Research article Special Issues

Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method

  • Received: 23 December 2021 Revised: 26 March 2022 Accepted: 05 April 2022 Published: 10 May 2022
  • MSC : 34K28, 47Gxx, 45Dxx

  • In this paper, an efficient technique called Optimal Homotopy Asymptotic Method has been extended for the first time to the solution of the system of fuzzy integro-differential equations of fractional order. This approach however, does not depend upon any small/large parameters in comparison to other perturbation method. This method provides a convenient way to control the convergence of approximation series and allows adjustment of convergence regions where necessary. The series solution has been developed and the recurrence relations are given explicitly. The fuzzy fractional derivatives are defined in Caputo sense. It is followed by suggesting a new result from Optimal Homotopy Asymptotic Method for Caputo fuzzy fractional derivative. We then construct a detailed procedure on finding the solutions of system of fuzzy integro-differential equations of fractional order and finally, we demonstrate a numerical example. The validity and efficiency of the proposed technique are demonstrated via these numerical examples which depend upon the parametric form of the fuzzy number. The optimum values of convergence control parameters are calculated using the well-known method of least squares, obtained results are compared with fractional residual power series method. It is observed from the results that the suggested method is accurate, straightforward and convenient for solving system of fuzzy Volterra integrodifferential equations of fractional order.

    Citation: Sumbal Ahsan, Rashid Nawaz, Muhammad Akbar, Saleem Abdullah, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar. Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method[J]. AIMS Mathematics, 2022, 7(7): 13169-13191. doi: 10.3934/math.2022726

    Related Papers:

  • In this paper, an efficient technique called Optimal Homotopy Asymptotic Method has been extended for the first time to the solution of the system of fuzzy integro-differential equations of fractional order. This approach however, does not depend upon any small/large parameters in comparison to other perturbation method. This method provides a convenient way to control the convergence of approximation series and allows adjustment of convergence regions where necessary. The series solution has been developed and the recurrence relations are given explicitly. The fuzzy fractional derivatives are defined in Caputo sense. It is followed by suggesting a new result from Optimal Homotopy Asymptotic Method for Caputo fuzzy fractional derivative. We then construct a detailed procedure on finding the solutions of system of fuzzy integro-differential equations of fractional order and finally, we demonstrate a numerical example. The validity and efficiency of the proposed technique are demonstrated via these numerical examples which depend upon the parametric form of the fuzzy number. The optimum values of convergence control parameters are calculated using the well-known method of least squares, obtained results are compared with fractional residual power series method. It is observed from the results that the suggested method is accurate, straightforward and convenient for solving system of fuzzy Volterra integrodifferential equations of fractional order.



