10)

m=0

The Adomian polynomials are discarded and the nonlinear term v° is expressed as Yoy A,

[

a 82 i
Z Un(w, 9) = v(w,0) + S-1 % {S [w(v(a), ?)) — x1v(w, ¢) — Z ﬂm]}
m=0 m=0

iv (w, p) = _—X%tanh ;a} - ¢ _—X%sech2 ;w
LT\ N2 DY) T PPN e - T T\ 262 - D)

b

wa

0? =
+5°! - {S [@w(w, ) — x1v(w, ¢) — mZO A

(5.11)

Some terms are calculated as

3
ﬂo =V,

2
A = 3yyu.

We can easily obtain the approximation by comparing both sides

—x3 1 X7 2 1
vo(w, ¢) = X—ztanh X1 mw - dx1p m sech X1 2(p2 ~ 1)(.1) .
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Onm=0

1
_ Xip’e" o —1+p
vi(w,P) = 8 1+p2)r(a+ D sech ( NG 3‘/_)(1p¢ +2‘/_X1P¢ = 1 sz
2\/_)(1p¢\f cosh \/_)(lqﬁ )+ \/_leqﬁ\/ cosh(2\/_)(1¢‘f T+p )
|24 / I o _xt /
2 - s1nh(\/§)(1 21+ Y )+6¢( Xz) Xzsmh( 3C 1+p
| X [
+ —/Y—; sinh (2 \/§X1 m(u))

The series form STDM solution are as follows:

(o)

v(w,§) = va«u $) = vo(, §) + vi(, §) +-

- 1 1
v(w, @) = (\ f% tanh( D le\f m_— sech2 Xl 7o 1)w))+
Xi0°9" 6 (V1 —1+p2) X7
ST+ @t 1) sech ( N -3 \/_X1p¢ + 2 \/_)(lp¢ —2 0 +
/ X 1 X3 1
2\/_X1p¢ cosh(\/_)(lqﬁ — 2) + \/_)(lpgb —cosh(2 \/E)aqﬁ — 2)
- p’x2 lL+p X2 = p*x2 lL+p
f_)(% . ’ 1 2 X1 : . ’ 1
2 X_z sinh ( \/5)(1 2(_1—+p2)(1)) + 6¢ ( - )Z) X2 sinh ( \/E)(l 2(_1—+p2)(x))
BS 1
+ _)Z sinh (2 \/_)(1 Clep) ))

If we take @ = 2, we get the exact solution as
U, d) = A /_—X‘ tanh( _ ! - p¢)) (5.12)
’ X2 2002 - 1) ' '

Assuming the fractional Phi-four equation with y; = 1 and y, = —1 [22]

5.2. Example 2

@ 2
: 13(; ?- ai,z W(w.9) + v@.9) ~ v (w.¢), 1<as<2, (5.13)
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with

’ 1 0 / 1
U((U, 0) = tanh( mw), %v(w, 0) = tanh( ma))

Implementation of the HPTM
On taking the ST, we have

oY 82
S ( U) =38 [W(v(w, 9)) + v(w, ¢) — v (w, ¢)] ;
W

op®
SO—QS[U(CU ) HZ_E (g)“"‘l V(w,0)=S5 [6_2(U(w ) + v(w, ¢) - v’ (w ¢)]
w® ’ i\ w T 0w ' e

Now by employing inverse ST, we get

a

6-1 a-r-1 &2
.9 =5, (2)  vor+s [Z— {S [@w(w, D) + v, 6) - v (w, ¢)]}] ,

r=0

0] 2
u(w, $) = (1 + ¢) tanh ( \ /ﬁw) +5! [% {S [%(v(w, ) + v(w, ¢) — V3 (w, ¢)m .

By HPM, we obtain

S / 1
kzz(; Evw, d) = (1 + ¢)( tanh( mw))+

(e[S (Seos]

k=0 ww k=0 k

(o8]

eka(v)) +
=0

)

The polynomial H;(v) is used to eliminate the nonlinear terms.
Z H (v) = .
k=0

Certain terms are computed as

Ho(v) = v,
H\(v) = 3vév1.

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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By comparing the € coefficients, we can derive the following.

