Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method

  • Received: 23 December 2021 Revised: 26 March 2022 Accepted: 05 April 2022 Published: 10 May 2022
  • MSC : 34K28, 47Gxx, 45Dxx

  • In this paper, an efficient technique called Optimal Homotopy Asymptotic Method has been extended for the first time to the solution of the system of fuzzy integro-differential equations of fractional order. This approach however, does not depend upon any small/large parameters in comparison to other perturbation method. This method provides a convenient way to control the convergence of approximation series and allows adjustment of convergence regions where necessary. The series solution has been developed and the recurrence relations are given explicitly. The fuzzy fractional derivatives are defined in Caputo sense. It is followed by suggesting a new result from Optimal Homotopy Asymptotic Method for Caputo fuzzy fractional derivative. We then construct a detailed procedure on finding the solutions of system of fuzzy integro-differential equations of fractional order and finally, we demonstrate a numerical example. The validity and efficiency of the proposed technique are demonstrated via these numerical examples which depend upon the parametric form of the fuzzy number. The optimum values of convergence control parameters are calculated using the well-known method of least squares, obtained results are compared with fractional residual power series method. It is observed from the results that the suggested method is accurate, straightforward and convenient for solving system of fuzzy Volterra integrodifferential equations of fractional order.

    Citation: Sumbal Ahsan, Rashid Nawaz, Muhammad Akbar, Saleem Abdullah, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar. Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method[J]. AIMS Mathematics, 2022, 7(7): 13169-13191. doi: 10.3934/math.2022726

    Related Papers:

    [1] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [2] Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien . Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764
    [3] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [4] Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925
    [5] Khadijeh Sadri, David Amilo, Kamyar Hosseini, Evren Hinçal, Aly R. Seadawy . A tau-Gegenbauer spectral approach for systems of fractional integro-differential equations with the error analysis. AIMS Mathematics, 2024, 9(2): 3850-3880. doi: 10.3934/math.2024190
    [6] Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151
    [7] Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog . A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322
    [8] Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On $ \psi $-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005
    [9] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [10] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
  • In this paper, an efficient technique called Optimal Homotopy Asymptotic Method has been extended for the first time to the solution of the system of fuzzy integro-differential equations of fractional order. This approach however, does not depend upon any small/large parameters in comparison to other perturbation method. This method provides a convenient way to control the convergence of approximation series and allows adjustment of convergence regions where necessary. The series solution has been developed and the recurrence relations are given explicitly. The fuzzy fractional derivatives are defined in Caputo sense. It is followed by suggesting a new result from Optimal Homotopy Asymptotic Method for Caputo fuzzy fractional derivative. We then construct a detailed procedure on finding the solutions of system of fuzzy integro-differential equations of fractional order and finally, we demonstrate a numerical example. The validity and efficiency of the proposed technique are demonstrated via these numerical examples which depend upon the parametric form of the fuzzy number. The optimum values of convergence control parameters are calculated using the well-known method of least squares, obtained results are compared with fractional residual power series method. It is observed from the results that the suggested method is accurate, straightforward and convenient for solving system of fuzzy Volterra integrodifferential equations of fractional order.



    Fractional calculus has been concerned with integration and differentiation of fractional (non-integer) order of the function. Riemann and Liouville defined the concept of fractional order intgro-differential equations [1]. Fractional calculus has developed an extensive attraction in current years in applied mathematics such as physics, medical, biology and engineering [2,3,4,5,6,7,8]. Whenever dealing with the fractional integro-differential equation many authors consider the terms Caputo fractional derivative, Riemann-Liouville and Grunwald-Letnikvo [9,10,11,12,13]. The subject fractional calculus has many applications in widespread and diverse field of science and engineering such as fractional dynamics in the trajectory control of redundant manipulators, viscoelasticity, electrochemistry, fluid mechanics, optics and signals processing etc.

    Fractional integro-differential equations having some uncertainties in the form of boundary conditions, initial conditions and so on [14,15,16]. To resolve these type of uncertainties mathematicians introduced some concepts fuzzy set theory is one of them.

    Zadeh introduced the concept of fuzzy set theory [17,18,19,20]. Later on Prade and Dubois [21,22], Nahmias [23], Tanaka and Mizumoto [24]. All of them experienced that the fuzzy number as a location of r-cut 0r1.

    Many authors investigated some numerical techniques related to these problem which include the existence of the solution for discontinuous [25], reproducing kernel algorithm [26], integro-differential under generalized Caputo differentiability [27], A domain decomposition method [28], fractional differential transform method [29], Jacobi polynomial operational matrix [30], global solutions for nonlinear fuzzy equations [31], radioactivity decay model [32], Caputo-Katugampola fractional derivative approach [33], two-dimensional legendre wavelet method [34], fuzzy Laplace transform [35], fuzzy sumudu transform [36]. Further we can see [37,38,39,40]

    Optimal Homotopy Asymptotic Method (OHAM) is one of the powerful techniques introduced by Marinca at al. [41,42,43] for approximate solution of differential equations. OHAM attracted an enormous importance in solving various problems in different field of science. Iqbal et al. applied this technique to Klein-Gordon equations and singular Lane-Emden type equation [44]. Sheikholeslami et al. used the proposed method for investigation of the laminar viscous flow and magneto hydrodynamic flow in a permeable channel [45]. Hashmi et al. obtained the solution of nonlinear Fredholm integral equations using OHAM [46]. Nawaz at al. applied the proposed method for solution of fractional order integro-differential equations [47], fractional order partial differential equations [48] and three-dimensional integral equations [49].

    Aim of our study is to extend OHAM for solution of system of fuzzy Volterra integro differential equation of fractional order of the following form

    Dαxu(x)=h(x)+xak(x,t)u(t)dt,0α1,x[0,1], (1.1)

    with the given initial condition

    uk(0),u0k(x),k=1,2,3,....,η1,η1<α<η,ηN,

    Where Dαx represents the fuzzy fractional derivative in Caputo sense for fractional order of α with respect to x, h:[a,b]RF is fuzzy valued function, k(x,t) is arbitrary kernel u0(x)RF is an unknown solution. RF represent set of all fuzzy valued function on real line.

    The remaining paper is structured as follows: A brief overview on some elementary concept, notations and definitions of fuzzy calculus and fuzzy fractional calculus are discussed in section 2. Analysis of the technique is presented in section 3. Proposed method is applied to solve fuzzy fractional order Volterra integro-differential equations in section 4. Result and discussion of the paper is given in section 5 and section 6 is the conclusion of the paper.

    In literature there exist various definitions of fuzzy calculus and fuzzy fractional calculus [50]. Some elementary concept, notations and definitions of fuzzy calculus and fuzzy fractional calculus related to this study are provided in this section.

