This article describes the construction of optical solitons and single traveling wave solutions of Biswas-Arshed equation with the beta time derivative. By using the polynomial complete discriminant system method, a series of traveling wave solutions are constructed, including the rational function solutions, Jacobian elliptic function solutions, hyperbolic function solutions, trigonometric function solutions and inverse trigonometric function solutions. The conclusions of this paper comprise some new and different solutions that cannot be found in existing literature. Using the mathematic software Maple, the 3D and 2D graphs of the obtained traveling wave solutions were also developed. It is worth noting that these traveling wave solutions may motivate us to explore new phenomena which may be appear in optical fiber propagation theory.
Citation: Tianyong Han, Zhao Li, Jun Yuan. Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative[J]. AIMS Mathematics, 2022, 7(8): 15282-15297. doi: 10.3934/math.2022837
[1] | Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004 |
[2] | Dongdong Gao, Daipeng Kuang, Jianli Li . Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780 |
[3] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[4] | Huanhuan Zhang, Jia Mu . Periodic problem for non-instantaneous impulsive partial differential equations. AIMS Mathematics, 2022, 7(3): 3345-3359. doi: 10.3934/math.2022186 |
[5] | Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652 |
[6] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[7] | Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty . A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r∈(1,2) with impulses. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548 |
[8] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[9] | M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229 |
[10] | Dumitru Baleanu, Rabha W. Ibrahim . Optical applications of a generalized fractional integro-differential equation with periodicity. AIMS Mathematics, 2023, 8(5): 11953-11972. doi: 10.3934/math.2023604 |
This article describes the construction of optical solitons and single traveling wave solutions of Biswas-Arshed equation with the beta time derivative. By using the polynomial complete discriminant system method, a series of traveling wave solutions are constructed, including the rational function solutions, Jacobian elliptic function solutions, hyperbolic function solutions, trigonometric function solutions and inverse trigonometric function solutions. The conclusions of this paper comprise some new and different solutions that cannot be found in existing literature. Using the mathematic software Maple, the 3D and 2D graphs of the obtained traveling wave solutions were also developed. It is worth noting that these traveling wave solutions may motivate us to explore new phenomena which may be appear in optical fiber propagation theory.
Fractional differential equations rise in many fields, such as biology, physics and engineering. There are many results about the existence of solutions and control problems (see [1,2,3,4,5,6]).
It is well known that the nonexistence of nonconstant periodic solutions of fractional differential equations was shown in [7,8,11] and the existence of asymptotically periodic solutions was derived in [8,9,10,11]. Thus it gives rise to study the periodic solutions of fractional differential equations with periodic impulses.
Recently, Fečkan and Wang [12] studied the existence of periodic solutions of fractional ordinary differential equations with impulses periodic condition and obtained many existence and asymptotic stability results for the Caputo's fractional derivative with fixed and varying lower limits. In this paper, we study the Caputo's fractional evolution equations with varying lower limits and we prove the existence of periodic mild solutions to this problem with the case of general periodic impulses as well as small equidistant and shifted impulses. We also study the Caputo's fractional evolution equations with fixed lower limits and small nonlinearities and derive the existence of its periodic mild solutions. The current results extend some results in [12].
Set ξq(θ)=1qθ−1−1qϖq(θ−1q)≥0, ϖq(θ)=1π∑∞n=1(−1)n−1θ−nq−1Γ(nq+1)n!sin(nπq), θ∈(0,∞). Note that ξq(θ) is a probability density function defined on (0,∞), namely ξq(θ)≥0, θ∈(0,∞) and ∫∞0ξq(θ)dθ=1.
Define T:X→X and S:X→X given by
T(t)=∫∞0ξq(θ)S(tqθ)dθ, S(t)=q∫∞0θξq(θ)S(tqθ)dθ. |
Lemma 2.1. ([13,Lemmas 3.2,3.3]) The operators T(t) and S(t),t≥0 have following properties:
(1) Suppose that supt≥0‖S(t)‖≤M. For any fixed t≥0, T(⋅) and S(⋅) are linear and bounded operators, i.e., for any u∈X,
‖T(t)u‖≤M‖u‖ and ‖S(t)u‖≤MΓ(q)‖u‖. |
(2) {T(t),t≥0} and {S(t),t≥0} are strongly continuous.
