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1. Introduction

Let H be a real Hilbert space, C be a nonempty, closed and convex subset of H, and F : H → H be
a mapping. The variational inequality problem (VIP in short) is to find a point x∗ ∈ C such that

⟨F(x∗), y − x∗⟩ ≥ 0, ∀y ∈ C. (1.1)

Denote the set of solutions of the VIP (1.1) by S. VIP is an important branch of nonlinear analysis,
closely related to many topics and has a large application in mechanics, optimization, traffic network
problems, equilibrium problems, and so on; see [1–3].

The projection method is one of the effective methods for solving the VIP (1.1). The simplest
projection method is the following single projection method:

x1 ∈ C, xn+1 = PC(xn − λnF(xn)), n ∈ N, (1.2)
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where N denotes the set of positive integers, PC : H → C is the metric projection, F : H → H is
an η-strongly monotone and L-Lipschitz continuous mapping, and λn ∈

(
0, 2η

L2

)
. The sequence {xn}

generated by (1.2) converges strongly to the unique solution of VIP (1.1).
However, the strong monotonicity imposed on F in (1.2) is a relatively strict condition, which is

generally difficult to satisfy. To weaken the restriction of strong monotonicity on F, Korpelevich [4]
introduced the following famous extragradient method (EGM in short): x1 ∈ C, andyn = PC(xn − λnF(xn)),

xn+1 = PC(xn − λnF(yn)), n ∈ N,
(1.3)

where F : H → H is a monotone and L-Lipschitz continuous, and λn ∈
(
0, 1

L

)
. The author proved that

the sequence {xn} generated by (1.3) converges weakly to a solution of the problem (1.1). In recent two
decades, many modified EGM have been proposed; see, e.g., [5–11].

Recently, Noinakorn et al. [12] introduced a new EGM with inertial technique [9,10,13] for solving
VIP (1.1) as follows: x0, x1 ∈ H, and

tn = (1 − ψn)(xn + αn(xn − xn−1)),
yn = PC(tn − τF(tn)),
xn+1 = PC(tn − τF(yn)), n ∈ N,

(1.4)

where F : H → H is a pseudomonotone and L-Lipschitz continuous mapping, {ψn} ⊂ (0, 1), 0 < τ < 1
L ,

α > 0, and {αn} ⊂ [0, α̂n] with

α̂n =


min

{
ϵn

∥xn − xn−1∥
,
α

2

}
, if xn , xn−1,

α

2
, otherwise.

The authors proved that, under some mixed conditions, the sequence {xn} generated by (1.4) converges
strongly to the solution of the VIP (1.1).

Tan et al. [14] proposed the following inertial subgradient EGM solving VIP (1.1): x0, x1 ∈ H, and
tn = (1 − ψn)(xn + αn(xn − xn−1)),
yn = PC(tn − λnF(tn)),
Tn = {x ∈ H|⟨tn − λnF(tn) − yn, x − yn⟩ ≤ 0},
xn+1 = PTn(tn − γλnρnF(yn)), n ∈ N,

(1.5)

where F : H → H is a pseudomonotone and L-Lipschitz continuous mapping, λ1 > 1, µ ∈ (0, 1),
σ > 1, α > 0, γ ∈ (0, 2

σ
), {ψn} ⊂ (0, 1),

αn =

 min
{

ξn

∥xn − xn−1∥
, α

}
, if xn , xn−1,

α, otherwise,

and

ρn = (1 − µ)
∥tn − yn∥

2

∥gn∥
2 , with gn = tn − yn − λn(F(tn) − F(yn)).
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At each step, the new stepsize λn+1 is generated by

λn+1 = min
{
λn + pn,

qn∥tn − yn∥

∥F(tn) − F(yn)∥

}
,

where {pn} ⊂ [0,∞) with
∑∞

n=1 pn < ∞ and {qn} ⊂ [1,∞) with limn→∞ qn = 1. The authors proved that
{xn} generated by (1.5) converges strongly to a solution of VIP (1.1).

In the inertial projection methods mentioned above, only one inertial step is included. Some authors
presented the new projection methods with double inertial steps for solving VIP (1.1). For example,
Yao et al. [15] proposed a subgradient exgragradient method with double inertial steps for solving a
pseudomonotone VIP. The authors proved the strong and weak convergence and obtained the linear
convergence rate of their method under some suitable conditions. Thong et al. [16] investigated a
single projection with double inertial extrapolation steps for solving a pseudomonotone VIP. The weak
convergence and linear convergence rate of their method are obtained under some suitable conditions.
Li and Wang [17] introduced a subgradient extragradient method with double inertial steps for solving
a quasi-monotone VIP and proved the weak convergence of the proposed method under some suitable
conditions. On the recent double inertial methods for solving VIP, the reader may refer to [18, 19].

In this paper, inspired by the results [12, 14–19], we introduce a new double inertial subgradient
extragradient method to solve the VIP (1.1). In our method, we use a new manner to compute tn

which includes tn in (1.4) and (1.5) as the special case. In [15–19], the mapping F is required to
be pseudomontone or quasi-monotone, while in our method the mapping F needs not to satisfy any
assumption of monotonicity. Two different self-adaptive step sizes are used to deal with the Lipschitz
constant of the mapping F. The strong convergence of the proposed method is proved under some new
conditions. Finally, some numerical examples are given to illustrate the convergence of our method
and compare with some related methods in literature. The numerical results show that our method has
certain advantages over the related methods.

2. Preliminaries

In this section, we give some definitions and lemmas which will be used in the next section. In the
next definitions and lemmas, we assume H be a real Hilbert space and C be a nonempty closed convex
subset of H.

Definition 2.1. Let x, y ∈ H. A mapping F : H → H is said to be

(i) monotone if ⟨F(x) − F(y), x − y⟩ ≥ 0;
(ii) pseudomonotone if

⟨F(x), y − x⟩ ≥ 0⇒ ⟨F(y), y − x⟩ ≥ 0;

(iii) quasimonotone if
⟨F(x), y − x⟩ > 0⇒ ⟨F(y), y − x⟩ ≥ 0;

(iv) paramonotone on C with respect to the subset B ⊂ C, if F is pseudomonotone on C and

y ∈ C, x ∈ B, ⟨F(y), y − x⟩ = 0⇒ y ∈ B.

It is obvious that (i)⇒(ii)⇒(iii) and (ii)⇒ (iv).
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Definition 2.2. For any x ∈ H, there exists a unique z ∈ C such that z = argminy∈C∥x− y∥. The element
z is denoted by PC(x), called the metric projection of x ∈ H onto C. That is,

PC(x) = argminy∈C∥y − x∥.

For any given x̄, v ∈ H with v , 0, let T = {x ∈ H : ⟨v, x− x̄⟩ ≤ 0}. Then for all y ∈ H, the projection
PT (y) is defined by

PT (y) = y −max
{

0,
⟨v, y − x̄⟩
∥v∥2

}
v. (2.1)

By (2.1), we see that the projection of any point onto a half-space can be computed explicitly; see [20,
Lemma 1.2] for the details.

Two important properties of PC are given in the following lemma. The other properties of PC can
be found in [21, Chapter 4].

Lemma 2.1. [21, Chapter 4] Let PC : H → C be the metric projection. Then, for all x ∈ H, the
following hold:
(i) z = PC(x) if and only if ⟨x − z, z − y⟩ ≥ 0 for all y ∈ C.
(ii) ∥PC(x) − y∥2 ≤ ∥x − y∥2 − ∥PC(x) − x∥2 for all y ∈ C.

Lemma 2.2. For any x, y ∈ H, it holds that

∥x + y∥2 ≤ ∥x∥2 + 2⟨y, x + y⟩.

Lemma 2.3. [22] Assume that the sequences {an} ⊂ [0,∞), {bn} ⊂ (0, 1) and {cn} ⊂ (0,∞) satisfy

an+1 ≤ (1 − bn)an + cn, ∀n ≥ 1.

If
∑∞

n=1 bn = ∞ and lim supn→∞
cn
bn
≤ 0 hold, then limn→∞ an = 0.

Lemma 2.4. [23] Let {an} be a sequence of non-negative real numbers such that there exists a
subsequence {an j} of {an} such that an j < an j+1 for all j ∈ N. Then there exists a non-decreasing
sequence {mk} of N such that limk→∞mk = ∞ and the following properties are satisfied by all
(sufficiently large) number k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

3. Main result

In this section, let C be a nonempty, closed and convex subset of a real Hilbert space H and F :
H → H be a mapping. Consider the following Minty VIP [24]:

find x∗ ∈ C such that ⟨F(y), y − x∗⟩ ≥ 0, ∀y ∈ C.

Denote the set of solution of Minty VIP above byΩ. Clearly,Ω is closed and convex. Since C is convex,
then Ω ⊂ S when F is continuous on C. Moreover, it is easy to show that if F is pseudomonotone on
C, then S = Ω; see [25].

In this section, we always assume that the following conditions hold:
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(A1) Ω , ∅.
(A2) If y ∈ C and z ∈ Ω satisfy ⟨F(y), y − z⟩ = 0, then y ∈ Ω.
(A3) F is L-Lipschitz continuous and sequentially weakly continuous on H.

Remark 3.1. (A1) and (A2) do not imply that F is paramonotone on C with respect to Ω because F is
not assumed to be pseudomonotone on C.

In the following example, F satisfies (A1)–(A3) but does not satisfy any monotone property on H.
Example 3.1. Let H = R2, C = [0, 1]× [0, 1] and F(x) = −(u+ x) for all x ∈ H, where u = (1, 1)T . It is
easy to see that S = Ω = {u} and F is Lipschitz continuous with the constant L = 1. For every y ∈ C,
⟨F(y), y − u⟩ = ⟨u + y, u − y⟩ = 0 implies that y = u. Hence (A1)–(A3) hold. For x = (0.8177, 0.5999)T

and y = (0.5629, 0.8247)T , we have ⟨F(x), y − x⟩ = 0.10349 and ⟨F(y), y − x⟩ = −0.01197, and hence
F is not quasimonotone on H.

Now we introduce the following double inertial subgradient extragradient method (DISEM) for
solving the VIP (1.1).

Algorithm 3.1 (DISEM)
Initialization. Choose the initial points x−1, x0, x1 ∈ H, the constants γ ∈ (0, 1), θ1 > 0, θ2 > 0,
and λ1 > 0, the sequences {αn}

∞
n=1 ⊂ [α, 1] with α ∈ (0, 1), {ϵ1,n}

∞
n=1 ⊂ (0,∞), {ϵ2,n}

∞
n=1 ⊂ (0,∞) and

{ψn}
∞
n=1 ⊂ (0, 1) satisfying

lim
n→∞

ψn = 0,
∞∑

n=1

ψn = ∞, lim
n→∞

ϵi,n

ψn
= 0, i = 1, 2.

Set n = 1.

Step 1. Given xn−2, xn−1, xn, compute tn = ψn(1 − αn)xn + (1 − ψn)wn, where wn = xn + θ1,n(xn − xn−1) +
θ2,n(xn−1 − xn−2) with

θ1,n =

 min
{
θ1,

ϵ1,n

∥xn − xn−1∥

}
, if xn , xn−1,

θ1, otherwise
(3.1)

and

θ2,n =

 min
{
θ2,

ϵ2,n

∥xn−1 − xn−2∥

}
, if xn−1 , xn−2,

θ2, otherwise.
(3.2)

Step 2. Compute yn = PC(tn − λnF(tn)). If yn = tn, stop and tn ∈ Ω; otherwise, go to Step 3.
Step 3. Compute xn+1 = PTn(tn − λnF(yn)), where

Tn = {z ∈ H : ⟨tn − λnF(tn) − yn, z − yn⟩ ≤ 0}.

Step 4. Update the new step size λn+1 by

λn+1 =


λn, if ∥F(tn) − F(yn)∥ = 0,

min
{
λn,

γ∥tn − yn∥

∥F(tn) − F(yn)∥

}
, otherwise

(3.3)
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or

λn+1 =

λn, if λn∥F(tn) − F(yn)∥ ≤ γ∥tn − yn∥,

γλn, otherwise.
(3.4)

Set n = n + 1 and go to Step 1.

Remark 3.2. If αn ≡ 1 in Algorithm 3.1, then tn = (1−ψn)wn is defined as a similar manner with (1.4)
and (1.5). In addition, for each n ∈ N, by Lemma 2.1 (i) it is easy to show that C ⊂ Tn for each n ∈ N.
Moreover, since Tn is a half-space, xn+1 can be explicitly computed by (2.1) and so only one projection
for yn is computed at each iteration.

Remark 3.3. By (3.1), (3.2) and the hypothesis on {ϵi,n}(i = 1, 2) and {ψn}, we have

lim
n→∞

θi,n∥xn−i+1 − xn−i∥

ψn
≤ lim

n→∞

ϵi,n

ψn
= 0, i = 1, 2. (3.5)

Since limn→∞ ψn = 0, αn > α, by (3.5) we see that for each z ∈ Ω, there exists Mz > 0 such that

sup
n∈N

{
∥z∥ +

1 − ψn

αn

(
θ1,n

ψn
∥xn − xn−1∥ +

θ2,n

ψn
∥xn−1 − xn−2∥

)}
≤ Mz. (3.6)

Note that (3.3) and (3.4) are the different manners of computing λn+1. The following lemma shows
that {λn} generated by (3.3 ) or (3.4) has the limit which is a crucial result for proving the convergence
of Algorithm 3.1.

Lemma 3.1. The sequence {λn} has the limit λ > 0.

Proof. Obviously, the sequence {λn} defined by (3.3) or (3.4) is nonnegative and nonincreasing, which
implies that the limit of {λn} exists. Set limn→∞ λn = λ. Now we show the desired result by the
following cases:

(i) {λn} is defined as in (3.3). If ∥F(tn) − F(yn)∥ , 0, by the L-Lipschitz continuity of F, we have

γ∥tn − yn∥

∥F(tn) − F(yn)∥
≥
γ∥tn − yn∥

L∥tn − yn∥
=
γ

L
,

which together with the definition of λn+1 implies that λn+1 ≥ min
{
λn,

γ

L

}
. If ∥F(tn) − F(yn)∥ = 0,

then λn+1 = λn ≥ min
{
λn,

γ

L

}
. So by a mathematical induction we get λn ≥ min

{
λ1,

γ

L

}
for all n ∈ N.

Therefore, we have λ ≥ min
{
λ1,

γ

L

}
.

(ii) {λn} is defined as in (3.4). Assume that λ = 0. Then there must exist a subsequence λnk of {λn}

such that
λnk∥F(tnk) − F(ynk)∥ > γ∥tnk − ynk∥, ∀k ∈ N.

Since F is L-Lipschitz continuous, we have

λnk L∥tnk − ynk∥ > γ∥tnk − ynk∥

and hence λnk > γ

L for all k ∈ N. Letting k → ∞ , from limk→∞ λnk = 0 we get γ

L ≤ 0. It is a
contradiction. Therefore, by the two cases above we can conclude λ > 0. The proof is complete. □
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Remark 3.4. By the proof process of Lemma 3.1, we see that there exists n0 ∈ N such that λn+1 defined
by (3.3) or (3.4) satisfies that

λn+1 ≤
γ∥tn − yn∥

∥F(tn) − F(yn)∥
, ∀n ≥ n0.

Lemma 3.2. There exists n0 ∈ N such that for each z ∈ Ω and n ≥ n0,

∥xn+1 − z∥2 ≤ ∥tn − z∥2 −
(
1 −

γλn

λn+1

)
(∥xn+1 − yn∥

2 + ∥yn − tn∥
2). (3.7)

Proof. For each z ∈ Ω and n ∈ N, by Remark 3.2 we have z ∈ C ⊂ Tn for each n ∈ N. From
Lemma 2.1 (i) and the definition of xn+1 it follows that

⟨z − xn+1, tn − λnF(yn) − xn+1⟩ ≤ 0.

That is
⟨xn+1 − tn, xn+1 − z⟩ ≤ λn⟨F(yn), z − xn+1⟩. (3.8)

Since xn+1 ∈ Tn, we have
⟨yn − tn, yn − xn+1⟩ ≤ λn⟨F(tn), xn+1 − yn⟩. (3.9)

On the other hand, we have

∥xn+1 − z∥2 = ∥yn − z∥2 − ∥xn+1 − yn∥
2 + 2⟨xn+1 − yn, xn+1 − z⟩

= ∥tn − z∥2 − ∥xn+1 − yn∥
2 − ∥yn − tn∥

2 + 2⟨yn − tn, yn − z⟩

+ 2⟨xn+1 − yn, xn+1 − z⟩

= ∥tn − z∥2 − ∥xn+1 − yn∥
2 − ∥yn − tn∥

2 + 2⟨yn − tn, yn − xn+1⟩

+ 2⟨xn+1 − tn, xn+1 − z⟩.

(3.10)

Substituting (3.8) and (3.9) into (3.10) we get

∥xn+1 − z∥2 ≤ ∥tn − z∥2 − ∥xn+1 − yn∥
2 − ∥yn − tn∥

2 + 2λn⟨F(yn), z − xn+1⟩

+ 2λn⟨F(tn), xn+1 − yn⟩

= ∥tn − z∥2 − ∥xn+1 − yn∥
2 − ∥yn − tn∥

2 + 2λn⟨F(yn), z − yn⟩

+ 2λn⟨F(tn) − F(yn), xn+1 − yn⟩.

(3.11)

By Remark 3.4, there exists n0 ∈ N such that

λn+1 ≤
γ∥tn − yn∥

∥F(tn) − F(yn)∥
, ∀n ≥ n0.

Hence by (3.11) we have

∥xn+1 − z∥2 ≤ ∥tn − z∥2 − ∥xn+1 − yn∥
2 − ∥yn − tn∥

2 + 2λn⟨F(yn), z − yn⟩

+ 2λn∥F(tn) − F(yn)∥∥xn+1 − yn∥

≤ ∥tn − z∥2 − ∥xn+1 − yn∥
2 − ∥yn − tn∥

2 + 2λn⟨F(yn), z − yn⟩

+
2γλn

λn+1
∥tn − yn∥∥xn+1 − yn∥

≤ ∥tn − z∥2 −
(
1 −

γλn

λn+1

)
(∥xn+1 − yn∥

2 + ∥yn − tn∥
2)

+ 2λn⟨F(yn), z − yn⟩, ∀n ≥ n0.

(3.12)
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Since yn ∈ C and z ∈ Ω, we have ⟨F(yn), yn−z⟩ ≥ 0. Substituting this result into (3.12) we can get (3.7).
The proof is complete. □

Lemma 3.3. The sequences {xn} and {tn} are bounded.

Proof. By Lemma 3.1 we have

lim
n→∞

(
1 −

γλn

λn+1

)
= 1 − γ < 1.

Hence there exist γ′ ∈ (γ, 1) and n1 ∈ N such that

1 −
γλn

λn+1
> 1 − γ′, ∀n ≥ n1. (3.13)

Set n2 = max{n0, n1}. For each z ∈ Ω, by (3.7) and (3.13) we have

∥xn+1 − z∥2 ≤ ∥tn − z∥2 −
(
1 − γ′

)
(∥xn+1 − yn∥

2 + ∥yn − tn∥
2)

≤ ∥tn − z∥2, n ≥ n2.
(3.14)

From (3.7) and the definition of tn it holds

∥tn − z∥

= ∥ψn(1 − αn)xn + (1 − ψn)wn − z∥

= ∥ψn((1 − αn)xn − z) + (1 − ψn)(wn − z)∥
≤ ∥ψn((1 − αn)xn − z)∥ + (1 − ψn)∥wn − z∥

= ∥ψn((1 − αn)xn − z)∥ + (1 − ψn)∥xn + θ1,n(xn − xn−1) + θ2,n(xn−1 − xn−2) − z∥

≤ ψn [(1 − αn)∥xn − z∥ + αn∥z∥] + (1 − ψn)[∥xn − z∥ + θ1,n∥xn − xn−1∥

+ θ2,n∥xn−1 − xn−2∥]
= (1 − ψnαn)∥xn − z∥ + ψnαn∥z∥ + (1 − ψn)[θ1,n∥xn − xn−1∥ + θ2,n∥xn−1 − xn−2∥]

= (1 − ψnαn)∥xn − z∥ + ψnαn

[
∥z∥ +

1 − ψn

αn

(
θ1,n

ψn
∥xn − xn−1∥ +

θ2,n

ψn
∥xn−1 − xn−2∥

)]
≤ (1 − ψnαn)∥xn − z∥ + ψnαnMz, ∀n ≥ n0.

(3.15)

Substituting (3.15) into (3.14) we have

∥xn+1 − z∥ ≤ ∥tn − z∥

≤ (1 − ψnαn)∥xn − z∥ + ψnαnMz

≤ max{∥xn − z∥,Mz}

≤ . . . ≤ max{∥xn0 − z∥,Mz}, ∀n ≥ n2.

(3.16)

It follows that {xn} is bounded and so is {tn} by (3.16). The proof is complete. □

Let x∗ = PΩ(0). We have x∗ ∈ S because of Ω ⊂ S. In the position we give the main result on
Algorithm 3.1 as follows.

Theorem 3.1. The sequence {xn} generated by Algorithm 3.1 converges strongly to the element x∗.
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Proof. For each n ∈ N, by the definition of tn and Lemma 2.2 we have

∥tn − x∗∥2 = ∥ψn(1 − αn)xn + (1 − ψn)wn − x∗∥2

= ∥ψn((1 − αn)xn − x∗) + (1 − ψn)(wn − x∗)∥2

≤ (1 − ψn)2∥wn − x∗∥2 + 2ψn⟨(1 − αn)xn − x∗, tn − x∗⟩

= (1 − ψn)2∥xn + θ1,n(xn − xn−1) + θ2,n(xn−1 − xn−2) − x∗∥2

+ 2ψn[(1 − αn)⟨xn − x∗, tn − x∗⟩ + αn⟨−x∗, tn − x∗⟩].

(3.17)

Note that

∥xn + θ1,n(xn − xn−1) + θ2,n(xn−1 − xn−2) − x∗∥2

= ∥xn − x∗∥2 + θ2
1,n∥xn − xn−1∥

2 + θ2
2,n∥xn−1 − xn−2∥

2

+ 2θ1,n⟨xn − xn−1, xn − x∗⟩ + 2θ2,n⟨xn−1 − xn−2, xn − x∗⟩

+ 2θ1,nθ2,n⟨xn − xn−1, xn−1 − xn−2⟩

≤ ∥xn − x∗∥2 + θ2
1,n∥xn − xn−1∥

2 + θ2
2,n∥xn−1 − xn−2∥

2

+ 2θ1,n∥xn − xn−1∥∥xn − x∗∥ + 2θ2,n∥xn−1 − xn−2∥∥xn − x∗∥

+ 2θ1,nθ2,n∥xn − xn−1∥∥xn−1 − xn−2∥.

(3.18)

Substituting (3.18) into (3.17) we get

∥tn − x∗∥2 ≤ (1 − ψn)2[∥xn − x∗∥2 + θ2
1,n∥xn − xn−1∥

2 + θ2
2,n∥xn−1 − xn−2∥

2

+ 2θ1,n∥xn − xn−1∥∥xn − x∗∥ + 2θ2,n∥xn−1 − xn−2∥∥xn − x∗∥

+ 2θ1,nθ2,n∥xn − xn−1∥∥xn−1 − xn−2∥
]
+ 2ψn(1 − αn)∥xn − x∗∥∥tn − x∗∥

+ 2ψnαn⟨−x∗, tn − x∗⟩

≤ (1 − ψn)2[∥xn − x∗∥2 + θ2
1,n∥xn − xn−1∥

2 + θ2
2,n∥xn−1 − xn−2∥

2

+ 2θ1,n∥xn − xn−1∥∥xn − x∗∥ + 2θ2,n∥xn−1 − xn−2∥∥xn − x∗∥

+ 2θ1,nθ2,n∥xn − xn−1∥∥xn−1 − xn−2∥] + ψn(1 − αn)(∥xn − x∗∥2 + ∥tn − x∗∥2)
+ 2ψnαn⟨−x∗, tn − x∗⟩.
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It follows that

∥tn − x∗∥2 ≤
1 − ψn + ψ

2
n − ψnαn

1 − ψn + ψnαn
∥xn − x∗∥2 +

(1 − ψn)2

1 − ψn + ψnαn
[θ2

1,n∥xn − xn−1∥
2

+ θ2
2,n∥xn−1 − xn−2∥

2 + 2θ1,n∥xn − xn−1∥∥xn − x∗∥

+ 2θ2,n∥xn−1 − xn−2∥∥xn − x∗∥ + 2θ1,nθ2,n∥xn − xn−1∥∥xn−1 − xn−2∥]

+
2ψnαn

1 − ψn + ψnαn
⟨−x∗, tn − x∗⟩

=

(
1 −

2ψnαn

1 − ψn + ψnαn

)
∥xn − x∗∥2 +

ψ2
n

1 − ψn + ψnαn
∥xn − x∗∥2

+
(1 − ψn)2

1 − ψn + ψnαn
[θ2

1,n∥xn − xn−1∥
2 + θ2

2,n∥xn−1 − xn−2∥
2

+ 2θ1,n∥xn − xn−1∥∥xn − x∗∥ + 2θ2,n∥xn−1 − xn−2∥∥xn − x∗∥

+ 2θ1,nθ2,n∥xn − xn−1∥∥xn−1 − xn−2∥] +
2ψnαn

1 − ψn + ψnαn
⟨−x∗, tn − x∗⟩

=(1 − γn)∥xn − x∗∥2 + φn,

(3.19)

where γn =
2ψnαn

1−ψn+ψnαn
and

φn =
γnψn

2αn
∥xn − x∗∥2 +

γn(1 − ψn)2

2αnψn
[θ2

1,n∥xn − xn−1∥
2 + θ2

2,n∥xn−1 − xn−2∥
2

+ 2θ1,n∥xn − xn−1∥∥xn − x∗∥ + 2θ2,n∥xn−1 − xn−2∥∥xn − x∗∥

+ 2θ1,nθ2,n∥xn − xn−1∥∥xn−1 − xn−2∥] + γn⟨−x∗, tn − xn⟩ + γn⟨−x∗, xn − x∗⟩.

Substituting (3.19) into (3.7) we have

∥xn+1 − x∗∥2 ≤ (1 − γn)∥xn − x∗∥2 + φn − (1 − γ′)(∥xn+1 − yn∥
2 + ∥yn − tn∥

2)

≤ (1 − γn)∥xn − x∗∥2 + φn, ∀n ≥ n2.
(3.20)

Next we prove the strong convergence of {∥xn − x∗∥2} to zero by considering the following two cases.

Case 1. Suppose there exists N ∈ N with N > n2 such that {∥xn − x∗∥2} is monotonically nonincreasing
for n ≥ N. Then {∥xn − x∗∥2} is convergent and hence

∥xn − x∗∥2 − ∥xn+1 − x∗∥2 → 0. (3.21)
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Since limn→∞ ψn = 0, by the boundedness of {xn} and (3.5) we get

∥tn − xn∥ = ∥ψn(1 − αn)xn + (1 − ψn)wn − xn∥

≤ ψn(1 − αn)∥xn∥ + ∥(1 − ψn)wn − xn∥

= ψn(1 − αn)∥xn∥ + ∥(1 − ψn)[xn + θ1,n(xn − xn−1) + θ2,n(xn−1 − xn−2)]
− xn∥

= ψn(1 − αn)∥xn∥ + ∥(1 − ψn)[θ1,n(xn − xn−1) + θ2,n(xn−1 − xn−2)]
− ψnxn∥

≤ ψn(1 − αn)∥xn∥ + (1 − ψn)(θ1,n∥xn − xn−1∥ + θ2,n∥xn−1 − xn−2∥)
+ ψn∥xn∥

= ψn(2 − αn)∥xn∥ + (1 − ψn)ψn

(
θ1,n∥xn − xn−1∥

ψn
+
θ2,n∥xn−1 − xn−2∥

ψn

)
→ 0, as n→ ∞.

(3.22)

On the other hand, by (3.7) and (3.16) with z = x∗ we have

∥xn+1 − x∗∥2

≤ [(1 − ψnαn)∥xn − x∗∥ + ψnαnMx∗]2 − (1 − γ′)(∥xn+1 − yn∥
2 + ∥yn − tn∥

2)
≤ (1 − ψnαn)∥xn − x∗∥2 + ψnαnM2

x∗ − (1 − γ′)(∥xn+1 − yn∥
2 + ∥yn − tn∥

2)
≤ ∥xn − x∗∥2 + ψnαnM2

x∗ − (1 − γ′)(∥xn+1 − yn∥
2 + ∥yn − tn∥

2)

and hence

(1 − γ′)(∥xn+1 − yn∥
2 + ∥yn − tn∥

2) ≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 + ψnαnM2
x∗ (3.23)

for all n ≥ N. Since limn→∞ ψn = 0, letting n→ ∞ in (3.23), by (3.21) we get

lim
n→∞
∥yn − xn+1∥

2 = 0 and lim
n→∞
∥tn − yn∥

2 = 0. (3.24)

From Lemma 3.2 it follows that {yn} is bounded.
Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̂, where ⇀ denotes

the weak convergence. From (3.22) and (3.24) we see that tnk ⇀ x̂, ynk ⇀ x̂ and x̂ ∈ C. Without loss
generality we may assume that

lim sup
n→∞

⟨−x∗, xn − x∗⟩ = lim
k→∞
⟨−x∗, xnk − x∗⟩ = ⟨−x∗, x̂ − x∗⟩. (3.25)

From (3.24) we have

∥tn − xn+1∥ ≤ ∥tn − yn∥ + ∥yn − xn+1∥ → 0, as n→ ∞. (3.26)

Let x̄ ∈ Ω be a fixed point. By the definition of ynk and Lemma 2.1 (i) we have

⟨ynk − (tnk − λnk F(tnk))⟩ ≥ ⟨x̄ − ynk⟩. (3.27)
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Letting k → ∞ in (3.27), by Lemma 3.1, (A3) and (3.24) we get

⟨F(x̂), x̄ − x̂⟩ ≥ 0.

In addition, since x̂ ∈ C and x̄ ∈ Ω, we have

⟨F(x̂), x̄ − x̂⟩ ≤ 0.

Hence ⟨F(x̂), x̄ − x̂⟩ = 0. From (A2) it follows that x̂ ∈ Ω. This result with (3.25) and Lemma 2.1 (i)
leads to that

lim sup
n→∞

⟨−x∗, xn − x∗⟩ = ⟨−x∗, x̂ − x∗⟩ ≤ 0. (3.28)

Since limn→∞ ψn = 0, there exists n1 ∈ N such that ψn <
1
2 for all n ≥ n1, which implies that

γn =
2ψnαn

1 − ψn + ψnαn
∈ (0, 1), ∀n ≥ n1.

In addition, since αψn ≤ γn ≤ 4ψn for all n ∈ N, by the hypothesis on {ψn} we get

lim
n→∞

γn = 0 and
∞∑

n=1

γn = ∞. (3.29)

By the definitions of γn and {φn} we have

φn

γn
=

(1 − ψn)2

2αn

[
ψn

θ2
1,n

ψ2
n
∥xn − xn−1∥

2 + ψn

θ2
2,n

ψ2
n
∥xn−1 − xn−2∥

2

+
2θ1,n

ψn
∥xn − xn−1∥∥xn − x∗∥ +

2θ2,n

ψn
∥xn−1 − xn−2∥∥xn − x∗∥

+ ψn
2θ1,nθ2,n

ψ2
n
∥xn − xn−1∥∥xn−1 − xn−2∥

]
+ ⟨−x∗, tn − xn⟩ + ⟨−x∗, xn − x∗⟩

+
ψn

2αn
∥xn − x∗∥2.

(3.30)

Letting n→ ∞ in (3.30), since {xn} is bounded, αn > α > 0, ψn → 0, by (3.5), (3.22) and (3.28) we get

lim sup
n→∞

φn

γn
≤ 0. (3.31)

Applying Lemma 2.3 to (3.21) and using (3.29) and (3.31), we obtain limn→∞ ∥xn − x∗∥ = 0.

Case 2. Suppose there is a subsequence {ni} of {n} such that

∥xni − x∗∥ ≤ ∥xni+1 − x∗∥,∀i ∈ N.

From Lemma 2.4 it follows that there exists a sequence {mk} ⊂ N with mk → ∞ such that

∥xmk − x∗∥ ≤ ∥xmk+1 − x∗∥ and ∥xk − x∗∥ ≤ ∥xmk+1 − x∗∥,∀k ∈ N. (3.32)

AIMS Mathematics Volume 9, Issue 8, 20956–20975.



20968

Replacing n in (3.20) with mk and using (3.32) we obtain

∥xmk+1 − x∗∥2 ≤
(
1 − γmk

)
∥xmk − x∗∥2 + φmk

≤
(
1 − γmk

)
∥xmk+1 − x∗∥2 + φmk

and hence
∥xmk+1 − x∗∥2 ≤

φmk

γmk

, ∀k ∈ N with mk ≥ n0. (3.33)

Note that by a similar process of showing (3.32) as in Case 1 we can get

lim sup
k→∞

φnk

γnk

≤ 0,

which together with (3.33) leads to that

lim sup
k→∞

∥xmk+1 − x∗∥2 = 0. (3.34)

Combining (3.32) with (3.34) we have

lim sup
k→∞

∥xk − x∗∥2 ≤ lim sup
k→∞

∥xmk+1 − x∗∥2 = 0.

Hence lim supk→∞ ∥xk − x∗∥2 = 0. The proof is complete. □

Remark 3.5. If replacing the conditions (A1) and (A2) with the following

(A1’) S , ∅ and (A2’) F is pseudomonotone on C with respect to S, and replacing Ω with S in the
proof lines of Lemma 3.2, Lemma 3.3 and Theorem 3.1, we still can obtain the same results. In fact,
the conditions (A1’) and (A2’) are often used in the related literature.

4. Numerical examples

In this section, we use some numerical examples to illustrate the convergence of Algorithm 3.1
and compare the numerical results with Algorithm 3.1 of Noinakorn et al. [12] (denoted by Algorithm
EXN), Algorithm 3.1 of Tan et al. [14] (denoted by Algorithm EXT). The codes of the three algorithms
for the following numerical examples are written by Matlab R2016b running on a MacBook air
Desktop with Core(TM) i5-4260U CPU @1.40GHz 2.00GHz, RAM 4GB.

In the following Examples 4.1–4.3, we use the following parameters and control sequences for
Algorithm 3.1, Algorithm EXN and Algorithm EXT:

• Algorithm 3.1: ϵ1,n = ϵ2,n =
100

(1+n)2 , {αn}, γ, λ1, θ1, θ2 are as follows:

Case 1. ψn =
90

100 + n
, αn = 0.7 + 0.09n, γ = 0.2, λ1 = 0.3, θ1 = 0.3, θ2 = 0.5;

Case 2. ψn =
80

100 + n
, αn = 0.5 + 0.09n, γ = 0.8, λ1 = 0.8, θ1 = 0.6, θ2 = 0.1;

Case 3. ψn =
70

100 + n
, αn = 0.7 +

1
n
, γ = 0.5, λ1 = 0.5, θ1 = 0.5, θ2 = 0.5,

Case 4. ψn =
60

100 + n
, αn = 0.5 +

1
n
, γ = 0.2, λ1 = 0.3, θ1 = 0.3, θ2 = 0.5;

Case 5. ψn =
50

100 + n
, αn = 0.5, γ = 0.5, λ1 = 0.5, θ1 = 0.5, θ2 = 0.5.
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• Algorithm EXT: λ1 = 0.5, µ = 0.4, γ = 1.5, α = 0.4, ψn =
1

n+1 , ξn =
100

(n+1)2 , pn =
1

(n+1)1.1 , and qn =
1+n

n .
• Algorithm EXN: τ = 0.7

L , α = 0.6, ϵn =
1

(n+1)2 , ψn =
1

n+2 , where L is the Lipschitz constant of the
mapping F.

Remark 4.1. The parameters and control sequences above for Algorithm EXN and Algorithm EXT
were used in [12] and [14]. For the better comparison we continue to use the parameters and control
sequences for Algorithm EXN and Algorithm EXT in the following numerical examples.

In the first example, since F is not pseudomonotone on C, Algorithm EXN, Algorithm EXT and
many other related algorithms in the literature can not be applied to the example.

Example 4.1. Let H = Rm, C = [0, π]× [0, π]× [0, 1]×· · ·× [0, 1], F : H → H be a mapping defined by

F(x) = (x2 + cos(x2), x1 + sin(x1), x3, · · · , xm), ∀x = (x1, · · · , xm) ∈ H.

It follows that S = Ω = {0} and so (A1) holds. We show that (A2) and (A3) hold. For
x = (x1, · · · , xm)T ∈ C, since

∑m
i=3 x2

i ≥ 0, x2 + cos(x2) > 0, and x1 + sin(x1) ≥ 0, it is easy to see
that ⟨F(x), x⟩ =

∑m
i=3 x2

i + x1(x2 + cos(x2)) + x2(x1 + sin(x1)) = 0 is if and only if x = 0. So (A2) holds.
For x, y ∈ H, we have

∥F(x) − F(y)∥2 = (x2 − y2 + cos(x2) − cos(y2))2 + (x1 − y1 + sin(x1) − sin(x1))2 +

m∑
i=3

(xi − yi)2

≤ 4
m∑

i=1

(xi − yi)2 = 4∥x − y∥2.

It follows that F is 2-Lipschitz continuous on H and so (A3) holds.

For x = (2.8677, 0.9806, 0.9005, 0, · · · , 0)T and y = (1.0688, 1.9091, 0.8044, 0, · · · , 0)T , we have

⟨F(x), y − x⟩ > 0 and ⟨F(y), y − x⟩ < 0.

Hence, F is not quasimonotone on C.

We take the initial point x−1 = x0 = x1 = (1, 1, · · · , 1)T ∈ C and use ∥xn∥ ≤ 10−4 as the stopping
criterion of Algorithm 3.1. In the process of performing Algorithm 3.1, the step size λn is computed
by (3.3). The computed results for Algorithm 3.1 with the different dimension m are shown in Figure 1.
From the curves in Figure 1 we see that xn → 0.
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(d) m = 500

Figure 1. Numerical results of Algorithm 3.1 for Example 4.1.

For comparing the computation results with other algorithms, the mappings F in the following
examples are pseudomonotone on C and Ω , ∅. By Remark 3.5 Algorithm 3.1 still can be applied to
the examples.

Example 4.2. [9, 12, Example 4.1] Let F : Rm → Rm be a mapping defined by

F = NNT + B + D,

where N = rand(m) is a random matrix, B = 0.5K − 0.5KT with K = rand(m) is a skew-symmetric
matrix, and D = diag(rand(m, 1)) is a diagonal matrix. The feasible set

C = {x ∈ Rm : −2 ≤ xi ≤ 5, i = 1, 2, · · · ,m}.

It follows that F is monotone (hence it is pseudomonotone) and L-Lipschitz continuous with L = ∥F∥.
The unique solution of the VIP (1.1) with the mapping F in this example is x∗ = 0. Since F is
continuous and psuedomonotone on C, and C is convex, it has Ω = S and so (A1) holds. In addition,
since the matrix NNT + B + D is positive definite [26], ⟨F(y), y⟩ = yT (NNT + B + D)y = 0 implies that
y = 0. So (A2) holds.

We choose the initial points x0, x−1, x1 = (1, · · · , 1)T for Algorithm 3.1 and x0 = x1 = (1, · · · , 1)T

for Algorithm EXN and Algorithm EXT, and use ∥xn∥ < 10−4 as the common stop criterion for all the
algorithms. In the process of performing Algorithm 3.1, the step size λn is computed by (3.4). Figure 2
illustrates the curves and Table 1 gives the CPU time in seconds of the numerical results for these
algorithms with the different dimension.
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(c) m = 200
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Figure 2. Numerical results of all the algorithms for Example 4.2.

Table 1. CPU time of three algorithms for Example 4.2.

Algorithm 3.1 Algorithm EXN Algorithm EXT

Case 1 Case 2 Case 3 Case 4 Case 5
m = 50 0.02153 0.02071 0.01973 0.01627 0.01771 0.01526 0.02115
m = 100 0.02013 0.02114 0.02257 0.02331 0.03007 0.04877 0.01776
m = 200 0.03685 0.03234 0.03367 0.03213 0.03281 0.08586 0.02367
m = 500 0.21339 0.21312 0.23498 0.15074 0.20881 1.77414 0.27757

Example 4.3. [12, Example 4.3] Let F : Rm → Rm be defined by

F(x) = (5 − ∥x∥)x, ∀x ∈ Rm.

It follows that F is L-Lipschitz continuous with L = 11 and pseudomonotone but not monotone on Rm

(see for more details [27]). The feasible set is C = {x ∈ Rm : ∥x∥ ≤ 3}. The unique solution of the
VIP (1.1) with the mapping F in this example is x∗ = 0. It is obvious that the conditions (A1) and (A3)
hold. For x ∈ C, since ∥x∥ ≤ 3, ⟨F(x), x⟩ = (5 − ∥x∥)∥x∥2 = 0 is if and only if x = 0 and so (A2) holds.
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We take the initial points x−1 = x0 = x1 = (1, 1, · · · , 1)T for our Algorithm 3.1 and x0 = x1 =

(1, 1, · · · , 1)T for Algorithm EXN and Algorithm EXT, and use ∥xn∥ < 10−5 as the common stop
criterion for all the algorithms. In the process of performing Algorithm 3.1, the step size λn is computed
by (3.4). Figure 3 illustrates the curves and Table 2 gives the CPU time in seconds of the numerical
results for these algorithms with the different dimension m.
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(b) m = 1000
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(c) m = 3000
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Figure 3. Numerical results of all the algorithms for Example 4.3.

Table 2. CPU time of three algorithms for Example 4.3.

Algorithm 3.1 Algorithm EXN Algorithm EXT

Case 1 Case 2 Case 3 Case 4 Case 5
m = 500 0.00233 0.00147 0.00973 0.00211 0.00188 0.00249 0.00547
m = 1000 0.01803 0.02136 0.01901 0.02341 0.02055 0.01568 0.01612
m = 3000 0.01698 0.01766 0.01518 0.01809 0.01663 0.01044 0.01719
m = 5000 0.01104 0.01113 0.01108 0.01129 0.01167 0.01276 0.01397

For the numerical results of the three algorithms for Examples 4.2 and 4.3, we summarized as
follows. For Example 4.2, Algorithm 3.1 needs the less CPU time than another two algorithms and for
Example 4.3, CPU time has no obvious difference for the three algorithms. From the curves in Figure 2

AIMS Mathematics Volume 9, Issue 8, 20956–20975.
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we see that Algorithm 3.1 has the less numbers of iterations than the another two algorithms when the
algorithms stop. From the curves in Figure 3 we see that the numbers of iterations of Algorithm 3.1
are different when the algorithm stops, which implies that the numbers of iterations are sensitive to the
setting of the control parameters and sequences (especially the setting of {ψn}) for Algorithm 3.1. For
Example 4.3, Algorithm EXN needs the most numbers of iterations and Algorithm 3.1 needs the less
or more numbers of iterations than Algorithm EXT for the different setting of control parameters and
sequences. Overall, from the numerical results for Examples 4.2 and 4.3, we see that our Algorithm 3.1
has certain competitiveness than the other two algorithms.

5. Conclusions

In this paper, we constructed a new double inertial subgradient extragradient algorithm for solving
a non-monotone variational inequality problem in a Hilbert space. Without prior knowledge of the
Lipschitz constant of the involved mapping, we use a dynamic manner to update the step-size in
our algorithm. Some new conditions are used to guarantee the strong convergence of the proposed
method. Some artificially constructed numerical examples and an applied problem of image recovery
are solved by our algorithm and some other related algorithms. The results show the effectiveness and
competitiveness of our algorithm with other compared algorithms.
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