    Definition 2.1. The Riemann-Liouville fractional integral operator Iαx of order α is [50]:

    Iαxu(x)={1Γ(α)x0(xt)α1u(t)dt=0,α>0,u(x),α=0. (2.1)

    Definition 2.2. Caputo partial fractional Derivative operator Dαx of order α with respect to x is defined as follow [50]:

    Dαxu(x)={1Γ(ηα)x0(xt)ηα1u(n)(t)dt=0,η1<αη,dηu(x)dxη,α=ηN. (2.2)

    which clearly shows that

    DαxIαxu(x)=u(x) (2.3)

    Definition 2.3. A fuzzy number σ is a mapping σ:R[0,1], satisfy the following property:

    a. σ is normal that is, x0R with u(x0)=1 [51,52].

    b. σ is a convex fuzzy set that is, u(λx+(1λ)y)min{u(x),u(y)} for all x,yR, λ[0,1].

    c. σ is upper semi-continuous in R.

    d. ¯{xR:u(x)>0} is compact.

    Definition 2.4. Parametric form of fuzzy number σ represented by an order pair (σ_,ˉσ) of the function (σ_(r),ˉσ(r)), satisfies the following conditions [52,53]:

    a. σ_(r) is bounded monotonic increasing left continuous r[0,1].

    b. ˉσ(r) is bounded monotonic decreasing left continuous r[0,1].

    c. σ_(r)ˉσ(r)r[0,1].

    Definition 2.5. Addition and scalar multiplication of fuzzy number is given as:

    a. (σ1σ2)=(σ_1(r)+σ_2(r),ˉσ1(r)+ˉσ2(r))

    b. (kσ)={(σ_(r),ˉσ(r)),k0,(σ_(r),ˉσ(r)),k<0.

    Definition 2.6. A fuzzy real valued function σ1,σ2:[a,b]R, then in [54]:

    DU(σ1,σ2)=sup{D(σ1(x),σ2(x))|x[a,b]}.

    Definition 2.7. Assume u:[a,b]RF. For every partition P={σ0,σ1,σ2,σ3,....,σn} and arbitrary i:σi1iσi, 2in consider

    Rp=nΣi=2u(j)(σiσi1). The definite integral of u(x) over [α,β] is

    βαu(x)dx=limRρ,

    which show existence of limit in metric [55].

    Definite integral exist if u(x) is continuous in metric D [51]:

    (βαu(x)dx_)=βαu_(x)dx,(¯βαu(x)dx)=βα¯u(x)dxt.

    By considering definition 2.4. as discussed in section 2, Eq (1.1) becomes:

    {Dαxu(x,r)h(x,r)xak(x,t)u(t,r)dt=0,Dαxˉu(x,r)h(x,r)xak(x,t)ˉu(t,r)dt=0,0α1,0r1,x[0,1], (3.1)

    with the given initial condition

    [uk(0)]r,(u0k(x,r),ˉu0k(x,r)),k=1,2,3,....,η1,η1<α<η,ηN, (3.2)

    The homotopy of OHAM [41,42,43], constructed as follow:

    {(1ρ)(αυ(x,r;ρ)tαh(x,r))=H(ρ)(αυ(x,r;ρ)tαh(x,r)δ(υ,r)),(1ρ)(αˉυ(x,r;ρ)tαˉh(x,r))=H(ρ)(αˉυ(x,r;ρ)tαˉh(x,r)ˉδ(ˉυ,r)). (3.3)

    where ρ[0,1], H(ρ)=m1cmρm for all ρ0 is an auxiliary function, if ρ=0 then H(0)=0 where

    {υ(x,r,0)=u0(x,r)υ(x,r;1)=u(x,r),ˉυ(x,r,0)=ˉu0(x,r)ˉυ(x,r;1)=ˉu(x,r).

    and cm represent auxiliary constants. Using Taylor's series to expand υ(x,r;ρ) about ρ we get

    {υ(x,r;ρ)=u0(x,r)+m1um(x,r)ρm,ˉυ(x,r;ρ)=ˉu0(x,r)+m1ˉum(x,r)ρm. (3.4)

    Inserting Eq (3.4) into Eq (3.3) we get series of the problems by comparing the like power of ρ given as follow:

    ρ0:{u0(x,r)h(x,r)=0,ˉu0(x,r)ˉh(x,r)=0. (3.5)
    ρ1:{u1(x,r)+c1δ(u0)+(1+c1)+u0(x,r)=0,ˉu1(x,r)+c1δ(ˉu0)+(1+c1)+ˉu0(x,r)=0. (3.6)
    ρ2:{u2(x,r)+c1δ(u1)+c2δ(u0)+c2(h(x,r)u0(x,r))(1+c1)u1(x,r)=0,ˉu2(x,r)+c1δ(ˉu1)+c2δ(ˉu0)+c2(ˉh(x,r)ˉu0(x,r))(1+c1)ˉu1(x,r)=0. (3.7)
    ρn:{un(x,r)+c1δ(un)+c2δ(un1)+c3(h+δ(u0))...c2un1(x,r)(1+c1)un(x,r)=0,ˉun(x,r)+c1δ(ˉun)+c2δ(ˉun1)+c3(h+δ(ˉu0))...c2ˉun1(x,r)(1+c1)ˉun(x,r)=0. (3.8)

    For calculating the constants c1,c2,c3..., mth order optimum solution becomes

    {um(x,r,cl)=u0(x,r)+mk=1uk(x,r,cl),l=1,2,3,...m,ˉum(x,r,cl)=ˉu0(x,r)+mk=1ˉuk(x,r,cl),l=1,2,3,...m. (3.9)

    Putting Eq (3.9) into Eq (3.1), we can found our residual given as follow:

    {R(x,r;cl)=um(x,r;cl)h(x,r)δ(u),l=1,2,...ˉR(x,r;cl)=ˉum(x,r;cl)ˉh(x,r)δ(ˉu),l=1,2,... (3.10)

    If R(x,r;cl)=0, then um(x,r;cl)&ˉum(x,r;cl) will be the exact solutions.

    Optimum solution contains some auxiliary constants; the optimal values of these constants are obtained through various techniques. In the present work, we have used the least square method [56,57]. The method of least squares is a powerful technique for obtaining the values of auxiliary constants. By putting the optimal values of these constants in Eq (8), we obtain the OHAM solution.

    Problem 4.1. Consider system of fuzzy fractional order Volterra integro-differential equation as [58]:

    {Dαxu_(x,r)=(r1)+x0u_(t,r)dtDαxˉu(x,r)=(1r)+x0ˉu(t,r)dt,0<α1,x[0,1], (4.1)

    subject to the fuzzy initial condition [u(0)]r=[r1,1r], and for α=1 fuzzy fractional order Volterra integro-differential equations the exact solution is [u(x)]r=[r1,1r]Sinh(x) and 0r1.

    By follow the technique as discussed in section 3, we get series of problems and their solutions as:

    {Dxαu_0(x,r)+(1r)=0,Dxα¯u0(x,r)+(r1)=0. (4.2)
    {Dxαu_1(x,r)1+rc1+rc1+(x0u_0(t,r)dt)c1Dxαu_0(x,r)c1Dxαu_0(x,r)=0,Dxαˉu1(x,r)+1r+c1rc1+(x0ˉu0(t,r)dt)c1Dxαˉu0(x,r)c1Dxαˉu(x,r)=0. (4.3)
    {Dxαu_2(x,r)+(x0u_1(t,r)dt)c1c2+rc2+(x0u_0(t,r)dt)c2c2Dxαu_0(x,r)Dxαu_1(x,r)c1Dxαu_0(x,r)=0,Dxαˉu2(x,r)+(x0ˉu1(t,r)dt)c1+c2rc2+(x0ˉu0(t,r)dt)c2c2Dxαˉu0(x,r)Dxαˉu1(x,r)c1Dxαˉu0(x,r)=0. (4.4)
    {Dxαu_3(x,r)+(x0u_2(t,r)dt)c1+(x0u_1(t,r)dt)c2c3+rc3+(x0u_0(t,r)dt)c3c3Dxαu_0(x,r)c2Dxαu_1(x,r)Dxαu_2(x,r)c1Dxαu_2(x,r)=0,Dxαˉu3(x,r)+(x0ˉu2(t,r)dt)c1+(x0ˉu1(t,r)dt)c2+c3rc3+(x0ˉu0(t,r)dt)c3c3Dxαˉu0(x,r)c2Dxαˉu1(x,r)Dxαˉu2(x,r)c1Dxαˉu2(x,r)=0. (4.5)

    Their solutions are

    {u_0(x,r)=(1+r)xααΓ(α)ˉu0(x,r)=(1+r)xααΓ(α), (4.6)
    {u_1(x,r)=(1+r)x1+2αc1Γ(2+2α),ˉu1(x,r)=(1+r)x1+2αc1Γ(2+2α). (4.7)
    {u_2(x,r)=(1+r)x1+2α(x1+αc21Γ(3+3α)c1+c21+c2Γ(2+2α)),ˉu2(x,r)=(1+r)x1+α(x1+αc21Γ(3+3α)+c1+c21+c2Γ(2+2α)). (4.8)
    {u_3(x,r)=(1+r)x1+2α(x2+2αc31Γ(4+4α)+2x1+αc1(c1+c21+c2)Γ(3+3α)c1+2c21+c31+c2+2c1c2+c3Γ(2+2α)),ˉu3(x,r)=(1+r)x1+2α(x2+2αc31Γ(4+4α)2x1+αc1(c1+c21+c2)Γ(3+3α)+c1+2c21+c31+c2+2c1c2+c3Γ(2+2α)). (4.9)

    Adding (4.6), (4.7), (4.8) and (4.9), one can construct u_(x,r) & ˉu(x,r) :

    {u_(x,r)=(1+r)xα(1Γ(1+α)x3+3αc31Γ(4+4α)+x2+2αc1(c1(3+2c1)+2c2)Γ(3+3α)x1+α(2c2+c1(3+c1(3+c1)+2c2)+c3)Γ(2+2α)),ˉu(x,r)=(1+r)xα(1Γ(1+α)+x3+3αc31Γ(4+4α)x2+2αc1(c1(3+2c1)+2c2)Γ(3+3α)+x1+α(2c2+c1(3+c1(3+c1)+2c2)+c3)Γ(2+2α)). (4.10)

    Values of c1,c2 and c3 contain is in Eq (4.10)

    Substituting the values from Table 1 into Eq (4.10), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of α taking r=0.75 respectively is as follow

    α=0.7
    {u_(x,r)0.2751369x0.70.08602097x2.40.25x2.4(0.00904995+0.0376716x1.7)0.25x2.4(0.0004258590.00198165x1.7+0.0021734872x3.4),¯u(x,r)0.2751369x0.7+0.08602097x2.40.25x2.4(0.009049950.0376716x1.7)0.25x2.4(0.000425859+0.00198165x1.70.0021734872x3.4). (4.11)
    α=0.8
    {u_(x,r)0.2684178x0.80.0685589x2.60.25x2.6(0.005391327+0.023297809x1.8)0.25x2.6(0.0001975130.0009160448x1.8+0.001008410504x3.6),¯u(x,r)0.2684178x0.8+0.0685589x2.60.25x2.6(0.00539130.023297809x1.8)0.25x2.6(0.000197513+0.0009160448x1.80.001008410504x3.6). (4.12)
    α=0.9
    {u_(x,r)0.2599385x0.90.0540269x2.80.25x2.8(0.0031639+0.01418901x1.9)0.25x2.8(0.000089890.0004154745x1.9+0.000458881x3.8),¯u(x,r)0.2599385x0.9+0.0540269x2.80.25x2.8(0.00316390.014189097x1.9)0.25x2.8(0.00008989+0.0004154745x1.90.000458881x3.8). (4.13)
    α=1
    {u_(x,r)0.25x0.042114377x30.25x3(0.001829736+0.0085133796x2)0.25x3(0.00004015350.0001849397x2+0.00020487753x4),¯u(x,r)0.25x+0.042114377x30.25x3(0.0018297360.0085133796x2)0.25x3(0.0000401535+0.0001849397x20.0002048775x4). (4.14)
    Table 1.  at r = 0.75.
    α c_1 & ¯c1 c_2 & ¯c2 c_3 & ¯c3
    0.7 −1.0257850714449026 5.298291106236844×10−4 −3.040859671410477×10−5
    0.8 −1.0193406988378892 3.249294721058776×10−4 −1.5364294422415488×10−5
    0.9 −1.014446487354385 1.9694362983845834×10−4 −7.63055570435551×10−6
    1 −1.0107450504316333 1.1791102776455743×10−4 −3.779171763451589×10−6

     | Show Table
    DownLoad: CSV

    Substituting the values from Table 2 into Eq (4.10), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of α taking r=0.5 respectively is as follow