(3) {T(t),t>0} and {S(t),t>0} are compact, if {S(t),t>0} is compact.
Let N0={0,1,⋯,∞}. We consider the following impulsive fractional equations
{cDqtk,tu(t)=Au(t)+f(t,u(t)), q∈(0,1), t∈(tk,tk+1), k∈N0,u(t+k)=u(t−k)+Δk(u(t−k)), k∈N,u(0)=u0, | (2.1) |
where cDqtk,t denotes the Caputo's fractional time derivative of order q with the lower limit at tk, A:D(A)⊆X→X is the generator of a C0-semigroup {S(t),t≥0} on a Banach space X, f:R×X→X satisfies some assumptions. We suppose the following conditions:
(Ⅰ) f is continuous and T-periodic in t.
(Ⅱ) There exist constants a>0, bk>0 such that
{‖f(t,u)−f(t,v)‖≤a‖u−v‖,∀ t∈R, u,v∈X,‖u−v+Δk(u)−Δk(v)‖≤bk‖u−v‖,∀ k∈N, u,v∈X. |
(Ⅲ) There exists N∈N such that T=tN+1,tk+N+1=tk+T and Δk+N+1=Δk for any k∈N.
It is well known [3] that (2.1) has a unique solution on R+ if the conditions (Ⅰ) and (Ⅱ) hold. So we can consider the Poincaré mapping
P(u0)=u(T−)+ΔN+1(u(T−)). |
By [14,Lemma 2.2] we know that the fixed points of P determine T-periodic mild solutions of (2.1).
Theorem 2.2. Assume that (I)-(III) hold. Let Ξ:=∏Nk=0MbkEq(Ma(tk+1−tk)q), where Eq is the Mittag-Leffler function (see [3, p.40]), then there holds
‖P(u)−P(v)‖≤Ξ‖u−v‖, ∀u,v∈X. | (2.2) |
If Ξ<1, then (2.1) has a unique T-periodic mild solution, which is also asymptotically stable.
Proof. By the mild solution of (2.1), we mean that u∈C((tk,tk+1),X) satisfying
u(t)=T(t−tk)u(t+k)+∫ttkS(t−s)f(s,u(s))ds. | (2.3) |
Let u and v be two solutions of (2.3) with u(0)=u0 and v(0)=v0, respectively. By (2.3) and (II), we can derive
‖u(t)−v(t)‖≤‖T(t−tk)(u(t+k)−v(t+k))‖+∫ttk(t−s)q−1‖S(t−s)(f(s,u(s)−f(s,v(s))‖ds≤M‖u(t+k)−v(t+k)‖+MaΓ(q)∫ttk(t−s)q−1‖f(s,u(s)−f(s,v(s))‖ds. | (2.4) |
Applying Gronwall inequality [15, Corollary 2] to (2.4), we derive
‖u(t)−v(t)‖≤M‖u(t+k)−v(t+k)‖Eq(Ma(t−tk)q), t∈(tk,tk+1), | (2.5) |
which implies
‖u(t−k+1)−v(t−k+1)‖≤MEq(Ma(tk+1−tk)q)‖u(t+k)−v(t+k)‖,k=0,1,⋯,N. | (2.6) |
By (2.6) and (Ⅱ), we derive
‖P(u0)−P(v0)‖=‖u(t−N+1)−v(t−N+1)+ΔN+1(u(t−N+1))−ΔN+1(v(t−N+1))‖≤bN+1‖u(t−N+1)−v(t−N+1)‖≤(N∏k=0MbkEq(Ma(tk+1−tk)q))‖u0−v0‖=Ξ‖u0−v0‖, | (2.7) |
which implies that (2.2) is satisfied. Thus P:X→X is a contraction if Ξ<1. Using Banach fixed point theorem, we obtain that P has a unique fixed point u0 if Ξ<1. In addition, since
‖Pn(u0)−Pn(v0)‖≤Ξn‖u0−v0‖, ∀v0∈X, |
we get that the corresponding periodic mild solution is asymptotically stable.