    加载中


    [1] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal-Theory., 72 (2010), 2859-2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
    [2] O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29 (2002), 145-155. https://doi.org/10.1023/A:1016539022492 doi: 10.1023/A:1016539022492
    [3] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, Application of a fractional advection‐dispersion equation, Water Resour. Res., 36 (2000), 1403-1412. https://doi.org/10.1029/2000WR900031 doi: 10.1029/2000WR900031
    [4] H. Bhrawy, M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations, Appl. Math. Model., 40 (2016), 832-845. https://doi.org/10.1016/j.apm.2015.06.012 doi: 10.1016/j.apm.2015.06.012
    [5] F. Bulut, Ö . Oruc, A. ESEN, Numerical solutions of fractional system of partial differential equations by Haar wavelets, 2015.
    [6] M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Set. Syst., 106 (1999), 35-48. https://doi.org/10.1016/S0165-0114(98)00355-8
    [7] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63-85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005
    [8] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 23-28. https://doi.org/10.1016/0893-9659(96)00089-4 doi: 10.1016/0893-9659(96)00089-4
    [9] V. Garg, K. Singh, An improved Grunwald-Letnikov fractional differential mask for image texture enhancement, Int. J. Adv. Comput. Sci. Appl., 3 (2012). https://doi.org/10.14569/IJACSA.2012.030322 doi: 10.14569/IJACSA.2012.030322
    [10] G. Jumarie, Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution, J. Appl. Math. Comput., 24 (2007), 31-48. https://doi.org/10.1007/BF02832299 doi: 10.1007/BF02832299
    [11] A. A. Kilbas, S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equat., 41 (2005), 84-89. https://doi.org/10.1007/s10625-005-0137-y doi: 10.1007/s10625-005-0137-y
    [12] E. Sousa, C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90 (2015), 22-37. https://doi.org/10.1016/j.apnum.2014.11.007 doi: 10.1016/j.apnum.2014.11.007
    [13] M. Stynes, J. L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35 (2015), 698-721. https://doi.org/10.1016/j.apnum.2014.11.007 doi: 10.1016/j.apnum.2014.11.007
    [14] H. J. Zimmermann, Fuzzy set theory, Wiley Comput. Stat., 2 (2010), 317-332. https://doi.org/10.1002/wics.82
    [15] R. Lowen, Fuzzy set theory: Basic concepts, techniques and bibliography, Springer Science Business Media, 2012.
    [16] H. J. Zimmermann, Fuzzy set theory-and its applications, Springer Science Business Media, 2011.
    [17] L. A. Zadeh, A computational approach to fuzzy quantifiers in natural languages, Comput. Math. Appl., 9 (1983), 149-184. https://doi.org/10.1016/0898-1221(83)90013-5 doi: 10.1016/0898-1221(83)90013-5
    [18] L. A. Zadeh, Linguistic variables, approximate reasoning and dispositions, Med. Inf., 8 (1983), 173-186. https://doi.org/10.3109/14639238309016081 doi: 10.3109/14639238309016081
    [19] L. A. Zadeh, Fuzzy logic, Computer, 21 (1988), 83-93. https://doi.org/10.1109/2.53
    [20] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inf. Sci., 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [21] D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9 (1978), 613-626. https://doi.org/10.1080/00207727808941724 doi: 10.1080/00207727808941724
    [22] D. J. Dubois, Fuzzy sets and systems: Theory and applications, Academic press.
    [23] S. Nahmias, Fuzzy variables, Fuzzy Set. Syst., 1 (1978), 97-110. https://doi.org/10.1016/0165-0114(78)90011-8
    [24] M. Mizumoto, K. Tanaka, The four operations of arithmetic on fuzzy numbers, Syst. Comput. Controls, 7 (1976), 73-81.
    [25] Y. B. Shao, H. H. Zhang, Existence of the solution for discontinuous fuzzy integro-differential equations and strong fuzzy Henstock integrals, Nonlinear Dyn. Syst. Theory, 14 (2014), 148-161.
    [26] M. A. Aal, N. Abu-Darwish, O. A. Arqub, M. Al-Smadi, S. Momani, Analytical Solutions of Fuzzy Fractional Boundary Value Problem of Order 2α by Using RKHS Algorithm, Appl. Math, 13 (2019), 523-533. https://doi.org/10.18576/amis/130402 doi: 10.18576/amis/130402
    [27] A. Armand, Z. Gouyandeh, Fuzzy fractional integro-differential equations under generalized Caputo differentiability, Annals Fuzzy Math. Inf., 10 (2015), 789798.
    [28] V. Padmapriya, M. Kaliyappan, V. Parthiban, Solution of fuzzy fractional Integro-Differential equations using a domian decomposition method, J. Inf. Math. Sci., 9 (2017), 501-507.
    [29] O. H. Mohammed, O. I. Khaleel, Fractional differential transform method for solving fuzzy integro-differential equations of fractional order, Basrah J. Sci., 34 (2016), 31-40.
    [30] M. R. Nourizadeh, T. Allahviranloo, N. Mikaeilvand, Positive solutions of fuzzy fractional Volterra integro-differential equationswith the Fuzzy Caputo Fractional Derivative using the Jacobi polynomials operational matrix, Int. J. Comput. Sci. Net., 18 (2018), 241-252.
    [31] R. Alikhani, F. Bahrami, Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations, Commun. Nonlinear Sci., 18 (2013), 2007-2017. https://doi.org/10.1016/j.cnsns.2012.12.026 doi: 10.1016/j.cnsns.2012.12.026
    [32] Z. Gouyandeh, A. Armand, Numerical solutions of fuzzy linear system differential equations and application of a radioactivity decay model, Commun. Adv. Comput. Sci. Appl., (2013), 1-11. https://doi.org/10.5899/2013/cacsa-00005
    [33] N. Van Hoa, H. Vu, T. M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Set. Syst., 375 (2019), 70-99. https://doi.org/10.1016/j.fss.2018.08.001 doi: 10.1016/j.fss.2018.08.001
