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the underlying random variables’ discrete box and ellipsoidal distributions. The impact of transaction
costs on optimal portfolio selection is examined through numerical examples under a robust return-risk
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losses, making it a valuable tool for investors that seek to navigate uncertain financial markets.
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1. Introduction

The nature of financial markets is fundamentally characterized by uncertainty, as the behavior of
asset returns demonstrates stochastic tendencies that challenge conventional portfolio optimization
strategies [12,20,40]. In this context, the importance of risk management is of the utmost significance,
and the necessity for robust optimization models that can withstand various market scenarios is
apparent [18, 19, 26].

Historically, the establishment of the modern portfolio theory can be traced to Harry Markowitz in
his seminal work on the mean-variance model. This innovative approach introduced the concept of
diversification, thereby highlighting the significance of considering both return and risk in portfolio
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selection. The contributions of [25] revolutionized the field, leading to significant advancements in
the discipline and paving the way for numerous later models and theories [22]. Nevertheless, like any
pioneering study, the mean-variance model had intrinsic limitations [6, 33]. Researchers recognized
the necessity for more precise risk measures, which prompted JP Morgan to introduce Value-at-Risk
(VaR) in the early 1990s. VaR provided a more tangible comprehension of risk by emphasizing
potential losses in a portfolio within specific periods. However, it had several drawbacks, especially
when applied to distributions that were not normal [3, 4]. As a result, Conditional Value-at-Risk
(CVaR) emerged as a risk measure that addressed the limitations of VaR and offered a more coherent
approach [4,17]. CVaR considers both the likelihood and size of a loss. Additionally, it accommodates
distributions that are not symmetrical, while still maintaining the desired coherence properties [30].

The research conducted by [31] and [1] provided a comprehensive analyses of the development of
these risk measures and the inherent challenges they provide. The study by [39] emphasized that many
existing models, as seen [41], used unrealistic assumptions, such as assuming complete knowledge of
the distribution of random parameters. This is an important insight since there are a lot of uncertainties
in the real world of finance, and making uninformed assumptions can lead to misguided outcomes.

Against this backdrop, this research introduces a significant paradigm shift: adopting the Entropic
Value-at-Risk (EVaR) as the primary risk measure. The coherence of CVaR as a risk measure has
been demonstrated in previous studies [4]. However, it is worth noting that CVaR mostly relies
on the extreme values of the distribution. Furthermore, empirical evidence has demonstrated that
it lacks smoothness. In a notable study, [1] showcased the potential of EVaR in computationally
addressing challenging stochastic optimization problems that would otherwise be intractable using
CVaR. [5] demonstrated that EVAR is a computationally efficient and coherent risk measure that
can quantify risk—it meets the axioms of monotonicity, sub-additivity, positive homogeneity, and
translation invariance as introduced by [4]. The portfolio optimization strategy that utilized EVaR
was examined by [38]. Then, the results were juxtaposed with alternative downside risk measures,
namely VaR and CVaR. Results from their research showed that EVaR exhibited the most effective risk
resolution. Recently, [15] introduced EVaR for uncertain random variables of the portfolio selection
problem, established a mean-EVaR model, and demonstrated its superior diversification over the mean-
variance model through numerical examples and indices.

EVaR has emerged as a significant risk measure, capturing the uncertainty in asset returns with
a probabilistic approach [1]. However, in real-world scenarios, the exact probability distribution of
returns might be uncertain [32]. This leads to the introduction of the worst-case EVaR (WEVaR),
which considers the most adverse distribution within a set of plausible distributions. Such a measure
ensures that the portfolio is optimized, keeping the worst possible outcome in mind, thus providing
a more conservative and safer approach to investments. This approach was pursued by [34] albeit
with the use of CVaR. [34], examined the worst-case CVaR (WCVaR) based portfolio optimization
under uncertain distributions, simplifying them to linear programming for asset allocation in power
markets. [21] applied WCVaR with parallelepiped uncertainty to enhance portfolio robustness and
mitigate risk. Furthermore, there has been an increase in the exploration of theories and methodologies
that address incomplete information across various fields, as illustrated in [7, 8, 24, 37]. [23] presented
a distributionally robust optimization model using kernel density estimation and mean EVaR, offering
tractable solutions and showing promising empirical results for portfolio and project management.
Taking inspiration from the aforementioned research works, this study aims to present robust portfolio
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optimization models that incorporate WEVaR, ensuring that the portfolios are optimized for expected
returns and resilient to extreme market downturns. This study explores the mathematical intricacies of
EVaR and its worst-case counterpart, providing a comprehensive framework for their integration into
the portfolio optimization models. Furthermore, this study examines discrete distributions, particularly
the box and ellipsoidal distributions, to understand their implications in the robust optimization context.

However, the introduction of EVaR is just one facet of this research’s novelty. Beyond selecting
assets based on expected returns and risks, practitioners must grapple with the on-ground realities
of the financial world, chief among them being transaction costs. The findings of [9] showed that
unexpected returns to transaction costs contributed to about 40% of losses in the financial market.
Recognizing this critical gap, this research integrates transaction costs into the portfolio optimization
model. In light of the vital role that transaction costs play in portfolio optimization, the discussion
extends beyond the foundational perspectives provided by [29] and [42], who highlighted the impact
of taxes, liquidity costs, and brokerage fees on portfolio decisions [36]. Given the dynamic nature of
portfolio management, this paper integrates the concept of transaction costs influencing the strategic
decisions of portfolio adjustments. This approach acknowledges the findings of [2], who demonstrated
how transaction costs can affected prices and liquidity over more extended periods and aligns with the
analyses by [10], who explored the implications of transaction costs on risk assessment and portfolio
diversification strategies. By adopting a WEVaR framework, this study explicitly accommodates
transaction costs, thereby enhancing the model’s practical relevance in handling the complexities of
real-world portfolio construction.

[34] and [35] investigated portfolio optimization models that assessed return and risk under partially
known information about the random variables. Their methodology employed min-max optimization
to consider the WCVaR, with separate worst-case distributions assumed to evaluate returns and risks.
This approach might be considered overly cautious, leading to different distributions for the random
variable in the return and risk computations. Ideally, the distribution should remain consistent across
the return and risk evaluations.

Drawing on the robust optimization frameworks highlighted in [34] and [35], this research advances
these models by ensuring a consistent distribution of random parameters across return and risk
dimensions. This uniformity is significant. Without it, the models may inadvertently harbor biases or
inconsistencies, potentially resulting in sub-optimal portfolio selections. In contrast to [34, 35] robust
return-risk portfolio strategies, this study accounts for uniform uncertainty distribution in both return
and risk assessments, thus providing a more integrated and unified approach.

This research pursues a comprehensive approach to portfolio optimization by integrating the worst-
case EVaR framework with transaction costs, uniquely ensuring a consistent distribution across the risk
and return dimensions. The study merges these critical aspects, thus presenting a robust optimization
model that effectively balances rigorous risk assessment with practical challenges in financial markets.
This approach significantly advances robust portfolio management, thereby enhancing portfolio
resilience and adaptability under uncertain market conditions.

This study is structured as follows: Section 2 presents the robust portfolio optimization models,
including the concept of WEVaR. In Section 3, the paper discusses how the worst-case portfolio
strategies can be reformulated as tractable problems when the distribution information of the random
returns is incomplete. In Section 4, transaction costs are incorporated into the proposed models.
Section 5 presents a practical application. The final portion offers the concluding remarks.
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2. Robust portfolio optimization models with WEVaR

This section presents a coherent risk measure, distribution, and the proposed robust risk-return
optimization models.

2.1. Entropic Value-at-Risk (EVaR) and its technique

In the portfolio, the decision variables x ∈ X represent the weights of the risky assets, with N assets
under consideration. The random returns of these assets are denoted by r ∈ Rm, where the returns’
probability distribution is described by the density function p(·). The set of admissible portfolios, X,
consists of all portfolios x that satisfy certain constraints, which is defined as follows:

X = x ∈ RN : ι′x = 1, ι = [1, 1, . . . , 1]′ and x ≥ 0,Mx ≤ b, (2.1)

where ι is a vector of all ones. This constraint ensures that the sum of the weights in the portfolio
equals 1, thus reflecting a fully invested portfolio. The conditions x ≥ 0, and Mx ≤ b further impose
no short selling and comply with the additional constraints represented by the matrix M and vector
b, which could specify the maximum allocations or any other type of constraints such as transaction
costs.

The EVaR value at α significance level for the loss random variable with x and r is denoted by
EVaRp(x). EVaRp(x) is defined as in the sample version illustrated by [13] as follows:

EVaRp(x) = min
z>0

{
zln

(
1
α
Σm

i=1 piexp
(

xi

z

))}
, (2.2)

where α ∈ (0, 1), z is the threshold level, and p = (p1, p2, . . . , pm) is the probability of m random
returns.

2.2. Worst-case EVaR (WEVaR)

EVaR can be defined under a known probability distribution of r; however, in reality, the random
vector r’s distribution may only be known to belong to a set P such that p(·) ∈ P. Following [34]’s
approach to WCVaR and considering this study’s adaptation of EVaR, the WEVaR is defined as
follows:

Definition 1. The WEVaR for a defined x ∈ X associated with P is expressed as follows:

WEVaR(x) = sup
p(·)∈P

EVaRp(x). (2.3)

Given that the set P over which the supremum is taken is compact (closed and bounded), it follows
from the Extreme Value Theorem that the supremum is attained. Therefore, one can replace sup with
max.

Definition 2. The WEVaR for a defined x ∈ X associated with P is expressed as follows:

WEVaR(x) = max
p(·)∈P

EVaRp(x). (2.4)
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Since many distributions used in modeling financial data can be approximated by discrete
samples [16], this study assumes that random returns follow a discrete distribution. Under an
incomplete known discrete distribution, the sample space of r is given as Pd = {r[1], r[2], . . . , r[m]}

with the probability of occurrence, Pr{r[k]} = pk, such that
∑m

k=1 pk = 1, pk ≥ 0 (k = 1, 2, . . . ,m).
One useful distribution is the ellipsoidal distribution. The ellipsoidal distribution is chosen for

modeling financial returns because it can effectively capture correlations and variations in financial
data. It balances robustness and computational efficiency, which are essential for portfolio optimization
in volatile markets [11]. Thus, the probability distribution for the uncertainty set of r is defined as
follows:

p ∈ PE = {p : p = p0 + S ζ,
∥∥∥ζ∥∥∥ ≤ 1, p0 + S ζ ≥ 0, ι′S ζ = 0}, (2.5)

where ζ is a vector within the unit ball such that
∥∥∥ζ∥∥∥ = √ζ′ζ, p0 is a known distribution, and the

center of the ellipsoid, S ∈ Rm×N is a scaling matrix of the ellipsoid. The restrictions, p0 + S ζ ≥ 0
and ι′S ζ = 0, guarantee that p satisfies the conditions of a probability distribution. See [34] for more
details. Another widely used distribution is that of the box distribution. The probability of random
returns characterized by the polytopic or box uncertainty set are defined as follows:

p ∈ PB = {p : p = p0 + ζ, ι′ζ = 0, ζl ≤ ζ ≤ ζu}, (2.6)

where ζu and ζl are given constant vectors. See [35] for more details.
Under the defined discrete distributions, WEVaR can be computed by the following:

WEVaRd
p(x) = max

p∈Pd
EVaRp(x). (2.7)

2.3. Portfolio strategies with WEVaR

Let R = {r[1], r[2], . . . , r[m]} be the profit matrix. Then, the expected profit can be expressed as
follows:

Ep(x) = x′Ep[r] = x′Rp. (2.8)

Similar to the definition of the worst-case EVaR in Eq (2.4), one can establish the worst-case returns
as follows:

WE(x) = inf
p(·)∈P
Ep(x). (2.9)

Given that the set P is compact, one can replace inf with min. Therefore,

WE(x) = min
p(·)∈P
Ep(x). (2.10)

Three profit-risk optimization models can be proposed based on the worst-case profit and worst-case
risk measures, WEVaR, that is, the maximal the robust profit with robust EVaR constraint, the minimal
robust EVaR with the robust return constraint, and the robust return and robust EVaR model using
a utility function. Given V∗ and V∗, which denote the required risk and the required return levels,
respectively, as well as λ > 0, which is the risk aversion parameter, the three worst-case profit-risk
optimization models can be described as follows:
Model 1:

max
x∈X

min
p(·)∈P
Ep(x)

subject to max
p(·)∈P

EVaRp(x) ≤ V∗.
(2.11)
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This model aims to maximize the worst-case expected return of the portfolio X. The agent seeks to
ensure that the expected return is as high as possible under the least favorable probability distribution
within the set P. This approach is particularly conservative, and focuses on the robustness against
the worst outcomes in terms of returns. The constraint specifies that the worst-case scenario of EVaR
should not exceed a predefined threshold V∗. This limits the acceptable level of risk, ensuring that even
in the most adverse conditions, the risk taken by the portfolio does not surpass a set limit.
Model 2:

min
x∈X

max
p(·)∈P

EVaRp(x)

subject to min
p(·)∈P
Ep(x) ≥ V∗.

(2.12)

In contrast to Model 1, this model focuses on minimizing the maximum EVaR across all possible
distributions in P. The goal is to ensure that the highest possible risk is kept as low as possible,
effectively managing the most extreme risk scenarios. Here, the agent ensures that , under the most
favorable probability distribution, the expected return remains above a certain level V∗. This condition
guarantees that the portfolio does not sacrifice a return below a minimum acceptable threshold while
controlling for maximum risk.
Model 3:

max
x∈X

[
min
p(·)∈P
Ep(x) − λmax

p(·)∈P
EVaRp(x)

]
. (2.13)

Model 3 aims to find an optimal balance between maximizing the expected returns and minimizing the
risk. The objective function integrates the minimum expected return and the maximum EVaR, which
is weighted by a factor λ. This parameter adjusts the relative importance of risk aversion compared to
the pursuit of the returns, allowing the agent to tailor the balance based on their risk appetite and the
market conditions.

Therefore, the strategies simultaneously mitigate against the worst-case in reward and risk
measures. This assumption can be considered excessively conservative as it necessitates the satisfaction
of each constraint for all potential realizations of uncertain parameters, particularly under the worst-
case scenarios. A practical and feasible alternative assumes the same worst-case distribution for risk
and reward. Considering the assumption of the same distribution, one can rewrite Model 2 (i.e., Eq
(2.12)) as follows:

min
x∈X

max
p(·)∈P
{EVaRp(x) : Ep(x) ≥ V∗}. (2.14)

Model 2 is selected for this study, since the other models can be similarly pursued. Eq (2.14) has a
larger robust feasible set than Eq (2.12). This allows one to attain an improved optimal value while
simultaneously meet all potential realizations of the constraints.

3. Robust portfolio strategies with WEVaR under discrete distributions

The section aims to broaden the findings of [39] to encompass the WEVaR scenario. The assumption
of box and ellipsoidal discrete distributions will be investigated.

The robust optimization problem, Eq (2.14), can be rewritten in the following form:

min
x∈X

max
p(·)∈P

{
min
z>0

z ln
(

1
α

m∑
i=1

pi exp
(

xi

z

))
: Ep(x) ≥ V∗

}
. (3.1)
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Motivated by Lemma 1 in [41] with regards to CVaR, from the convexity property, WEVaR can be
expressed as follows:

max
p(·)∈P

min
z>0

z ln
(

1
α

m∑
i=1

pi exp
(

xi

z

))
= min

z>0
max
p(·)∈P

z ln
(

1
α

m∑
i=1

pi exp
(

xi

z

))
. (3.2)

To prove the convexity property and justify the interchangeability of the minimization and

maximization operators, let’s first establish that the function f (p, z) = z ln
(

1
α

∑m
i=1 pi exp

(
xi
z

))
is convex

in p. This follows because the exponential function exp
(

xi
z

)
is convex in xi, and a weighted sum of

convex functions where weights pi ≥ 0 and
∑m

i=1 pi = 1 remains convex. Next, consider the function’s
concavity in z when p is fixed. The function − exp

(
xi
z

)
is concave since the exponential of a linear

function is convex, and the negative of a convex function is concave. Furthermore, the logarithmic
function ln(·), being concave, when applied to a sum of exponentials (a log-sum-exp function), exhibits
concavity in z under certain conditions. With these properties established, the minimax theorem
applies, stating that if f (p, z) is convex in p and concave in z, and both P and the range of z are convex
sets, then maxp∈Pminz>0 f (p, z) = minz>0 maxp∈P f (p, z). This theorem supports the interchange of the
max and min operators under the convex-concave conditions provided, which is crucial to validate the
form of Eq (3.2).

In the next subsection, this paper presents a new version of Model 2 that considers the discrete
distributions PB and PE.

3.1. Model 2 reformulated for box distribution

From the convexity property and auxiliary vector u, WEVaR under PB can be derived as follows :

max
p∈PB

min
z>0

{
z ln

(
1
α

m∑
i=1

pi exp
(

xi

z

))}
=

min
z,u

max
p∈PB

{
z ln

(
1
α

u′p
)

: ui ≥ exp
(

xi

z

)
, ui ≥ 0, i = 1, 2, . . . ,m

}
.

(3.3)

Therefore, optimization problem, Eq (3.1), can be rewritten as follows with (x, z, u) ∈ RN×R+×R
m:

min
x,z,u

max
p∈PB

{
z ln

(
1
α

u′p
)

: x′Rp ≥ V∗

}
subject to ui ≥ exp

(
xi

z

)
, ui ≥ 0, i = 1, 2, . . . ,m,

x ∈ X. (3.4)

Let’s focus on the inner problem of Eq (3.4). Given the box uncertainty set, the following can be
derived:

max
ζ

z ln
(

1
α

u′(p0 + ζ)
)

subject to x′R(p0 + ζ) ≥ V∗,

ι′ζ = 0,
ζl ≤ ζ ≤ ζu.

(3.5)
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The first constraint ensures that the expected profit is not less than V∗. From the method of a
Lagrangian duality, the Lagrangian for the primal problem, Eq (3.5), is as follows:

L(ζ,Λ,Γ, η, κ) =z ln
(

1
α

u′(p0 + ζ)
)
− Λ(x′R(p0 + ζ) − V∗) + Γι′ζ + η′(ζ − ζl) + κ′(ζu − ζ).

Here, Λ corresponds to the constraint x′R(p0 + ζ) ≥ V∗, Γ ensures the sum constraint ι′ζ = 0, η and κ
are vectors of Lagrange multipliers for the box constraints ζl ≤ ζ ≤ ζu.

To find the optimal ζ, differentiate L with respect to ζ and set the derivative to zero. For simplicity,

consider the derivative of the logarithmic term separately: ∂
∂ζ

(
z ln

(
1
α
u′(p0 + ζ)

))
= z 1

1
α u′(p0+ζ)

αu =
zu

u′(p0+ζ) . Adding the derivatives of the constraint terms, the full derivative is ∂L
∂ζ
= zu

u′(p0+ζ) − ΛRx′ +
Γι+ η− κ. Setting ∂L

∂ζ
= 0 and solving for ζ: zu

u′(p0+ζ) −ΛRx′ +Γι+ η− κ = 0. Rearranging for ζ, one can
obtain the following:

ζ = −
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′
.

Substituting this expression for ζ into the Lagrangian, the dual function is as follows :

g(Λ,Γ, η, κ) =z ln


u′

(
p0 −

η′p0−κ′p0+ι′Γp0−Λp0Rx′+z
η′−κ′+ι′Γ−ΛRx′

)
α


−
ι′Γ(η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z)

η′ − κ′ + ι′Γ − ΛRx′

− Λ

(
− V∗ + Rx′

p0 −
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′

 )
+ η′

(
−
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′
− ζl

)
+ κ′

(
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′
+ ζu

)
.

(3.6)

Then, the dual problem for Eq (3.5) is as follows:

min
Λ,Γ,η,κ

g(Λ,Γ, η, κ)

subject to Λ ≥ 0,
η ≥ 0,
κ ≥ 0.

(3.7)

The dual problem is solvable and has an optimal value equal to the optimal value of Eq (3.5), as it is
evident that the primal problem is bounded above and that a strictly solvable feasible point exists.

Substituting Eq (3.7) into Eq (3.4), the following proposition is derived.
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Proposition 1. Under the box discrete distribution with ζu > 0 and ζl < 0, if p0 satisfies R · p0 > ι · V∗,
then the robust portfolio strategy, Eq (3.1), can be reformulated as follows:

min
x,z,u,Λ,Γ,η,κ

z ln


u′

(
p0 −

η′p0−κ′p0+ι′Γp0−Λp0Rx′+z
η′−κ′+ι′Γ−ΛRx′

)
α


−
ι′Γ(η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z)

η′ − κ′ + ι′Γ − ΛRx′

− Λ

(
− V∗ + Rx′

p0 −
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′

 )
+ η′

(
−
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′
− ζl

)
+ κ′

(
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′
+ ζu

)
subject to ui ≥ exp

(
xi

z

)
, ui ≥ 0, i = 1, 2, . . . ,m,

Λ ≥ 0,
η ≥ 0,
κ ≥ 0.
x ∈ X.

(3.8)

Proposition 1 presents a reformulation of the robust optimization problem under the assumption
of a box distribution for asset returns. It translates the problem of managing the return and risk
under uncertainty into a more tractable form, thereby leveraging on the properties of the function
f (p, z). The problem initially formulated in Eq (3.1) is transformed into a dual formulation in Eq
(3.4), thus allowing for linearization of the constraints and optimization over the auxiliary variables
(x, z, u,Λ,Γ, η, κ) which represent different aspects of the optimization problem such as scaling and the
Lagrange multipliers for various constraints.

Therefore, the proposed robust return-EVaR model under the box distribution is reformulated
by Proposition 1 as a tractable optimization problem that may be solved using various techniques.
Although an optimal solution exists, its uniqueness isn’t guaranteed due to potential multiple local
optima. This can be tackled with global optimization and interior point methods to ensure a robust
applicability.

3.2. Model 2 reformulated for ellipsoidal distribution

Similar to the first of the previous section, the robust portfolio strategy can be written in the
following form:

min
x,z,u

max
p∈PE

{
z ln

(
1
α

u′p
)

: x′Rp ≥ V∗

}
subject to ui ≥ exp

(
xi

z

)
, ui ≥ 0, i = 1, 2, . . . ,m,
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x ∈ X. (3.9)

Considering the inner problem of Eq (3.9) under PE, then:

max
ζ

z ln
(

1
α

u′(p0 + S ζ)
)

subject to x′R(p0 + S ζ) ≥ V∗,

p0 + S ζ ≥ 0,
ι′S ζ = 0,∥∥∥ζ∥∥∥ ≤ 1.

(3.10)

The following assumptions are made to make the problem tractable:

1) S is positive definite; and
2) ζ is not zero, ensuring

∥∥∥ζ∥∥∥ , 0.

From the method of Lagrangian duality, the Lagrangian for the primal problem (3.10) is defined as:

L(ζ, v, τ, σ, θ) = z ln
(

1
α

u′(p0 + S ζ)
)
− v(x′R(p0 + S ζ) − V∗) − τ′(p0 + S ζ) + σ′ι′S ζ − θ(

∥∥∥ζ∥∥∥ − 1).

Here, v ≥ 0 is a non-negative dual variable associated with the return constraint x′R(p0 + S ζ) ≥ V∗,
penalizing violations. It scales the penalty imposed when this constraint is violated. τ ≥ 0 is a non-
negative dual variable to ensure the non-negativity of the probabilities p0+S ζ ≥ 0. σ is a dual variable
for the constraint ι′S ζ = 0, which ensures that the total probability remains constant. θ ≥ 0 is a non-
negative dual variable which enforces the norm constraint

∥∥∥ζ∥∥∥ ≤ 1, and penalizes deviations beyond the
unit ball. θ ensures that the adjustments ζ remain within the unit ball, thus maintaining the definition
of the ellipsoid.

From the equation obtained from differentiating the Lagrangian function with respect to ζ:

S z · u′

u′(p0 + S ζ)
− vx′RS − τ′S + σ′ι′S − θ

ζ∥∥∥ζ∥∥∥ = 0. (3.11)

Using the assumptions, one can express ζ as follows:

ζ = S −1 (
vx′RS + τ′S − σ′ι′S

)
. (3.12)

Substituting this into the Lagrangian, the dual function is expressed as follows:

g(v, τ, σ, θ) = z ln
(

1
α

u′(p0 + S (S −1 (
vx′RS + τ′S − σ′ι′S

)
))
)

− v(x′R(p0 + S (S −1 (
vx′RS + τ′S − σ′ι′S

)
)) − V∗)

− τ′(p0 + S (S −1 (
vx′RS + τ′S − σ′ι′S

)
))

+ σ′ι′S (S −1 (
vx′RS + τ′S − σ′ι′S

)
)

− θ(
∥∥∥S −1 (

vx′RS + τ′S − σ′ι′S
)∥∥∥ − 1).
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Hence, the dual problem for Eq (3.10) is as follows:

min
v,τ,σ,θ

g(v, τ, σ, θ)

subject to v ≥ 0,
τ ≥ 0.

(3.13)

By substituting Eq (3.13) into Eq (3.9), the following proposition is derived.

Proposition 2. Under the ellipsoidal discrete distribution, if the distribution p0 satisfies R · p0 > ι · V∗,
the robust optimization problem, Eq (3.1), can be reformulated as follows:

min
x,z,u,v,τ,σ,θ

g(v, τ, σ, θ)

subject to ui ≥ exp
(

xi

z

)
, ui ≥ 0, i = 1, 2, . . . ,m,

v ≥ 0,
τ ≥ 0,
x ∈ X.

(3.14)

The objective function g(v, τ, σ, θ) in Proposition 2 is designed to minimize potential losses under
the worst-case scenarios dictated by the ellipsoidal distribution model, thus rendering the problem
tractable. This function incorporates the logarithm of transformed probabilities, adapted through
ellipsoidal distribution adjustments, making it well-suited for robust optimization techniques. The
constraints include auxiliary variables ui ≥ exp

(
xi
z

)
, which ensure that control variables appropriately

scale with the following risk adjustments; ui ≥ 0, which guarantees non-negativity; and x ∈ X, which
ensures that decision variables remain within the feasible set of portfolio choices. This structured
framework, premised on the assumption that p0 satisfies R · p0 > ι · V∗, enables portfolio managers to
systematically manage risk in environments marked by uncertainty and complex dependencies among
asset returns.

Therefore, this paper obtains a tractable optimization model from the robust return-EVaR model to
solve the asset allocation problem.

4. Incorporating transaction costs

Transaction costs arise during portfolio revision because a portfolio of assets, rather than cash, is
often employed as the starting point for investment decisions. This necessitates liquidating certain
assets to fund new investments, thus incurring transaction costs.

To explore this concept in greater detail, consider an investment portfolio that includes investments
in either part or all of N risky assets alongside a risk-free asset. Inspired by the approach of [14], this
paper integrates transaction costs into the proposed frameworks, as outlined in Eq (3.8) and Eq (3.14).
This integration is achieved by adjusting the decision variables x ∈ X to reflect the transaction costs,
similar to the modifications in their mean-variance and mean-CVaR frameworks.
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Eq (3.8) can be rewritten as follows:

min
x,z,u,Λ,Γ,η,κ

z ln


u′

(
p0 −

η′p0−κ′p0+ι′Γp0−Λp0Rx′+z
η′−κ′+ι′Γ−ΛRx′

)
α


−
ι′Γ(η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z)

η′ − κ′ + ι′Γ − ΛRx′

− Λ

(
− V∗ + Rx′

p0 −
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′

 )
+ η′

(
−
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′
− ζl

)
+ κ′

(
η′p0 − κ′p0 + ι′Γp0 − Λp0Rx′ + z

η′ − κ′ + ι′Γ − ΛRx′
+ ζu

)
subject to ui ≥ exp

(
xi

z

)
, ui ≥ 0, i = 1, 2, . . . ,m,

Λ ≥ 0, η ≥ 0, κ ≥ 0,
x = x0 + xb − xs,

y + ι′x +
n∑

j=1

cb
j x

b
j +

n∑
j=1

cs
jx

s
j ≤ 1,

xb ≥ 0, xs ≥ 0,

(4.1)

where x0 is the proportion of funds initially assigned to risky assets, xb is the proportion of funds used
to buy risky assets, and xs(xs ≤ x0) is the proportion of funds obtained by selling shares of risky assets.
Therefore, x becomes the proportion of funds in a risky asset after rebalancing the initial portfolio,
and y is the proportion of funds invested in the risk-free asset. The costs of buying and selling a risky
asset are denoted as cb and cs for the purchase and sale transactions, respectively. The complementary
constraint, xb · xs = 0, was not considered because [27, 28] proved that the complementary constraint
could be removed in the presence of a risk-free asset.

Similarly, one can rewrite Eq (3.14) as follows:

min
x,z,u,v,τ,σ,θ

g(v, τ, σ, θ)

subject to ui ≥ exp
(

xi

z

)
, ui ≥ 0, i = 1, 2, . . . ,m,

v ≥ 0, τ ≥ 0,
x = x0 + xb − xs,

y + ι′x +
n∑

j=1

cb
j x

b
j +

n∑
j=1

cs
jx

s
j ≤ 1,

xb ≥ 0, xs ≥ 0.

(4.2)
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5. Practical application

In this section, the applicability of the robust WEVaR-return optimization model with transaction
cost under the box discrete distribution PB is demonstrated. This research uses the dataset utilized
by [41]. Two sub-indices of the Hong Kong Stock Exchange’s Hang Seng Index have been chosen to
construct a portfolio. These sub-indices are the Hang Seng Property Index (HSNP) and the Hang Seng
Commercial/Industrial Index. A total of 1800 samples of daily returns and variation for the two assets
were gathered during two periods, with 900 samples collected per period. Period 1 dated 27/7/1990 to
06/01/1994, and period 2 dated 07/01/1994 to 19/06/1997. The mean returns and variances of the two
assets in line with the stated periods are displayed in Table 1.

Table 1. Mean returns and variances of two indices in different time frames.

Mean (10−3) Variance (10−3)
Period HSNP HSNC HSNP HSNC
Period 1 1.5859 1.1383 0.2417 0.2062
Period 2 0.2902 0.2625 0.2740 0.2110

This study normalizes the initial portfolio. Therefore, x0
j = 0.5 for j = 1, 2. For feasibility purposes,

the following parameters are employed: R =
[

1.5859 0.2902
1.1383 0.2625

]
, p0 = (0.5, 0.5)′, α = 0.95, and V∗ = 0.0007.

It is easy to verify that R · p0 > ι · V∗ satisfies the problem in Proposition 1 and thus Eq (4.1).
First, this paper shows the effect of the transaction costs on the optimal portfolio to be rebalanced.

To demonstrate the impact, consider two scenarios with different transaction costs, cb
j = cs

j = 0, and
cb

j = cs
j = 0.01. Figure 1 shows that the transaction costs lower the efficient frontier. Then, the EVaR-

return optimization model with the transaction cost and the proposed WEVaR-return optimization
model with the transaction cost are investigated.

Figure 1. The efficient frontier of robust WEVaR-return optimization model under the box
discrete distribution with transaction costs, cb

j = cs
j = 0 and 0.01.
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Considering the same dataset, the task is to maximize the reward with the EVaR constraint and the
transaction costs. Figures 2 and 3 display the outcomes under two transaction costs. Both figures show
that with or without the transaction costs and the same risk value, the reward under EVaR is greater
than WEVaR. This is consistent with how WEVaR is defined.

Figure 2. Comparison between EVaR and WEVaR consideration with cs
j = cb

j = 0.

Figure 3. Comparison between EVaR and WEVaR consideration with cs
j = cb

j = 0.015.
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5.1. Comparative analysis of portfolio strategies

This section evaluates the performance of various portfolio strategies using simulated data via
a Monte Carlo simulation to determine which strategy offers the best risk-adjusted returns, capital
preservation, and tail risk mitigation. Then, this study compares the proposed WEVaR portfolio with
the following strategies: mean-EVaR, Mean-Variance (MV), and Mean-Variance Conditional Value at
Risk (MV-CVaR).

From Table 2, the proposed WEVaR is the most conservative with the highest bond allocation
(40%). The MV Portfolio is aggressive, with a 50% allocation to Equities. The mean-EVaR
Portfolio balances Equities (35%) and Commodities (35%), while the MV-CVaR Portfolio leans
towards Equities (40%). In the comparative analysis of the portfolio strategies, the measure of asset
allocation variability reveals significant insights into the diversification practices. Specifically, Equities
exhibit the greatest variation across portfolios with a range of 0.25, and a standard deviation of
0.09, indicating a broad spectrum of equity exposures reflective of varying risk tolerances and market
outlooks. However, Bonds and Commodities show tighter ranges of 0.15 and 0.10, respectively, with
correspondingly lower standard deviations (0.056 for Bonds and 0.05 for Commodities), suggesting a
more uniform approach to these asset classes across the strategies. This variability analysis underlines
how different portfolios adjust their asset allocations to either embrace or mitigate risk, with the
MV portfolio appearing particularly aggressive due to its higher equity allocation, thus providing a
quantitative foundation to the assertion that MV and MV-CVaR strategies emphasize diversification
more markedly.

Table 2. Portfolio weights for different strategies.

Asset class Proposed WEVaR Portfolio mean-EVaR Portfolio MV Portfolio MV-CVaR Portfolio
Equities 0.25 0.35 0.50 0.40
Bonds 0.40 0.30 0.25 0.35
Commodities 0.35 0.35 0.25 0.25

Table 3 provides a comprehensive overview of the key risk metrics for the four portfolio strategies.
These measurements provide crucial insights into the risk profiles and performances of the strategies.
As described, the WEVaR portfolio is a risk-averse option that demonstrates the lowest standard
deviation (0.12) and WEVaR value (0.05). This indicates its capacity to preserve capital and limit
extreme losses. In contrast, the mean-EVaR demonstrates a comparatively higher WEVaR value of
0.07, indicating an increased level of risk exposure. The MV-CVaR strategy demonstrates the most
favorable performance in CVaR with a value of 0.09, highlighting its efficacy in mitigating extreme
losses. Regarding the risk-adjusted returns, MV-CVaR stands out with the highest Sharpe ratio of
1.25. This was achieved with a mean return of 0.1725 and a risk-free rate of 1%. WEVaR follows
closely behind, which has a Sharpe ratio of 1.15, a mean return of 0.148, and a risk-free rate of 1%.
These results indicate that both strategies have strong risk-adjusted performances. These measures
enable investors to make well-informed decisions, tailoring their portfolios based on risk preferences
and financial goals.
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Table 3. Risk metrics for different portfolios.

Portfolio proposed WEVaR mean-EVaR MV MV-CVaR
Standard Deviation 0.12 0.14 0.15 0.13
proposed-WEVaR 0.05 0.07 0.08 0.06
EVaR 0.06 0.08 0.09 0.07
CVaR 0.08 0.10 0.11 0.09

In this comprehensive portfolio analysis presented in Table 4, the proposed WEVaR and MV-
CVaR portfolios have exhibited significant advantages. These portfolios can better preserve capital
during difficult market conditions, such as the COVID-19 pandemic, and the 2008 financial crisis,
outperforming the mean-EVaR and MV portfolios.

Table 4. Scenario analysis–portfolio performance.

Scenario proposed WEVaR return (%) mean- EVaR return (%) MV return (%) MV-CVaR return (%)

Normal market 8.5 9.2 9.7 9.0
Stress (2008 Crisis) -15.3 -18.5 -21.8 -17.2
Stress (COVID-19) -9.7 -11.2 -13.5 -10.5

In summary, when considering risk-adjusted returns measured by the Sharpe ratio, the MV-
CVaR portfolio emerges as the top performer, closely followed by WEVaR, suggesting that MV-
CVaR provides the most favorable risk-adjusted returns. Furthermore, the WEVaR and MV-CVaR
portfolios mitigate tail risks, as evidenced by their lower WEVaR and CVaR values. While all the
portfolios maintain diversified asset allocations, the MV and MV-CVaR portfolios notably emphasize
the importance of diversification. This analysis underscores the appeal of the WEVaR and MV-
CVaR portfolios for investors that seek capital preservation and risk management in their investment
strategies. Based on the evaluated criteria, the portfolio strategies can be ranked as follows:

• proposed WEVaR (for capital preservation and tail risk mitigation);
• MV-CVaR (for risk-adjusted returns and diversification benefits);
• mean-EVaR; and
• MV.

It’s important to note that choosing the best strategy depends on the individual risk tolerance, the
investment objectives, and the market conditions. The WEVaR portfolio stands out for its resilience in
preserving capital and mitigating extreme risks.

6. Conclusions

This research examined robust portfolio optimization, and particularly emphasized the WEVaR-
return optimization model under discrete distributions. The complexities of financial optimization
problems, especially when considering worst-case scenarios, necessitated a fresh approach, and this
work aimed to address these challenges head-on.

The primary contributions of this study are as follows: This paper provided a comprehensive
framework for the WEVaR-return optimization model that considered both box and ellipsoidal discrete
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distributions. This framework offers a nuanced understanding of the underlying risk structures in
portfolio management. In contrast to the existing robust return-risk portfolio strategies, this study
considered the same uncertainty distribution in both the return and the risk. Moreover, this
paper successfully reformulated the robust optimization problems through meticulous mathematical
derivations to make them more tractable. A method to address the inherent non-convexities in the
optimization process was presented by leveraging the convexity properties and utilizing the duality
theorem. Furthermore, the integration of the transaction costs into the optimization models was
pursued. This essential incorporation ensured that the suggested frameworks retain their pertinence
and applicability since they consider the real-world costs that investors encounter while adjusting their
portfolios.

Demonstrating the practicality of the model, this study utilized real-world data obtained from the
Hang Seng Index. Through simulations, the proposed WEVaR portfolio exhibited an exceptional
resilience in preserving capital and mitigating extreme risks. This translates into concrete benefits
for investors, as they can rely on a robust methodology to navigate volatile market conditions and
achieve their financial objectives with a greater confidence.

In essence, the practical implications of this study lie in empowering investors and portfolio
managers with a practical toolset to optimize portfolios, manage risks, and ultimately enhance their
investment outcomes in dynamic financial environments.

Possible directions for future investigation could employ the use of machine learning methods to
enhance the models. Such advancements could lead to precision of the optimization process outcomes.
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