We study
{cDqkhu(t)=Au(t)+f(u(t)), q∈(0,1), t∈(kh,(k+1)h), k∈N0,u(kh+)=u(kh−)+ˉΔhq, k∈N,u(0)=u0, | (2.8) |
where h>0, ˉΔ∈X, and f:X→X is Lipschitz. We know [3] that under above assumptions, (2.8) has a unique mild solution u(u0,t) on R+, which is continuous in u0∈X, t∈R+∖{kh|k∈N} and left continuous in t ant impulsive points {kh|k∈N}. We can consider the Poincaré mapping
Ph(u0)=u(u0,h+). |
Theorem 2.3. Let w(t) be a solution of following equations
{w′(t)=ˉΔ+1Γ(q+1)f(w(t)), t∈[0,T],w(0)=u0. | (2.9) |
Then there exists a mild solution u(u0,t) of (2.8) on [0,T], satisfying
u(u0,t)=w(tqq−1)+O(hq). |
If w(t) is a stable periodic solution, then there exists a stable invariant curve of Poincaré mapping of (2.8) in a neighborhood of w(t). Note that h is sufficiently small.
Proof. For any t∈(kh,(k+1)h),k∈N0, the mild solution of (2.8) is equivalent to
u(u0,t)=T(t−kh)u(kh+)+∫tkh(t−s)q−1S(t−s)f(u(u0,s))ds=T(t−kh)u(kh+)+∫t−kh0(t−kh−s)q−1S(t−kh−s)f(u(u(kh+),s))ds. | (2.10) |
So
u((k+1)h+)=T(h)u(kh+)+ˉΔhq+∫h0(h−s)q−1S(h−s)f(u(u(kh+),s))ds=Ph(u(kh+)), | (2.11) |
and
Ph(u0)=u(u0,h+)=T(h)u0+ˉΔhq+∫h0(h−s)q−1S(h−s)f(u(u0,s))ds. | (2.12) |
Inserting
u(u0,t)=T(t)u0+hqv(u0,t), t∈[0,h], |
into (2.10), we obtain
v(u0,t)=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0+hqv(u0,t))ds=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+1hq∫t0(t−s)q−1S(t−s)(f(T(t)u0+hqv(u0,t))−f(T(t)u0))ds=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+O(hq), |
since
‖∫t0(t−s)q−1S(t−s)(f(T(t)u0+hqv(u0,t))−f(T(t)u0))ds‖≤∫t0(t−s)q−1‖S(t−s)‖‖f(T(t)u0+hqv(u0,t))−f(T(t)u0)‖ds≤MLlochqtqΓ(q+1)maxt∈[0,h]{‖v(u0,t)‖}≤h2qMLlocΓ(q+1)maxt∈[0,h]{‖v(u0,t)‖}, |
where Lloc is a local Lipschitz constant of f. Thus we get
u(u0,t)=T(t)u0+∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+O(h2q), t∈[0,h], | (2.13) |
and (2.12) gives
Ph(u0)=T(h)u0+ˉΔhq+∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
So (2.11) becomes
u((k+1)h+)=T(h)u(kh+)+ˉΔhq+∫(k+1)hkh((k+1)h−s)q−1S((k+1)h−s)f(T(h)u(kh+))ds+O(h2q). | (2.14) |
Since T(t) and S(t) are strongly continuous,
limt→0T(t)=I and limt→0S(t)=1Γ(q)I. | (2.15) |
Thus (2.14) leads to its approximation
w((k+1)h+)=w(kh+)+ˉΔhq+hqΓ(q+1)f(w(kh+)), |
which is the Euler numerical approximation of
w′(t)=ˉΔ+1Γ(q+1)f(w(t)). |
Note that (2.10) implies
‖u(u0,t)−T(t−kh)u(kh+)‖=O(hq), ∀t∈[kh,(k+1)h]. | (2.16) |
Applying (2.15), (2.16) and the already known results about Euler approximation method in [16], we obtain the result of Theorem 2.3.
Corollary 2.4. We can extend (2.8) for periodic impulses of following form
{cDqkhu(t)=Au(t)+f(u(t)), t∈(kh,(k+1)h), k∈N0,u(kh+)=u(kh−)+ˉΔkhq, k∈N,u(0)=u0, | (2.17) |
where ˉΔk∈X satisfy ˉΔk+N+1=ˉΔk for any k∈N. Then Theorem 2.3 can directly extend to (2.17) with
{w′(t)=∑N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)), t∈[0,T], k∈N,w(0)=u0 | (2.18) |
instead of (2.9).