    [34] P. K. Sahu, S. Saha Ray, Two-dimensional Legendre wavelet method for the numerical solutions of fuzzy integro-differential equations, J. Intell. Fuzzy Syst., 28 (2015), 1271-1279. https://doi.org/10.3233/IFS-141412 doi: 10.3233/IFS-141412
    [35] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci., 17 (2012), 1372-1381. https://doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005
    [36] N. A. A. Rahman, M. Z. Ahmad, Solving fuzzy fractional differential equations using fuzzy Sumudu transform, J. Nonlinear Sci. Appl, 10 (2017), 2620-2632. https://doi.org/10.22436/jnsa.010.05.28 doi: 10.22436/jnsa.010.05.28
    [37] M. Yavuz, T. A. Sulaiman, F. Usta, H. Bulut, Analysis and numerical computations of the fractional regularized long‐wave equation with damping term, Math. Methods Appl. Sci., 44 (2021), 7538-7555. https://doi.org/10.1002/mma.6343 doi: 10.1002/mma.6343
    [38] F. Usta, Numerical analysis of fractional Volterra integral equations via Bernstein approximation method, J. Comput. Appl. Math., 384 (2021), 113198. https://doi.org/10.1016/j.cam.2020.113198 doi: 10.1016/j.cam.2020.113198
    [39] F. Usta, Numerical solution of fractional elliptic PDE's by the collocation method, Appl. Appl. Math., 12 (2017), 30.
    [40] F. Usta, Fractional type Poisson equations by radial basis functions Kansa approach, J. Inequal. Spec. Func., 7 (2016), 143-149.
    [41] V. Marinca, N. Herişanu, Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass, 35 (2008), 710-715. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.010 doi: 10.1016/j.icheatmasstransfer.2008.02.010
    [42] N. Herişanu, V. Marinca, Accurate analytical solutions to oscillators with discontinuities and fractional power restoring force by means of the optimal homotopy asymptotic method, Comput. Math. Appl., 60 (2010), 1607-1615. https://doi.org/10.1016/j.camwa.2010.06.042 doi: 10.1016/j.camwa.2010.06.042
    [43] V. Marinca, N. Herişanu, Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method, J. Sound Vib., 329 (2010), 1450-1459. https://doi.org/10.1016/j.jsv.2009.11.005 doi: 10.1016/j.jsv.2009.11.005
    [44] S. Iqbal, A. Javed, Application of optimal homotopy asymptotic method for the analytic solution of singular Lane-Emden type equation, Appl. Math. Comput., 217 (2011), 7753-7761. https://doi.org/10.1016/j.amc.2011.02.083 doi: 10.1016/j.amc.2011.02.083
    [45] M. Sheikholeslami, D. D. Ganji, Magnetohydrodynamic flow in a permeable channel filled with nanofluid, Scientia Iranica, Transaction B, Mechanical Engineering, 21 (2014), 203-212.
    [46] M. S. Hashmi, N. Khan, S. Iqbal, Optimal homotopy asymptotic method for solving nonlinear Fredholm integral equations of second kind, Appl. Math. Comput., 218 (2012), 10982-10989. https://doi.org/10.1016/j.amc.2012.04.059 doi: 10.1016/j.amc.2012.04.059
    [47] R. Nawaz, A. Khattak, M. Akbar, S. Ahsan, Z. Shah, A. Khan, Solution of fractional-order integro-differential equations using optimal homotopy asymptotic method, J. Therm. Anal. Calorim., 146 (2021), 1421-1433. https://doi.org/10.1007/s10973-020-09935-x
    [48] R. Nawaz, L. Zada, A. Khattak, M. Jibran, A. Khan, Optimum solutions of fractional order Zakharov-Kuznetsov equations, Complexity, 2019 (2019), 1-9. https://doi.org/10.1155/2019/1741958 doi: 10.1155/2019/1741958
    [49] R. Nawaz, S. Ahsan, M. Akbar, M. Farooq, M. Sulaiman, H. Ullah, et al., Semi analytical solutions of second type of three-dimensional Volterra integral equations, Int. J. Appl. Comput. Math., 6 (2020), 1-6. https://doi.org/10.1007/s40819-020-00814-5 doi: 10.1007/s40819-020-00814-5
    [50] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 204 (2006), Elsevier Science Limited.
    [51] Jr. R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Set. Syst., 18 (1986), 31-43. https://doi.org/10.1016/0165-0114(86)90026-6 doi: 10.1016/0165-0114(86)90026-6
    [52] O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [53] D. Ralescu, G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75 (1980), 562-570. https://doi.org/10.1016/0022-247X(80)90101-8 doi: 10.1016/0022-247X(80)90101-8
    [54] Z. Wang, The autocontinuity of set function and the fuzzy integral, J. Math. Anal. Appl., 99 (1984), 195-218. https://doi.org/10.1016/0022-247X(84)90243-9 doi: 10.1016/0022-247X(84)90243-9
    [55] A. Rivaz, F. Yousefi, Modified homotopy perturbation method for solving two-dimensional fuzzy Fredholm integral equation, Int. J. Appl. Math., 25 (2012), 591-602.
    [56] H. Thabet, S. Kendre, Modified least squares homotopy perturbation method for solving fractional partial differential equations, Malaya J. Matematik, 6 (2018), 420-427. https://doi.org/10.26637/MJM0602/0020 doi: 10.26637/MJM0602/0020
    [57] N. Herisanu, V. Marinca, G. Madescu, F. Dragan, Dynamic response of a permanent magnet synchronous generator to a wind gust, Energies, 12 (2019), 915. https://doi.org/10.3390/en12050915 doi: 10.3390/en12050915
    [58] M. Alaroud, M. Al-Smadi, R. Rozita Ahmad, U. K. Salma Din, An analytical numerical method for solving fuzzy fractional Volterra integro-differential equations, Symmetry, 11 (2019), 205. https://doi.org/10.3390/sym11020205 doi: 10.3390/sym11020205
    [59] V. Padmapriya, M. Kaliyappan, V. Parthiban, Solution of fuzzy fractional Integro-Differential equations using a domian decomposition method, J. Inf. Math. Sci., 9 (2017), 501-507.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1815) PDF downloads(118) Cited by(4)

Article outline

Figures and Tables

Figures(6)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog