In this article, we introduce the idea of double controlled $ M $-metric space by employing two control functions $ a(u, w) $ and $ \beta (w, v) $ on the right-hand side of the triangle inequality of $ M $-metric space. We provide some examples of double controlled $ M $-metric spaces. We also provide some fixed point results under new type of contractions in the setting of double controlled $ M $-metric spaces. Moreover, we give an example to highlight the importance of one of our main results.
Citation: Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad. Double controlled $ M $-metric spaces and some fixed point results[J]. AIMS Mathematics, 2022, 7(8): 15298-15312. doi: 10.3934/math.2022838
In this article, we introduce the idea of double controlled $ M $-metric space by employing two control functions $ a(u, w) $ and $ \beta (w, v) $ on the right-hand side of the triangle inequality of $ M $-metric space. We provide some examples of double controlled $ M $-metric spaces. We also provide some fixed point results under new type of contractions in the setting of double controlled $ M $-metric spaces. Moreover, we give an example to highlight the importance of one of our main results.
[1] | T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320 |
[2] | M. Asadi, E. Karapinar, P. Salimi, New extension of $p$-metric spaces with some fixed point results on $M$-metric spaces, J. Inequal. Appl., 2014 (2014), 18. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18 |
[3] | D. S. Bridges, Dini's theorem: A constructive case study, In: Combinatorics, computability and logic, London: Springer, 2001, 69–80. https://doi.org/10.1007/978-1-4471-0717-0_7 |
[4] | H. A. Hammad, H. Aydi, C. Park, Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in $F_{CM}$-spaces, AIMS Mathematics, 7 (2022), 9003–9022. https://doi.org/10.3934/math.2022501 doi: 10.3934/math.2022501 |
[5] | H. A. Hammad, W. Chaolamjiak, Solving singular coupled fractional differential equations with integral equations with integral boundary constraints by coupled fixed point methodology, AIMS Mathematics, 6 (2021), 13370–13391. https://doi.org/10.3934/math.2021774 doi: 10.3934/math.2021774 |
[6] | H. Kamo, Effective Dini's theorem on effectively compact metric spaces, Electron. Notes Theor. Comput. Sci., 120 (2005), 73–82. https://doi.org/10.1016/j.entcs.2004.06.035 doi: 10.1016/j.entcs.2004.06.035 |
[7] | S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x |
[8] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194 |
[9] | N. Mlaiki, M. Hajji, T. Abdeljawad, Fredholm type integral equation in extended $M_{b}$-metric spaces, Adv. Differ. Equ., 2020 (2020), 289. https://doi.org/10.1186/s13662-020-02752-4 doi: 10.1186/s13662-020-02752-4 |
[10] | N. Mlaiki, N. Y. Ozgür, A. Mukheimer, N. Tas, A new extension of the $M_{b}$-metric spaces, J. Math. Anal., 9 (2018), 118–133. |
[11] | N. Mlaiki, A. Zarad, N. Souayh, A. Mukheimer, T. Abdeljawed, Fixed point theorems in $M_{b}$-metric spaces, J. Math. Anal., 7 (2016), 1–9. |
[12] | A. Mukheimer, N. Mlaiki, K. Abodayeh, W. Shatanawi, New theorems on extended $b$-metric spaces under new contractions, Nonlinear Anal.-Model., 24 (2019), 870–883. https://doi.org/10.115388/NA.2019.6.2 doi: 10.115388/NA.2019.6.2 |
[13] | H. Qawaqneh, M. S. Md Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed point results for multi-valued contractions in $b$-metric spaces and an application, Mathematics, 7 (2019), 132. https://doi.org/10.3390/math7020132 doi: 10.3390/math7020132 |
[14] | Rahul, N. K. Mahato, Existence solution of a system of differential equations using generalized Darbo's fixed point theorem, AIMS Mathematics, 6 (2021), 13358–13369. https://doi.org/10.3934/math.2021773 doi: 10.3934/math.2021773 |
[15] | S. Rathee, M. Swami, Algorithm for split variational inequality, split equilibrium problem and split common fixed point problem, AIMS Mathematics, 7 (2022), 9325–9338. https://doi.org/10.3934/math.2022517 doi: 10.3934/math.2022517 |
[16] | F. Uddin, C. Park, K. Javed, M. Arshad, J. R. Lee, Orthogonal $m$-metric spaces and an application to solve integral equations, Adv. Differ. Equ., 2021 (2021), 159. https://doi.org/10.1186/s13662-021-03323-x doi: 10.1186/s13662-021-03323-x |