    α=0.7
    {u_(x,r)0.5502737x0.70.172041940x2.40.5x2.4(0.00904995+0.0376716x1.7)0.5x2.4(0.00042585940.0019816476x1.7+0.0021734872x3.4),ˉu(x,r)0.5502737x0.7+0.172041940x2.40.5x2.4(0.009049950.03767164x1.7)0.5x2.4(0.0004258594+0.0019816476x1.70.0021734872x3.4). (4.15)
    α=0.8
    {u_(x,r)0.53683564x0.80.137117858x2.60.5x2.6(0.00539133+0.02329781x1.8)0.5x2.6(0.000197510.0009160448x1.8+0.0010084105x3.6),¯u(x,r)0.53683564x0.8+0.137117858x2.60.5x2.6(0.005391330.02329781x1.8)0.5x2.6(0.00019751+0.0009160448x1.80.0010084105x3.6). (4.16)
    α=0.9
    {u_(x,r)0.5198771x0.90.10805378x2.80.5x2.8(0.0031640+0.0141891x1.9)0.5x2.8(0.00008989450.0004154745x1.9+0.000458881x3.8),¯u(x,r)0.5198771x0.9+0.10805378x2.80.5x2.8(0.00316400.0141891x1.9)0.5x2.8(0.0000898945+0.0004154745x1.90.000458881x3.8). (4.17)
    α=1
    {u_(x,r)0.5x0.0842288x30.5x3(0.0018298+0.008513x2)0.5x3(0.00004016120.00018494622x2+0.0002048777x4),¯u(x,r)0.5x+0.0842288x30.5x3(0.00182980.008513x2)0.5x3(0.000040162+0.00018494622x20.0002048777x4). (4.18)
    Table 2.  at r = 0.5.
    α c_1 & ¯c1 c_2 & ¯c2 c_3 & ¯c3
    0.7 −1.0257850714449026 5.298291106236844×10−4 −3.040859671410477×10−5
    0.8 −1.0193406988378892 3.249294721058776×10−4 −1.5364294422415488×10−5
    0.9
    1
    −1.014446487354385
    −1.0107453381292266
    1.9694362983845834×10−4
    1.1800167363027721×10−4
    −7.630555570435551×10−6
    −3.726389827252244×10−6

     | Show Table
    DownLoad: CSV

    Problem 4.2. Consider system of fuzzy fractional order Volterra integro-differential equation as [59]:

    Dαxu(x,r)+t0u(t,r)dt=0,0<α1,x[0,1], (4.19)

    subject to the fuzzy initial condition [u(0)]r=[r1,1r], and the exact solution is u_(x,r)=(r1)Eα+1(tα+1),ˉu(x,r)=(1r)Eα+1(tα+1),

    where Eα+1 is a Mittag-Leffler function and 0r1.

    By follow the technique as discussed in section 3, we get series of problems and their solutions as:

    {Dxαu_0(x,r)=0,Dxαˉu0(x,r)=0. (4.20)
    {Dxαu_1(x,r)+(x0u_0(t,r)dt)c1Dxαu_0(x,r)c1Dxαu_0(x,r)=0,Dxαˉu1(x,r)+(x0ˉu0(t,r)dt)c1Dxαˉu0(x,r)c1Dxαˉu(x,r)=0. (4.21)
    {Dxαu_2(x,r)+(x0u_1(t,r)dt)c1(x0u_0(t,r)dt)c2c2Dxαu_0(x,r)Dxαu_1(x,r)c1Dxαu_0(x,r)=0,Dxαˉu2(x,r)+(x0ˉu1(t,r)dt)c1(x0ˉu0(t,r)dt)c2c2Dxαˉu0(x,r)Dxαˉu1(x,r)c1Dxαˉu0(x,r)=0. (4.22)
    {Dxαu_3(x,r)(x0u_2(t,r)dt)c1(x0u_1(t,r)dt)c2(x0u_0(t,r)dt)c3c3Dxαu_0(x,r)c2Dxαu_1(x,r)Dxαu_2(x,r)c1Dxαu_2(x,r)=0,Dxαˉu3(x,r)(x0ˉu2(t,r)dt)c1(x0ˉu1(t,r)dt)c2(x0ˉu0(t,r)dt)c3c3Dxαˉu0(x,r)c2Dxαˉu1(x,r)Dxαˉu2(x,r)c1Dxαˉu2(x,r)=0. (4.23)

    And their solutions are

    {u_0(x,r)=r1,ˉu0(x,r)=1r. (4.24)
    {u_1(x,r_)=(1+r)x1+αc1(α+α2)Γ(α),¯u1(x,¯r)=(1+r)x1+αc1α(1+α)Γ(α), (4.25)
    {u_2(x,r)=(1+r)x1+α(x1+αc21Γ(3+2α)+c1+c21+c2Γ(2+α)),ˉu2(x,r)=(1+r)x1+α(x1+αc21Γ(3+2α)c1+c21+c2Γ(2+α)). (4.26)
    {u_3(x,r)=(1+r)x1+α(c2+c1(1+x2+2αc21Γ(4+2α)+c1(2+c1)+2c2+2x1+α(c1+c21+c2)Γ(3+3α))+c3)Γ(1+α),ˉu3(x,r)=(1+r)x1+α(x2+2αc31Γ(4+3α)2x1+αc1(c1+c21+c2)Γ(3+2α)c2+c1((1+c1)2+2c2)+c3Γ(2+α)), (4.27)

    Adding (4.24), (4.25), (4.26) and (4.27), one can construct u_(x,r) & ˉu(x,r) :

    {u_(x,r)=1+r+(1+r)x1+α(x1+αc21Γ(3+2α)+x2+2αc31Γ(1+α)Γ(4+2α)+2x1+αc1(c1+c21+c2)Γ(1+α)Γ(3+α)+c1(2+c1)+c2Γ(2+α)+c2+c1((1+c1)2+2c2)+c3Γ(1+α)),ˉu(x,r)=1r+(1+r)x1+α(x2+2αc31Γ(4+3α)x1+αc1(c1(3+2c1)+2c2)Γ(3+2α)2c2+c1(3+c1(3+c1)+2c2)+c3Γ(2+α)). (4.28)

    Values of c1,c2 and c3 contain in Eq (4.28)

    Substituting the values from Tables 3 and 4 into Eq (4.28), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of α taking r=0.5 is as follow