Proof. We can consider the Poincaré mapping
Ph(u0)=u(u0,(N+1)h+), |
with a form of
Ph=PN+1,h∘⋯∘P1,h |
where
Pk,h(u0)=ˉΔkhq+u(u0,h). |
By (2.13), we can derive
Pk,h(u0)=ˉΔkhq+u(u0,h)=T(h)u0+ˉΔkhq+∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
Then we get
Ph(u0)=T(h)u0+N+1∑k=1ˉΔkhq+(N+1)∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
By (2.15), we obtain that Ph(u0) leads to its approximation
u0+N+1∑k=1ˉΔkhq+(N+1)hqΓ(q+1)f(u0). | (2.19) |
Moreover, equations
w′(t)=∑N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)) |
has the Euler numerical approximation
u0+hq(∑N+1k=1ˉΔkN+1+1Γ(q+1)f(u0)) |
with the step size hq, and its approximation of N+1 iteration is (2.19), the approximation of Ph. Thus Theorem 2.3 can directly extend to (2.17) with (2.18).
Now we consider following equations with small nonlinearities of the form
{cDq0u(t)=Au(t)+ϵf(t,u(t)), q∈(0,1), t∈(tk,tk+1), k∈N0,u(t+k)=u(t−k)+ϵΔk(u(t−k)), k∈N,u(0)=u0, | (3.1) |
where ϵ is a small parameter, cDq0 is the generalized Caputo fractional derivative with lower limit at 0. Then (3.1) has a unique mild solution u(ϵ,t). Give the Poincaré mapping
P(ϵ,u0)=u(ϵ,T−)+ϵΔN+1(u(ϵ,T−)). |
Assume that
(H1) f and Δk are C2-smooth.
Then P(ϵ,u0) is also C2-smooth. In addition, we have
u(ϵ,t)=T(t)u0+ϵω(t)+O(ϵ2), |
where ω(t) satisfies
{cDq0ω(t)=Aω(t)+f(t,T(t)u0), t∈(tk,tk+1), k=0,1,⋯,N,ω(t+k)=ω(t−k)+Δk(T(tk)u0), k=1,2,⋯,N+1,ω(0)=0, |
and
ω(T−)=N∑k=1T(T−tk)Δk(T(tk)u0)+∫T0(T−s)q−1S(T−s)f(s,T(s)u0)ds. |
Thus we derive
{P(ϵ,u0)=u0+M(ϵ,u0)+O(ϵ2)M(ϵ,u0)=(T(T)−I)u0+ϵω(T−)+ϵΔN+1(T(T)u0). | (3.2) |
Theorem 3.1. Suppose that (I), (III) and (H1) hold.
1). If (T(T)−I) has a continuous inverse, i.e. (T(T)−I)−1 exists and continuous, then (3.1) has a unique T-periodic mild solution located near 0 for any ϵ≠0 small.
2). If (T(T)−I) is not invertible, we suppose that ker(T(T)−I)=[u1,⋯,uk] and X=im(T(T)−I)⊕X1 for a closed subspace X1 with dimX1=k. If there is v0∈[u1,⋯,uk] such that B(0,v0)=0 (see (3.7)) and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ≠0 small.
3). If rσ(Du0M(ϵ,u0))<0, then the T-periodic mild solution is asymptotically stable. If rσ(Du0M(ϵ,u0))∩(0,+∞)≠∅, then the T-periodic mild solution is unstable.
Proof. The fixed point u0 of P(ϵ,x0) determines the T-periodic mild solution of (3.1), which is equivalent to
M(ϵ,u0)+O(ϵ2)=0. | (3.3) |
Note that M(0,u0)=(T(T)−I)u0. If (T(T)−I) has a continuous inverse, then (3.3) can be solved by the implicit function theorem to get its solution u0(ϵ) with u0(0)=0.
If (T(T)−I) is not invertible, then we take a decomposition u0=v+w, v∈[u1,⋯,uk], take bounded projections Q1:X→im(T(T)−I), Q2:X→X1, I=Q1+Q2 and decompose (3.3) to
Q1M(ϵ,v+w)+Q1O(ϵ2)=0, | (3.4) |
and
Q2M(ϵ,v+w)+Q2O(ϵ2)=0. | (3.5) |
Now Q1M(0,v+w)=(T(T)−I)w, so we can solve by implicit function theorem from (3.4), w=w(ϵ,v) with w(0,v)=0. Inserting this solution into (3.5), we get
B(ϵ,v)=1ϵ(Q2M(ϵ,v+w)+Q2O(ϵ2))=Q2ω(T−)+Q2ΔN+1(T(t)v+w(ϵ,v))+O(ϵ). | (3.6) |
So
B(0,v)=N∑k=1Q2T(T−tk)Δk(T(tk)v)+Q2∫T0(T−s)q−1S(T−s)f(s,T(s)v)ds. | (3.7) |
Consequently we get, if there is v0∈[u1,⋯,uk] such that B(0,v0)=0 and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ≠0 small.
In addition, Du0P(ϵ,u0(ϵ))=I+Du0M(ϵ,u0)+O(ϵ2). Thus we can directly derive the stability and instability results by the arguments in [17].
In this section, we give an example to demonstrate Theorem 2.2.
Example 4.1. Consider the following impulsive fractional partial differential equation:
{ cD12tk,tu(t,y)=∂2∂y2u(t,y)+sinu(t,y)+cos2πt, t∈(tk,tk+1), k∈N0, y∈[0,π], Δk(u(t−k,y))=u(t+k,y)−u(t−k,y)=ξu(t−k,y), k∈N, y∈[0,π], u(t,0)=u(t,π)=0, t∈(tk,tk+1), k∈N0, u(0,y)=u0(y), y∈[0,π], | (4.1) |
for ξ∈R, tk=k3. Let X=L2[0,π]. Define the operator A:D(A)⊆X→X by Au=d2udy2 with the domain
D(A)={u∈X∣dudy,d2udy2∈X, u(0)=u(π)=0}. |
Then A is the infinitesimal generator of a C0-semigroup {S(t),t≥0} on X and ‖S(t)‖≤M=1 for any t≥0. Denote u(⋅,y)=u(⋅)(y) and define f:[0,∞)×X→X by
f(t,u)(y)=sinu(y)+cos2πt. |
Set T=t3=1, tk+3=tk+1, Δk+3=Δk, a=1, bk=|1+ξ|. Obviously, conditions (I)-(III) hold. Note that
Ξ=2∏k=0|1+ξ|E12(1√3)=|1+ξ|3(E12(1√3))3. |
Letting Ξ<1, we get −E12(1√3)−1<ξ<E12(1√3)−1. Now all assumptions of Theorem 2.2 hold. Hence, if −E12(1√3)−1<ξ<E12(1√3)−1, (4.1) has a unique 1-periodic mild solution, which is also asymptotically stable.
This paper deals with the existence and stability of periodic solutions of impulsive fractional evolution equations with the case of varying lower limits and fixed lower limits. Although, Fečkan and Wang [12] prove the existence of periodic solutions of impulsive fractional ordinary differential equations in finite dimensional Euclidean space, we extend some results to impulsive fractional evolution equation on Banach space by involving operator semigroup theory. Our results can be applied to some impulsive fractional partial differential equations and the proposed approach can be extended to study the similar problem for periodic impulsive fractional evolution inclusions.
The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. This research is supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Foundation of Postgraduate of Guizhou Province (YJSCXJH[2019]031), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 2/0153/16 and No. 1/0078/17.
All authors declare no conflicts of interest in this paper.
[1] |
Y. Chalco-Cano, J. J. Nieto, A. Ouahab, H. Romn-Flores, Solution set for fractional differential equations with Riemann-Liouville derivative, Fract. Calc. Appl. Anal., 16(2013), 682–694. http://dx.doi.org/10.2478/s13540-013-0043-6 doi: 10.2478/s13540-013-0043-6
![]() |
[2] |
Y. G. Yan, Z. Z. Sun, J. W. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme, Commun. Comput. Phys., 22 (2017), 1028–1048. https://doi.org/10.4208/cicp.OA-2017-0019 doi: 10.4208/cicp.OA-2017-0019
![]() |
[3] |
R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[4] |
A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49 (2017), Article number 278. https://doi.org/10.1007/s11082-017-1116-2 doi: 10.1007/s11082-017-1116-2
![]() |
[5] |
K. U. Tariq, M. Younis, H. Rezazadeh, et al, Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution, Mod. Phys. Lett. B, 32 (2018), Article number 1850317. https://doi.org/10.1142/S0217984918503177 doi: 10.1142/S0217984918503177
![]() |
[6] |
Z. Li, T. Y. Han, Bifurcation and exact solutions for the (2+1)-dimensional conformable time-fractional Zoomeron equation, Adv. Differ. Equ-Ny., 2020 (2020), Article number 656. https://doi.org/10.1186/s13662-020-03119-5 doi: 10.1186/s13662-020-03119-5
![]() |
[7] |
T. Y. Han, Z. Li, X. Zhang, Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrodinger equation, Phys. Lett. A, 395 (2021), Article number 127217. https://doi.org/10.1016/j.physleta.2021.127217 doi: 10.1016/j.physleta.2021.127217
![]() |
[8] |
K. Hosseini, P. Mayeli, A. Bekir, O. Guner, D. O. Mathematics, R. Branch, Density-dependent conformable space-time fractional diffusion-reaction equation and its exact solutions, Commun. Theor. Phys., 69 (2018), 1–4. https://doi.org/10.1088/0253-6102/69/1/1 doi: 10.1088/0253-6102/69/1/1
![]() |
[9] |
T. Lu, S. P. Chen, The classication of single traveling wave solutions for the fractional coupled nonlinear Schrodinger equation, Opt. Quant. Electron., 54 (2022), Article number 105. https://doi.org/10.1007/s11082-021-03496-5 doi: 10.1007/s11082-021-03496-5
![]() |
[10] |
C. Huang, Z. Li, New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation, Math. Probl. Eng., 2021 (2021), Article ID 1283083. https://doi.org/10.1155/2021/6640086 doi: 10.1155/2021/6640086
![]() |
[11] |
A. Biswas, M. O. Al-Amr, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, et al., Resonant optical solitons with dualpower law nonlinearity and fractional temporal evolution, Optik, 165 (2018), 233–239. https://doi.org/10.1016/j.ijleo.2018.03.123 doi: 10.1016/j.ijleo.2018.03.123
![]() |
[12] |
B. Ghanbari, J. F. Gómez-Aguilar, The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with β-conformable time derivative, Revista Mexicana de Fsica, 65 (2019), 503–518. https://doi.org/10.31349/RevMexFis.65.503 doi: 10.31349/RevMexFis.65.503
![]() |
[13] |
A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers, Front. Phys., 7 (2019), Article number 34. https://doi.org/10.3389/fphy.2019.00034 doi: 10.3389/fphy.2019.00034
![]() |
[14] |
M. Fa. Uddin, M. G. Hafez, Z. Hammouch, D. Baleanu, Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness, Waves Random Complex, 31 (2020), 2135–2149. https://doi.org/10.1080/17455030.2020.1722331 doi: 10.1080/17455030.2020.1722331
![]() |
[15] |
K. Hosseini, L. Kaur, M. Mirzazadeh, H. M. Baskonus, 1-Soliton solutions of the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative, Opt. Quant. Electron., 53 (2021), Article number 125. https://doi.org/10.1007/s11082-021-02739-9 doi: 10.1007/s11082-021-02739-9
![]() |
[16] |
A. Zafar, A. Bekir, M. Raheel, K. Sooppy Nisar, S. Mustafa, Dynamics of new optical solitons for the Triki-Biswas model using beta-time derivative, Mod. Phys. Lett. B, 35 (2021), Article number 2150511. https://doi.org/10.1142/S0217984921505114 doi: 10.1142/S0217984921505114
![]() |
[17] |
S. T. Demiray, New Solutions of Biswas-Arshed Equation with Beta Time Derivative, Optik, 222 (2020), Article number 165405. https://doi.org/10.1016/j.ijleo.2020.165405 doi: 10.1016/j.ijleo.2020.165405
![]() |
[18] |
K. Hosseini, M. Mirzazadeh, M. Ilie, J. F. Gómez-Aguilar, Biswas-Arshed equation with the beta time derivative: Optical solitons and other solutions, Optik, 217 (2020), Article number 164801. https://doi.org/10.1016/j.ijleo.2020.164801 doi: 10.1016/j.ijleo.2020.164801
![]() |
[19] |
K. Khan, M. A. Akbar, Solitary and periodic wave solutions of nonlinear wave equations via the functional variable method, J. Interdiscip. Math., 21 (2018), 43–57. https://doi.org/10.1080/09720502.2014.962839 doi: 10.1080/09720502.2014.962839
![]() |
[20] |
K. Khan, M. A. Akbar, Solving unsteady Korteweg-de Vries equation and its two alternatives, Math. Method. Appl. Sci., 39 (2016), 2752–2760. https://doi.org/10.1002/mma.3727 doi: 10.1002/mma.3727
![]() |
[21] |
T. Y. Han, J. J. Wen, Z. Li, J. Yuan, New Traveling Wave Solutions for the (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation, Math. Probl. Eng., 2022 (2022), Article ID 1312181, 9 pages. https://doi.org/10.1155/2022/1312181 doi: 10.1155/2022/1312181
![]() |
[22] |
T. Y. Han, J. J. Wen, Z. Li, Bifurcation Analysis and Single Traveling Wave Solutions of the Variable-Coefficient Davey-Stewartson System, Discrete Dyn. Nat. Soc., 2022 (2022), 1–6. https://doi.org/10.1155/2022/9230723 doi: 10.1155/2022/9230723
![]() |
[23] |
A. Biswas, S. Arshed, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037 doi: 10.1016/j.ijleo.2018.08.037
![]() |
[24] |
W. R. Xu, L. F. Guo, C. Y. Wang, Optical solutions of Biswas-Arshed equation in optical fibers, Mod. Phys. Lett. B, 35 (2021), Article number 2150051. https://doi.org/10.1142/S0217984921500512 doi: 10.1142/S0217984921500512
![]() |
[25] |
H. U. Rehman, S. Jafar, A. Javed, S. Hussain, M. Tahir, New optical solitons of Biswas-Arshed equation using different techniques, Optik, 206 (2019), Article number 163670. https://doi.org/10.1016/j.ijleo.2019.163670 doi: 10.1016/j.ijleo.2019.163670
![]() |
[26] |
N. Sajid, G. Akram, Novel solutions of Biswas-Arshed equation by newly Φ6 model expansion method, Optik, 211 (2020), Article number 164564. https://doi.org/10.1016/j.ijleo.2020.164564 doi: 10.1016/j.ijleo.2020.164564
![]() |
[27] |
Y. Yıldırım, Optical solitons with Biswas-Arshed equation by sine-Gordon equation method, Optik, 223 (2020), Article number 165622. https://doi.org/10.1016/j.ijleo.2020.165622 doi: 10.1016/j.ijleo.2020.165622
![]() |
[28] |
M. Tahir, A. U. Awan, Optical singular and dark solitons with Biswas-Arshed model by modified simple equation method, Optik, 202 (2020), Article number 163523. https://doi.org/10.1016/j.ijleo.2019.163523 doi: 10.1016/j.ijleo.2019.163523
![]() |
[29] |
A. Zafar, A. Bekir, M. Raheel, W. Razzaq, Optical soliton solutions to Biswas-Arshed model with truncated M-fractional derivative, Optik, 222 (2020), Article number 165355. https://doi.org/10.1016/j.ijleo.2020.165355 doi: 10.1016/j.ijleo.2020.165355
![]() |
[30] |
Y. Yıldırım, Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique, Optik, 182 (2019), 810–820. https://doi.org/10.1016/j.ijleo.2019.01.084 doi: 10.1016/j.ijleo.2019.01.084
![]() |
[31] |
M.M.A. El-Sheikh, H. M. Ahmed, A. H. Arnous, et al, Optical solitons and other solutions in birefringent fibers with Biswas-Arshed equation by Jacobi's elliptic function approach. Optik, 202 (2019), Article number 163546. https://doi.org/10.1016/j.ijleo.2019.163546 doi: 10.1016/j.ijleo.2019.163546
![]() |
[32] |
E. M. E. Zayed, R. M. A. Shohib, Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method, Optik, 185 (2019), 626–635. https://doi.org/10.1016/j.ijleo.2019.03.112 doi: 10.1016/j.ijleo.2019.03.112
![]() |
[33] |
A. Darwish, H. M. Ahmed, Ahmed H. Arnous, M. F. Shehab, Optical solitons of Biswas-Arshed equation in birefringent fibers using improved modified extended tanh-function method, Optik, 227 (2021), Article number 165385. https://doi.org/10.1016/j.ijleo.2020.165385 doi: 10.1016/j.ijleo.2020.165385
![]() |
[34] |
Z. Korpinar, M. Inc, M. Bayram, M. S. Hashemi, New optical solitons for Biswas-Arshed equation with higher order dispersions and full nonlinearity, Optik, 206 (2020), Article number 163332. https://doi.org/10.1016/j.ijleo.2019.163332 doi: 10.1016/j.ijleo.2019.163332
![]() |
[35] |
P. K. Das, Chirped and chirp-free optical exact solutions of the Biswas-Arshed equation with full nonlinearity by the rapidly convergent approximation method, Optik, 223(2020), Article number 165293. https://doi.org/10.1016/j.ijleo.2020.165293 doi: 10.1016/j.ijleo.2020.165293
![]() |
[36] |
H. U. Rehman, M. S. Saleem, M.Zubair, S. Jafar, I. Latif, Optical solitons with Biswas-Arshed model using mapping method, Optik, 194 (2019), Article number 163091. https://doi.org/10.1016/j.ijleo.2019.163091 doi: 10.1016/j.ijleo.2019.163091
![]() |
[37] |
N. A. Kudryashov, Periodic and solitary waves of the Biswas-Arshed equation, Optik, 200 (2020), Article number 163442. https://doi.org/10.1016/j.ijleo.2019.163442 doi: 10.1016/j.ijleo.2019.163442
![]() |
[38] |
H. U. Rehman, M. Tahir, M. Bibi, Z. Ishfaq, Optical solitons to the Biswas-Arshed model in birefringent fibers using couple of integration techniques, Optik, 218 (2020), Article number 164894. https://doi.org/10.1016/j.ijleo.2020.164894 doi: 10.1016/j.ijleo.2020.164894
![]() |
[39] |
M. Munawar, A. Jhangeer, A. Pervaiz, F. Ibraheem, New general extended direct algebraic approach for optical solitons of Biswas-Arshed equation through birefringent fibers, Optik, 228 (2021), Article number 165790. https://doi.org/10.1016/j.ijleo.2020.165790 doi: 10.1016/j.ijleo.2020.165790
![]() |
[40] |
N. A. Kudryashov, Solitary wave solutions of the generalized Biswas-Arshed equation, Optik, 219(2020), Article number 165002. https://doi.org/10.1016/j.ijleo.2020.165002 doi: 10.1016/j.ijleo.2020.165002
![]() |
[41] |
L. Tang, Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. Results Phys., 18 (2020), Article number 103289. https://doi.org/10.1016/j.rinp.2020.103289 doi: 10.1016/j.rinp.2020.103289
![]() |
[42] |
A. Atangana, R. T. Alqahtani, Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative, Entropy, 18 (2016), Article number 40. https://doi.org/10.3390/e18020040 doi: 10.3390/e18020040
![]() |
1. | Xinguang Zhang, Lixin Yu, Jiqiang Jiang, Yonghong Wu, Yujun Cui, Gisele Mophou, Solutions for a Singular Hadamard-Type Fractional Differential Equation by the Spectral Construct Analysis, 2020, 2020, 2314-8888, 1, 10.1155/2020/8392397 | |
2. | Xinguang Zhang, Jiqiang Jiang, Lishan Liu, Yonghong Wu, Extremal Solutions for a Class of Tempered Fractional Turbulent Flow Equations in a Porous Medium, 2020, 2020, 1024-123X, 1, 10.1155/2020/2492193 | |
3. | Jingjing Tan, Xinguang Zhang, Lishan Liu, Yonghong Wu, Mostafa M. A. Khater, An Iterative Algorithm for Solving n -Order Fractional Differential Equation with Mixed Integral and Multipoint Boundary Conditions, 2021, 2021, 1099-0526, 1, 10.1155/2021/8898859 | |
4. | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad, Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions, 2022, 7, 2473-6988, 8314, 10.3934/math.2022463 | |
5. | Lianjing Ni, Liping Wang, Farooq Haq, Islam Nassar, Sarp Erkir, The Effect of Children’s Innovative Education Courses Based on Fractional Differential Equations, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0039 |