€ : vp(w, d) = (1 + @) tanh(, /ﬁw)

. (1 + ¢) sech? ( mw)
elzul(w,¢):—r(f+ l)tanh(,/z(likz)w)(—l—qs— —— )+(1+¢)3
e
€ i valw.¢) = r(zfi I tanh( 201 1—K2)“’)(1 tor —lli(iz SeChz( \2a 1—K2)“’)

201 + ¢>(K2((_11++¢K>22); B2 ( \/% w)_

(1+ ) K31 + ¢)* — ¢p(2 + ¢))( — 2+ cosh ( V25 ))w

(-1 +K2)?

; ; 2sech2( 2(1£K2)w)
4 / 3 2 f
sech ( m(u) —(1+ ¢) tanh ( 21— Kz)w) + 222
2
(1+¢) sech( ﬁa))
i + (1 + ¢)* tanh? L, ) + 3(1 + ¢)* tanh? ;w
—1 + &2 2(1 — k2) 2(1 = k3)
(1 + ¢) sech? ( 2(1]—K2)“’) .
3 2 /
(-1 —-¢ - T + (1 + ¢)” tanh ( 2 _K2)w)))

(-1-¢-

AIMS Mathematics Volume 8, Issue 11, 27175-27199.
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Hence, the analytical solution is

U(CL), ¢) = U()((L), ¢) + U]((L), ¢) + UZ((J-)7 ¢) +-e-

_ |1 __ ¢ / !
v(w,¢)—(1+¢)tanh( 2(1_K2)w) F(a+1)tanh( 2(1_K2)w)

(1+¢) sechz( mw) .
3 2
(—1—(;5— o )+(1+¢) tanh (’/Z(I—Kz)w)
A 1 1+¢ 2 1
TR+ 1) tanh( \2(1 - ,<2)“’)(1 tOr e seh ( \2(1 - KZ)“’)
2(1 + p)(*(1 + ¢)* = $(2 + ¢)) 4 1
(-1 +) X sech (\/ 21 —K2)‘”)_

(1 + )1 + ¢)*> — dp(2 + ¢))( -2+ cosh(\ﬁ l_le))w

(—1 +2)?

1 X 2sech2( mw)
sech“(, /2(1 — Kz)w) ~(1+¢)* tanhz(, /2(1 — Kz)w) + o
(1+¢) sech( mw)z | :
(-1-¢ - = +(1+¢>)3tanh2(1/2(1_K2)a))+3(1+¢)2tanh2(,/z(1_l{2)w)
(1+¢) sechz( mw) 1
(-1-¢ - T +(1 +¢>)3tanh2(,f2(1 —°

)
Implementation of the STDM
On taking the ST, we attain
o'v| i 3
S {@(ﬁa} =S [@(U((v, $) + v(w, ) — v(w, ¢)] , (5.19)
SOG 6-1 o a-r-1 32 3
ST, )] - ZO (£) " v@o=s [ww(w, ) +v(.9) ~ ', ¢>] . (520
Now by employing inverse ST, we get
-1 - o 2
v ) =S (L) vw.or+s™ [?— {S [%(v(w, ) + 1. 8) - (o, ¢)]}] ,

(5.21)
,ZD.(Y

2
v(w,d) =+ ¢) tanh( ﬁw) +5°! [E {S [%(v(w, ?) + v(w, p) — v3(a), ¢)]}] .
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Now the solution is

(o0

Uw,d) = Y vn(w, $). (5.22)

m=0
The Adomian polynomials are discarded and the nonlinear term v
of A, from m = 0 to co.

> v, 6) = v(,0) + 5! [Z— {S [@w(w, o) —x 1w, ¢) = Y ﬂmm ,

m=0 m=0

- 1
mZ:O U@, 8) = (1 + ¢) tanh(, / mw) (5.23)

o 62 ad
+57! [Z {S [ww(w, o) —x1w@.¢) - Y ﬂmm .
m=0

Some terms are calculated as _.3
ﬂo =V,

3 is expressed as the summation

A = 3v§v1.

The approximation can be readily acquired by comparing each side of the equation.

vo(w, ¢) =1+ ¢) tanh( m(u)

Onm=0

- . (1+¢) sechz( mw) 3
U](w,¢)=—mtanh( mﬂ))(—l—ﬂj— 21 )+(1+¢)
2 { 1
tanh ( mw)

Onm=1

B ¢2(1/ 1 1+ ¢ 2 1
v (w, P) = e+ D) tanh(,fz(1 _Kz)“’)(l + ¢+ 1T e sech (,/2(] _Kz)a))
2(1 + 91+ 9)* = ¢(2 + ¢)) 4 1
1+ 2P x sech ( 21— KZ)‘”)_

(1+ @)1+ ¢)? — p(2 + ¢))( —2+ cosh( V2 /s ))w

(-1 +x2)?

1 1 2SCCh2( ﬁw)
4 _ 3 2 /
sech ( 20— Kz)a)) (1 + ¢)” tanh ( 2= K2)w) + T o
2
(1+¢) sech( mw)
(-1-¢-— + (1 + ¢)* tanh? L ) + 3(1 + ¢)* tanh? _t
-1 +«2 2(1 — k2) 2(1 — k2)
(1+¢) sechz( ma)) .
1—¢— 3 2 f
(-1-9¢ i + (1 + ¢)’ tanh ( - Kz)a)))).
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The series form STDM solution are as follows:

(9]

v(w, P) = Z Un(w, @) = vo(w, @) + vi(w, P) + va(w,P) + - - .

m=0

_ / 1 __ ¢ / !
v(w, p) = (1 +¢) tanh( 1= Kz)w) Fat D tanh( - Kz)w)
1

(1 +¢)sech2(,/2(l L0 )
—1-0- 3 2 v
( 1-¢ o )+(1+¢) tanh (‘/2(1—/@)0))
> / 1 1+¢ 5 / 1
_ —F(Za D tanh( —2(1 — K2)cu)(1 + ¢+ 1.2 sech ( —2(1 — Kz)w)
2(1 + )1 + ¢)* = p(2 + ¢)) 4 / 1
e X sech ( —2(1 — Kz)w)—

(1 + )(K*(1 + ¢)* — (2 + ¢))( -2+ cosh(\/i1 /ﬁ))w

(=1 + k?)?

1 " ZSech2( mw)
SeCh4( 2 - )_(1 +¢)3tanh2( \2a —Kz)w)+ 2- 20
(1+¢) sech( mw)z 1 1
(-1-¢- — +(1+9) tanhZ(, /m‘”)) +3(1+ 97 tanhz( mw)
(1 + ¢) sech? ( 30 Kz) ) 1
(-1 —¢— s +(1 +¢)3tanh2(,/mw))).

If we take @ = 2, we get the exact solution as

v(w, @) = tanh(‘ /2(1 ! )(w Kgb)) (5.24)

In Example 1 of the Phi-four equation, Figure 1 compares the precise solution to the answer
determined by the supplied methodologies for the integer order situation with a value of @ = 2 at
x1 = 1 and y; = —1. Figure 1 depicts this comparison with graphs. The narrative structure allows for
a visual assessment of the precision and usefulness of the supplied approaches in approximating the
precise solution for this specific situation. The following study focuses on Figure 2, which depicts the
solution produced from the adoption of the suggested approaches for fractional orders. The solutions

6. Results and discussion
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for fractional orders of @« = 1.8 and @ = 1.5 at y; = 1 and y; = —1 are displayed in Example 1’s
pictures. This comparative research sheds light on how various fractional orders affect the dynamics of
the solutions. This allows for the identification of solution trends or variations as the fractional order is
changed. A more thorough analysis of the proposed techniques is presented in Figure 3, which focuses
on a fractional order of @ = 1.25 in Example 1 at y; = 1 and y; = —1. It is possible to fully assess
the accuracy and calibre of the solutions offered by the different approaches in this particular case by
concentrating on a single fractional order. Table 1 displays the absolute error values of the solutions
obtained using the suggested techniques in Example 1 for both the integer order @ = 2 and the multiple
fractional orders @ = 1.25, @ = 1.5, and @ = 1.8. The discrepancy between the precise answer
and the solutions obtained from the suggested methods is used to gauge how precise the solutions of
the supplied strategies are. For every fractional order, the performance and accuracy of the supplied
options may be evaluated using the absolute error numbers in Example 1.

Figure 1. The exact solution and the solution obtained using the proposed methods for the
integer order @ = 2 at y; = 1 and y; = —1 of Example 1.

Figure 2. The solutions obtained using the proposed methods for the fractional orders a =
1.8 and 1.5 at y; = 1 and y; = —1 of Example 1.
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Figure 3. The solution obtained using the proposed methods for the fractional order @ = 1.25
at y; = 1 and y; = —1 of Example 1.

Table 1. The absolute error values of the solutions obtained using the proposed methods for

different fractional order @ in Example 1.

) w a=1.25 a=15 a=138 a=2 a =2 g-HATM [22]
0.20 1 22345x107 1.7601x 107  1.2023x 1077 7.8224 x 107 7.8224 x 107°
2 27821x107% 33233x107°  2.3367x107° 1.5192x107® 1.5192x107®
3 1.0279x 1072 4.78018 x 107 3.3360 x 107% 2.1684 x 108  2.1684 x 1078
4 17946 x 1072 6.07350 x 107> 4.1491 x 107 2.6965 x 10~% 2.6965 x 1078
5 1.2796 x 1072 6.84409 x 107 4.7420x 107% 3.0816 x 1078 3.0816 x 1078
050 1 1.8597x 107 2.4849x 10> 2.0189 x 107° 1.5626 x 107® 1.5626 x 107*
2 27649 x 1072 472858 x 107> 3.9274x 10°® 3.0371 x 107* 3.0371 x 107®
3 27946x 1072 6.8238x 107 5.6089 x 107% 4.3360 x 108 4.3360 x 1078
4 12379x 1072 85130x 10> 6.9773x 10™° 53928 x 10~® 5.3928 x 1078
5 2.8970x 1072 9.7255x 107>  7.9755x107°% 6.1634x 1078 6.1634 x 1078
0.80 1 1.2790x 1072 3.0393x 10> 27327 x 10™® 2.3412x 107® 2.3412x107®
2 1.7462x 1072 58129x 107  53202x107® 4.5535x 107® 4.5535x 107®
3 22561 %107 8.3556x 107  7.6004 x 107%  6.5026 x 10 6.5026 x 1078
4 12473x 1072 1.0426x 107  9.4564 x 1077 8.0887 x 10~® 8.0887 x 1078
5 1.2479x 1072 1.1037x10™*  1.0810x 1078 9.2455x 108 9.2455x 1078
1.0 1 3.9863x107° 3.5056x 107  3.3865x 107 3.1180x 10® 3.1180 x 1078
2 62736 x107° 6.7260x 107> 6.4868 x 1077  6.0684 x 107®  6.0684 x 107®
3 9.7456x 107 9.6633x 107  9.3174x 1077 8.6683 x 108 8.6683 x 1078
4 15496 x 1072 1.1255x 107  1.0823 x 10™° 1.0784 x 1077 1.0784 x 1077
5 1.7123x 1072 1.2821 x10™*  1.2314x 107 1.2327x 1077 1.2327 x 1077

Figure 4 displays the graphs of the precise solution and the solution found using the proposed

approaches for the integer order @ = 2 at y; = 1 and y; = —1 in Example 2 of the Phi-four equation.
The map facilitates a visual evaluation of the precision and efficacy of the recommended methodologies
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in approximating the precise solution for this particular case. In Figure 5, the focus is on the solutions
produced using the provided approaches for fractional orders of @ = 1.8 and @ = 1.5 at y; = 1 and
X1 = —1 in Example 2. This comparative analysis offers valuable insights into the impact of varying
fractional orders on the dynamics of the solutions. This enables the observation of solution variations
or trends in response to changes in the fractional order.

|
| Exact

Figure 4. The exact solution and the solution obtained using the proposed methods for the
integer order @ = 2 at y; = 1 and y; = —1 of Example 2.

A . pyau

Figure 5. The solutions obtained using the proposed methods for the fractional orders a =
1.8 and 1.5 at y; = 1 and y; = —1 of Example 2.

In Example 2, Figure 6 provides a more detailed analysis of the proposed approaches, specifically
focusing on a specific fractional order of @ = 1.25 at y; = 1 and y; = —1. By directing attention
towards a certain fractional order, one may thoroughly examine the precision and attributes of the
solutions generated by the suggested methodologies in this specific scenario. The utilisation of
numerous graphs depicting different fractional orders enables the examination and juxtaposition of
solution behaviour and accuracy in response to alterations in the fractional order.
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Figure 6. The solution obtained using the proposed methods for the fractional order @ = 1.25
—1 of Example 2.

at y; = 1 and y;

The measurement of the accuracy of the solutions produced through the proposed approaches is
achieved by assessing the disparity between the precise solution and the solutions derived from the
proposed methods. Table 2 displays the absolute error values of the solutions derived using the given
approaches for several fractional orders, namely @ = 1.25, @ = 1.5, @ = 1.8, and the integer order
a = 2, in Example 2. The performance and precision of the offered approaches for each fractional
order discussed in Example 2 can be evaluated by analysing the absolute error numbers.

Table 2. The absolute error of the proposed methods of different fractional order of

Example 2.
¢ w a =125 a=15 a=138 a=2

020 1 25462x1072 1.7216x10™* 6.7701 x 10°® 7.0832 x 107"*
2 3.5120x 1072 27439 x 10™*  1.2595x 107*  4.4031 x 10713

3 4.1456x 1072 3.0123x 10 1.7018 x 107* 1.1304 x 10713

4 58721 x1072 45789 x10™* 19756 x 10™® 1.6642 x 1071

5 7.2546x 1072 4.1587x107* 2.0842x 1077 3.3639x 107!3

050 1 1.1596x 1072 1.7290x 10~* 7.5341 x 107* 1.1326 x 107!
2 14218x 1072 25197 x10™* 1.3864x 107% 7.0326 x 1072

3 42586 x 1072 3.8712x10™* 1.8653x 107% 1.7976 x 1072

4 55200x 1072 4.6523x107* 2.1600x 10°® 2.6707 x 107'2

5 3.7824x 1072 4.8745x10™* 2.2749x 1077 5.3857 x 1072

0.80 1 1.1485x1072 1.3578x10™* 6.6788x 107* 5.7308 x 107!!
2 3.0148x 1072 22794 x10™* 1.2112x107* 3.5546 x 107!

3 7.1458 x 1072 27228 x 10™*  1.6203 x 107®  9.0450 x 1072

4 27892x 1072 3.1272x10™*  1.8701 x 1077 1.3560 x 10!

5 2.1755x 1072 3.8742x10™* 1.9650x 1077 2.7284 x 107!

1 1 7.0178x 1072 7.2330x 107> 4.8542x 107 1.8101 x 107'°
2 27824 %1072 1.28452x107* 8.5846x 1077 1.1217 x 10710

3 7.0796x 1072 1.5424x10™* 1.1366 x 107 2.8412x 107!

4 27021 x1072 1.8168x10™* 1.3039 x 107 4.2984 x 10!

5 2.1679x1072 1.8784x10™* 1.3644x 1077 8.6290 x 107!
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7. Conclusions

In conclusion, my study focused on the nonlinear fractional Phi-four equation, employing the
homotopy perturbation and Adomian decomposition methods with the Shehu transform. These
analytical techniques are potent tools, particularly for solving fractional differential equations.
Comparing the solutions obtained from both methods, we observed a high level of agreement,
validating their effectiveness as illustrated in the previous figures and tables. The homotopy
Perturbation and Adomian decomposition methods have consistently proven their efficiency and
reliability in solving various nonlinear differential equations across disciplines like physics,
engineering, and finance. The rising popularity of fractional calculus in modeling complex physical
phenomena underscores the significance of the nonlinear fractional Phi-four equation we examined.
The solutions obtained by both methods enhance our understanding and predictive capabilities for
such systems. In summary, the application of the homotopy perturbation method and the Adomian
decomposition method, with the Shehu transform, offers an efficient and accurate approach to solving
the Nonlinear fractional Phi-four equation. Furthermore, these methods can be extended to address
other nonlinear fractional differential equations, contributing significantly to the advancement of
mathematical modeling in science and engineering.
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