    α=0.2
    {u_(x,r)0.50.5x1.2(0.905948+0.325139x1.20.055807x2.4),¯u(x,r)0.50.5x1.2(0.9059480.325139x1.2+0.055807x2.4). (4.29)
    α=0.4
    {u_(x,r)0.50.5x1.4(0.804545+0.210093x1.40.025570x2.8),¯u(x,r)0.50.5x1.4(0.804545450.210093x1.4+0.025570x2.8). (4.30)
    α=0.6
    {u_(x,r)0.50.5x1.6(0.699349+0.128177x1.60.010450x3.2),¯u(x,r)0.50.5x1.6(0.6993490.128177x1.6+0.010450x3.2). (4.31)
    α=0.8
    {u_(x,r)0.50.5x1.8(0.596450+0.074561x1.80.0038863x3.6),¯u(x,r)0.50.5x1.8(0.59645030.074561x1.8+0.0038863x3.6). (4.32)
    α=1
    {u_(x,r)0.50.5x2(0.499992+0.04163089x20.001336253x4),¯u(x,r)0.50.5x2(0.49999140.04163076x2+0.001336247x4). (4.33)
    Table 3.  at r = 0.5.
    α c_1 c_2 c_3
    0.2 −0.8038238618267683 7.6178003377104005×10−3 −1.334733828882206×10−3
    0.4 −0.739676946061329 0.02530379950927192 −3.78307542584476×10−3
    0.6 −0.6725325561865596 0.04771922184372877 −8.140310215705777×10−3
    0.8 −0.6062340661192892 0.06889015391501904 −0.015746150088743013
    1.0 −0.5432795308983783 0.08615024033359142 −0.026582381449582644

     | Show Table
    DownLoad: CSV
    Table 4.  at r = 0.5.
    α ¯c1 ¯c2 ¯c3
    0.2 −0.9072542694138958 3.5727393445527333×10−3 3.637119200533134×10−4
    0.4 −0.9409187563211361 1.9803045412863643×10−3 1.7807647588483674×10−4
    0.6 −0.9636043521097131 9.808463578935658×10−4 7.369503633679291×10−5
    0.8 −0.9781782948007163 4.4492367269725435×10−4 2.6729929232143615×10−5
    1.0 −0.9872029432879605 1.896941835601795×10−4 1.021455544474314×10−5

     | Show Table
    DownLoad: CSV

    Substituting the values from Tables 5 and 6 into Eq (4.28), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of r taking α=0.5 is as follow

    r=0
    {u_(x,r)1x1.5(0.75199032254+0.165168588631x1.50.016559344247x3.),¯u(x,r)1x1.5(0.751990322560.165168588653x1.5+0.016559344262x3.). (4.34)
    r=0.2
    {u_(x,r)0.80.8x1.5(0.751990322550+0.165168588x1.50.01655934425x3.),¯u(x,r)0.80.8x1.5(0.7519903225540.165168588x1.5+0.01655934426x3.). (4.35)
    r=0.4
    {u_(x,r)0.60.6x1.5(0.7519903225+0.1651685886x1.50.016559344250x3.),¯u(x,r)0.60.6x1.5(0.75199032250.1651685886x1.5+0.0165593442496x3.). (4.36)
    r=0.6
    {u_(x,r)0.40.4x1.5(0.751990322550+0.16516858863x1.50.01655934425x3.),¯u(x,r)0.40.4x1.5(0.7519903225540.16516858865x1.5+0.01655934426x3.). (4.37)
    r=0.8
    {u_(x,r)0.19999100.1999910x1.5(0.7519903+0.16516859x1.50.0165593x3.),¯u(x,r)0.199999100.19999910x1.5(0.75199030.16516859x1.5+0.0165593x3.). (4.38)
    Table 5.  at α = 0.5.
    r c_1 c_2 c_3
    0 0.7062087686601037 0.03638991875243272 5.6065011933001474×103
    0.2 0.7062087687083373 0.03638991875755982 5.606501189519195×103
    0.4 0.7062087686911187 0.03638991875566347 5.606501190876118×103
    0.6 0.7062087687083373 0.03638991875755982 5.606501189519195×103
    0.8 0.7062087686312865 0.036389918749298394 5.606501195566148×103

     | Show Table
    DownLoad: CSV
    Table 6.  at α = 0.5.
    r ¯c1 ¯c2 ¯c3
    0 0.9534544876637709 1.4110239362094313×103 1.1669890178958486×104
    0.2 0.9534544876175205 1.4110239407705756×103 1.1669890245071123×104
    0.4 0.9534544874104965 1.4110239614371703×103 1.1669890547775563×104
    0.6 0.9534544876175205 1.4110239407705756×103 1.1669890245071123×104
    0.8 0.9534544876289686 1.4110239398903034×103 1.1669890235330204×104

     | Show Table
    DownLoad: CSV

    Tables 16 show the values of auxiliary constant at different values of r & α for both lower and upper solution of OHAM for the solved problems. Tables 7 and 8 show the comparison of absolute error of 3rd order OHAM with Fractional Residual Power Series (FRPS) Method for 5-approximated solution and k=5 for both lower and upper solutions of OHAM at different value of α for problem 1. Comparison of absolute error of 3rd orders OHAM for both lower and upper solution of OHAM are shown in Tables 9 and 10. Numerical result show that OHAM provide more accuracy as compared to the other method and as α1 the approximate solution become very close to the exact solution. Graphical representation confirmed the convergence of fractional order solution towards the integer order solution. In Figure 1 graphical representation of OHAM at α=0.7,0.8,0.9,1,r=0.75 and α=0.7,0.8,0.9,1,r=0.50 are discussed for both u_(x,r) & ˉu(x,r) for problem 1. Figures 2 and 3 show the comparison of OHAM with the exact solution at different values of and taking r = 0.75 & r = 0.5 respectively for problem 1. Figure 4 represent the comparison of OHAM at α=0.2,0.4,0.6,0.8,1,r=0.5 and r=0,0.2,0.4,0.6,0.8,α=0.5 for both u_(x,r) and ˉu(x,r) for problem 2. Figure 5 shows the comparison of OHAM with the exact solution at different values of and r = 0.5 while Figure 6 shows the comparison of OHAM with the exact solution at different values of r and = 0.5 for problem 2.

    Table 7.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for u_(x,r) and Fractional Residual Power Series (FRPS) [54] Method for 5-approximated solution and k=5 for problem 1.
    r x FRPS [58]
    α=0.7
    OHAM FRPS [58]
    α=0.8
    OHAM FRPS [58]
    α=0.9
    OHAM FRPS [58]
    α=1
    OHAM
    0.75 0.2 0.042797 0.040621 0.025514 0.024764 0.011512 0.011321 6.35273×10−10 2.14676×10−9
    0.4 0.059664 0.051698 0.035840 0.032584 0.016392 0.015405 8.14507×10−8 1.00832×10−8
    0.6 0.075769 0.058997 0.045171 0.037635 0.020545 0.018031 1.39554×10−6 1.11336×10−8
    0.8 0.094364 0.066136 0.055863 0.04232 0.025182 0.020362 1.04955×10−5 6.21567×10−9
    0.50 0.2 0.085595 0.081241 0.051027 0.049528 0.011321 0.022643 1.27055×10−9 4.25946×10−9
    0.4 0.119328 0.103396 0.071680 0.065167 0.015405 0.030811 1.62901×10−7 1.98877×10−8
    0.6 0.151537 0.117994 0.090342 0.075269 0.018031 0.036062 2.79107×10−6 2.12923×10−8
    0.8 0.188728 0.132271 0.111723 0.084640 0.020362 0.040725 2.09911×10−5 1.00120×10−8

     | Show Table
    DownLoad: CSV
    Table 8.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for ˉu(x,r) and Fractional Residual Power Series (FRPS) [58] Method for 5-approximated solution and k=5 for problem 1.
    r x FRPS [58]
    α=0.7
    OHAM FRPS [58]
    α=0.8
    OHAM FRPS [58]
    α=0.9
    OHAM FRPS [58]
    α=1
    OHAM
    0.75 0.2 0.085595 0.081242 0.025514 0.024764 0.011512 0.011321 6.35273×10−10 2.14676×10−9
    0.4 0.119328 0.103396 0.035840 0.032584 0.016392 0.015405 8.14507×10−8 1.00832×10−8
    0.6 0.151537 0.117994 0.045171 0.037635 0.020545 0.018031 1.39554×10−6 1.11336×10−8
    0.8 0.188728 0.132271 0.055862 0.04232 0.025182 0.020362 1.04955×10−5 6.21567×10−9
    0.50 0.2 0.042797 0.040621 0.051027 0.049528 0.023025 0.022643 1.27055×10−9 4.25946×10−9
    0.4 0.059664 0.051698 0.071680 0.065167 0.032784 0.030811 1.62901×10−7 1.98877×10−8
    0.6 0.075769 0.058997 0.090342 0.075269 0.041090 0.036062 2.79107×10−6 2.12923×10−8
    0.8 0.094364 0.066136 0.111723 0.084640 0.050364 0.040725 2.09911×10−5 1.0012×10−8

     | Show Table
    DownLoad: CSV
    Table 9.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for u_(x,r_) & ˉu(x,r) at different values of α taking r=0.5 for problem 2.
    x u_(x,r)
    α=0.4
    ˉu(x,r) u_(x,r)
    α=0.6
    ˉu(x,r) u_(x,r)
    α=0.8
    ˉu(x,r) u_(x,r)
    α=1
    ˉu(x,r)
    0.2 1.2736×10−5 1.2736×10−5 3.2527×10−6 3.2527×10−6 6.93075×10−7 6.93076×10−7 1.29476×10−7 1.44585×10−7
    0.4 2.3337×10−6 2.3337×10−6 2.4426×10−6 2.4426×10−6 9.50573×10−7 9.50573×10−7 2.67538×10−7 3.26771×10−7
    0.6 9.9993×10-6 9.9993×10−6 1.8451×10−6 1.8451×10−6 3.8544×10−8 3.85438×10−8 1.10198×10−7 2.39031×10−7
    0.8 4.1251×10−6 4.1251×10−6 1.3416×10−7 1.3416×10−7 6.55017×10−8 6.55017×10−8 9.64628×10−9 2.27883×10−7
    1.0 1.312×10−5 1.312×10−5 1.8373×10−6 1.8373×10−6 5.49341×10−8 5.4934×10−8 7.7356×10−8 3.9735×10−7

     | Show Table
    DownLoad: CSV
    Table 10.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for u_(x,r) & ˉu(x,r) at different values of r taking α=0.5 for problem 2.
    x u_(x,r)
    r=0.4
    ˉu(x,r) u_(x,r)
    r=0.6
    ˉu(x,r) u_(x,r)
    r=0.8
    ˉu(x,r) u_(x,r)
    r=1
    ˉu(x,r)
    0. 0. 0. 0. 0. 0. 0. 0. 0.
    0.2 1.0578×10−5 1.0578×10−5 7.9338×10−6 7.9338×10−6 5.28921×10−6 5.28921×10−6 2.64461×10−6 2.64461×10−6
    0.4 4.8940×10−6 4.8940×10−6 3.6705×10−6 3.6705×10−6 2.44698×10−6 2.44698×10−6 1.22349×10−6 1.22349×10−6
    0.6 7.4825×10−6 7.4825×10−6 5.6119×10−6 5.6119×10−6 3.74125×10−6 3.74125×10−6 1.87062×10−6 1.87062×10−6
    1.8 1.8038×10−6 1.8038×10−6 1.35291×10−6 1.35291×10−6 9.01939×10−7 9.01939×10−7 4.5097×10−7 4.5097×10−7

     | Show Table
    DownLoad: CSV
    Figure 1.  Solution plot of OHAM for u_(x,r) & ˉu(x,r) at different values of r & α for problem 1.
    Figure 2.  Solution plot of OHAM and Exact for u_(x,r) & ˉu(x,r) at different values of α taking r=0.75 for problem 1.
    Figure 3.  Solution plot of OHAM and Exact for u_(x,r) & ˉu(x,r) at different values of α taking r=0.50 for problem 1.
    Figure 4.  Solution plot of OHAM for u_(x,r) & ˉu(x,r) at different values of r & α for problem 2.
    Figure 5.  Solution plot of OHAM and Exact for u_(x,r) & ˉu(x,r) at different values of α taking r=0.5 for problem 2.
    Figure 6.  Solution plot of OHAM and Exact for u_(x,r) & ˉu(x,r) at different values of r taking α=0.5 for problem 2.

    In the research paper, a powerful technique known as Optimal Homotopy Asymptotic Method (OHAM) has been extended to the solution of system of fuzzy integro differential equations of fractional order. The obtained results are quite interesting and are in good agreement with the exact solution. Two numerical equations are taken as test examples which show the behavior and reliability of the proposed method. The extension of OHAM to system of fuzzy integro differential equations of fractional order is more accurate and as a result this technique will more appealing for the researchers for finding out optimum solutions of system of fuzzy integro differential equations of fractional order.

    The authors declare no conflict of interest.



    [1] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal-Theory., 72 (2010), 2859-2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
    [2] O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29 (2002), 145-155. https://doi.org/10.1023/A:1016539022492 doi: 10.1023/A:1016539022492
    [3] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, Application of a fractional advection‐dispersion equation, Water Resour. Res., 36 (2000), 1403-1412. https://doi.org/10.1029/2000WR900031 doi: 10.1029/2000WR900031
    [4] H. Bhrawy, M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations, Appl. Math. Model., 40 (2016), 832-845. https://doi.org/10.1016/j.apm.2015.06.012 doi: 10.1016/j.apm.2015.06.012
    [5] F. Bulut, Ö . Oruc, A. ESEN, Numerical solutions of fractional system of partial differential equations by Haar wavelets, 2015.
    [6] M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Set. Syst., 106 (1999), 35-48. https://doi.org/10.1016/S0165-0114(98)00355-8
    [7] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63-85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005
    [8] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 23-28. https://doi.org/10.1016/0893-9659(96)00089-4 doi: 10.1016/0893-9659(96)00089-4
    [9] V. Garg, K. Singh, An improved Grunwald-Letnikov fractional differential mask for image texture enhancement, Int. J. Adv. Comput. Sci. Appl., 3 (2012). https://doi.org/10.14569/IJACSA.2012.030322 doi: 10.14569/IJACSA.2012.030322
    [10] G. Jumarie, Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution, J. Appl. Math. Comput., 24 (2007), 31-48. https://doi.org/10.1007/BF02832299 doi: 10.1007/BF02832299
    [11] A. A. Kilbas, S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equat., 41 (2005), 84-89. https://doi.org/10.1007/s10625-005-0137-y doi: 10.1007/s10625-005-0137-y
    [12] E. Sousa, C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90 (2015), 22-37. https://doi.org/10.1016/j.apnum.2014.11.007 doi: 10.1016/j.apnum.2014.11.007
    [13] M. Stynes, J. L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35 (2015), 698-721. https://doi.org/10.1016/j.apnum.2014.11.007 doi: 10.1016/j.apnum.2014.11.007
    [14] H. J. Zimmermann, Fuzzy set theory, Wiley Comput. Stat., 2 (2010), 317-332. https://doi.org/10.1002/wics.82
    [15] R. Lowen, Fuzzy set theory: Basic concepts, techniques and bibliography, Springer Science Business Media, 2012.
    [16] H. J. Zimmermann, Fuzzy set theory-and its applications, Springer Science Business Media, 2011.
    [17] L. A. Zadeh, A computational approach to fuzzy quantifiers in natural languages, Comput. Math. Appl., 9 (1983), 149-184. https://doi.org/10.1016/0898-1221(83)90013-5 doi: 10.1016/0898-1221(83)90013-5
    [18] L. A. Zadeh, Linguistic variables, approximate reasoning and dispositions, Med. Inf., 8 (1983), 173-186. https://doi.org/10.3109/14639238309016081 doi: 10.3109/14639238309016081
    [19] L. A. Zadeh, Fuzzy logic, Computer, 21 (1988), 83-93. https://doi.org/10.1109/2.53
    [20] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inf. Sci., 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [21] D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9 (1978), 613-626. https://doi.org/10.1080/00207727808941724 doi: 10.1080/00207727808941724
    [22] D. J. Dubois, Fuzzy sets and systems: Theory and applications, Academic press.
    [23] S. Nahmias, Fuzzy variables, Fuzzy Set. Syst., 1 (1978), 97-110. https://doi.org/10.1016/0165-0114(78)90011-8
    [24] M. Mizumoto, K. Tanaka, The four operations of arithmetic on fuzzy numbers, Syst. Comput. Controls, 7 (1976), 73-81.
    [25] Y. B. Shao, H. H. Zhang, Existence of the solution for discontinuous fuzzy integro-differential equations and strong fuzzy Henstock integrals, Nonlinear Dyn. Syst. Theory, 14 (2014), 148-161.
    [26] M. A. Aal, N. Abu-Darwish, O. A. Arqub, M. Al-Smadi, S. Momani, Analytical Solutions of Fuzzy Fractional Boundary Value Problem of Order 2α by Using RKHS Algorithm, Appl. Math, 13 (2019), 523-533. https://doi.org/10.18576/amis/130402 doi: 10.18576/amis/130402
    [27] A. Armand, Z. Gouyandeh, Fuzzy fractional integro-differential equations under generalized Caputo differentiability, Annals Fuzzy Math. Inf., 10 (2015), 789798.
    [28] V. Padmapriya, M. Kaliyappan, V. Parthiban, Solution of fuzzy fractional Integro-Differential equations using a domian decomposition method, J. Inf. Math. Sci., 9 (2017), 501-507.
    [29] O. H. Mohammed, O. I. Khaleel, Fractional differential transform method for solving fuzzy integro-differential equations of fractional order, Basrah J. Sci., 34 (2016), 31-40.
    [30] M. R. Nourizadeh, T. Allahviranloo, N. Mikaeilvand, Positive solutions of fuzzy fractional Volterra integro-differential equationswith the Fuzzy Caputo Fractional Derivative using the Jacobi polynomials operational matrix, Int. J. Comput. Sci. Net., 18 (2018), 241-252.
    [31] R. Alikhani, F. Bahrami, Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations, Commun. Nonlinear Sci., 18 (2013), 2007-2017. https://doi.org/10.1016/j.cnsns.2012.12.026 doi: 10.1016/j.cnsns.2012.12.026
    [32] Z. Gouyandeh, A. Armand, Numerical solutions of fuzzy linear system differential equations and application of a radioactivity decay model, Commun. Adv. Comput. Sci. Appl., (2013), 1-11. https://doi.org/10.5899/2013/cacsa-00005
    [33] N. Van Hoa, H. Vu, T. M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Set. Syst., 375 (2019), 70-99. https://doi.org/10.1016/j.fss.2018.08.001 doi: 10.1016/j.fss.2018.08.001
    [34] P. K. Sahu, S. Saha Ray, Two-dimensional Legendre wavelet method for the numerical solutions of fuzzy integro-differential equations, J. Intell. Fuzzy Syst., 28 (2015), 1271-1279. https://doi.org/10.3233/IFS-141412 doi: 10.3233/IFS-141412
    [35] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci., 17 (2012), 1372-1381. https://doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005
    [36] N. A. A. Rahman, M. Z. Ahmad, Solving fuzzy fractional differential equations using fuzzy Sumudu transform, J. Nonlinear Sci. Appl, 10 (2017), 2620-2632. https://doi.org/10.22436/jnsa.010.05.28 doi: 10.22436/jnsa.010.05.28
    [37] M. Yavuz, T. A. Sulaiman, F. Usta, H. Bulut, Analysis and numerical computations of the fractional regularized long‐wave equation with damping term, Math. Methods Appl. Sci., 44 (2021), 7538-7555. https://doi.org/10.1002/mma.6343 doi: 10.1002/mma.6343
    [38] F. Usta, Numerical analysis of fractional Volterra integral equations via Bernstein approximation method, J. Comput. Appl. Math., 384 (2021), 113198. https://doi.org/10.1016/j.cam.2020.113198 doi: 10.1016/j.cam.2020.113198
    [39] F. Usta, Numerical solution of fractional elliptic PDE's by the collocation method, Appl. Appl. Math., 12 (2017), 30.
    [40] F. Usta, Fractional type Poisson equations by radial basis functions Kansa approach, J. Inequal. Spec. Func., 7 (2016), 143-149.
    [41] V. Marinca, N. Herişanu, Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass, 35 (2008), 710-715. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.010 doi: 10.1016/j.icheatmasstransfer.2008.02.010
    [42] N. Herişanu, V. Marinca, Accurate analytical solutions to oscillators with discontinuities and fractional power restoring force by means of the optimal homotopy asymptotic method, Comput. Math. Appl., 60 (2010), 1607-1615. https://doi.org/10.1016/j.camwa.2010.06.042 doi: 10.1016/j.camwa.2010.06.042
    [43] V. Marinca, N. Herişanu, Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method, J. Sound Vib., 329 (2010), 1450-1459. https://doi.org/10.1016/j.jsv.2009.11.005 doi: 10.1016/j.jsv.2009.11.005
    [44] S. Iqbal, A. Javed, Application of optimal homotopy asymptotic method for the analytic solution of singular Lane-Emden type equation, Appl. Math. Comput., 217 (2011), 7753-7761. https://doi.org/10.1016/j.amc.2011.02.083 doi: 10.1016/j.amc.2011.02.083
    [45] M. Sheikholeslami, D. D. Ganji, Magnetohydrodynamic flow in a permeable channel filled with nanofluid, Scientia Iranica, Transaction B, Mechanical Engineering, 21 (2014), 203-212.
    [46] M. S. Hashmi, N. Khan, S. Iqbal, Optimal homotopy asymptotic method for solving nonlinear Fredholm integral equations of second kind, Appl. Math. Comput., 218 (2012), 10982-10989. https://doi.org/10.1016/j.amc.2012.04.059 doi: 10.1016/j.amc.2012.04.059
    [47] R. Nawaz, A. Khattak, M. Akbar, S. Ahsan, Z. Shah, A. Khan, Solution of fractional-order integro-differential equations using optimal homotopy asymptotic method, J. Therm. Anal. Calorim., 146 (2021), 1421-1433. https://doi.org/10.1007/s10973-020-09935-x
    [48] R. Nawaz, L. Zada, A. Khattak, M. Jibran, A. Khan, Optimum solutions of fractional order Zakharov-Kuznetsov equations, Complexity, 2019 (2019), 1-9. https://doi.org/10.1155/2019/1741958 doi: 10.1155/2019/1741958
    [49] R. Nawaz, S. Ahsan, M. Akbar, M. Farooq, M. Sulaiman, H. Ullah, et al., Semi analytical solutions of second type of three-dimensional Volterra integral equations, Int. J. Appl. Comput. Math., 6 (2020), 1-6. https://doi.org/10.1007/s40819-020-00814-5 doi: 10.1007/s40819-020-00814-5
    [50] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 204 (2006), Elsevier Science Limited.
    [51] Jr. R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Set. Syst., 18 (1986), 31-43. https://doi.org/10.1016/0165-0114(86)90026-6 doi: 10.1016/0165-0114(86)90026-6
    [52] O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [53] D. Ralescu, G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75 (1980), 562-570. https://doi.org/10.1016/0022-247X(80)90101-8 doi: 10.1016/0022-247X(80)90101-8
    [54] Z. Wang, The autocontinuity of set function and the fuzzy integral, J. Math. Anal. Appl., 99 (1984), 195-218. https://doi.org/10.1016/0022-247X(84)90243-9 doi: 10.1016/0022-247X(84)90243-9
    [55] A. Rivaz, F. Yousefi, Modified homotopy perturbation method for solving two-dimensional fuzzy Fredholm integral equation, Int. J. Appl. Math., 25 (2012), 591-602.
    [56] H. Thabet, S. Kendre, Modified least squares homotopy perturbation method for solving fractional partial differential equations, Malaya J. Matematik, 6 (2018), 420-427. https://doi.org/10.26637/MJM0602/0020 doi: 10.26637/MJM0602/0020
    [57] N. Herisanu, V. Marinca, G. Madescu, F. Dragan, Dynamic response of a permanent magnet synchronous generator to a wind gust, Energies, 12 (2019), 915. https://doi.org/10.3390/en12050915 doi: 10.3390/en12050915
    [58] M. Alaroud, M. Al-Smadi, R. Rozita Ahmad, U. K. Salma Din, An analytical numerical method for solving fuzzy fractional Volterra integro-differential equations, Symmetry, 11 (2019), 205. https://doi.org/10.3390/sym11020205 doi: 10.3390/sym11020205
    [59] V. Padmapriya, M. Kaliyappan, V. Parthiban, Solution of fuzzy fractional Integro-Differential equations using a domian decomposition method, J. Inf. Math. Sci., 9 (2017), 501-507.
  • This article has been cited by:

    1. Tareq Manzoor, S. Iqbal, Mohd Asif Shah, A note on the slip effects of an Oldroyd 6-constant fluid: Optimal homotopy asymptotic method, 2022, 10, 2296-424X, 10.3389/fphy.2022.1003000
    2. Laiq Zada, Rashid Nawaz, Wasim Jamshed, Rabha W. Ibrahim, El Sayed M. Tag El Din, Zehba Raizah, Ayesha Amjad, New optimum solutions of nonlinear fractional acoustic wave equations via optimal homotopy asymptotic method-2 (OHAM-2), 2022, 12, 2045-2322, 10.1038/s41598-022-23644-5
    3. HIMAYAT ULLAH JAN, HAKEEM ULLAH, MEHREEN FIZA, ILYAS KHAN, ABDULLAH MOHAMED, ABD ALLAH A. MOUSA, MODIFICATION OF OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR MULTI-DIMENSIONAL TIME-FRACTIONAL MODEL OF NAVIER–STOKES EQUATION, 2023, 31, 0218-348X, 10.1142/S0218348X23400212
    4. RI ZHANG, NEHAD ALI SHAH, ESSAM R. EL-ZAHAR, ALI AKGÜL, JAE DONG CHUNG, NUMERICAL ANALYSIS OF FRACTIONAL-ORDER EMDEN–FOWLER EQUATIONS USING MODIFIED VARIATIONAL ITERATION METHOD, 2023, 31, 0218-348X, 10.1142/S0218348X23400285
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2144) PDF downloads(121) Cited by(4)

Figures and Tables

Figures(6)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog