In this paper, under the assumption of an initial bounded region $ \Omega(0) $, we establish the blowup phenomenon of the regular solutions and $ C^{1} $ solutions to the two-phase model in $ \mathbb{R}^{N} $. If the total energy $ E $ and the total mass $ M > 0 $ satisfy
$ \begin{equation} \nonumber \max\limits_{\vec{x_{0}}\in\partial\Omega(0)}\sum\limits_{i = 1}^{N}u_{i}^{2}(0,\vec{x_{0}})<\frac{\min\{2,N(\Gamma-1),N(\gamma-1)\}E}{M}, \end{equation} $
where $ E = \int_{\Omega(0)}\left(\frac{1}{2}n\left\vert \vec{u}\right\vert ^{2} +\frac{1}{2}\rho\left\vert \vec{u}\right\vert ^{2}+\frac{1}{\Gamma-1}n^{\Gamma}+\frac{1}{\gamma-1}\rho^{\gamma}\right) dV $ and $ M = {\int_{\Omega(0)}} (n+\rho) dV > 0 $, then the blowup of the solutions to the two-phase model will be formed in finite time in $ \mathbb{R}^{N} $. Furthermore, under the assumptions that the radially symmetric initial data and initial density contain vacuum states, the blowup of the smooth solutions to the two-phase model will be formed in finite time in $ \mathbb{R}^{N} (N \geq2) $.
Citation: Jingjie Wang, Xiaoyong Wen, Manwai Yuen. Blowup for regular solutions and $ C^{1} $ solutions of the two-phase model in $ \mathbb{R}^{N} $ with a free boundary[J]. AIMS Mathematics, 2022, 7(8): 15313-15330. doi: 10.3934/math.2022839
In this paper, under the assumption of an initial bounded region $ \Omega(0) $, we establish the blowup phenomenon of the regular solutions and $ C^{1} $ solutions to the two-phase model in $ \mathbb{R}^{N} $. If the total energy $ E $ and the total mass $ M > 0 $ satisfy
$ \begin{equation} \nonumber \max\limits_{\vec{x_{0}}\in\partial\Omega(0)}\sum\limits_{i = 1}^{N}u_{i}^{2}(0,\vec{x_{0}})<\frac{\min\{2,N(\Gamma-1),N(\gamma-1)\}E}{M}, \end{equation} $
where $ E = \int_{\Omega(0)}\left(\frac{1}{2}n\left\vert \vec{u}\right\vert ^{2} +\frac{1}{2}\rho\left\vert \vec{u}\right\vert ^{2}+\frac{1}{\Gamma-1}n^{\Gamma}+\frac{1}{\gamma-1}\rho^{\gamma}\right) dV $ and $ M = {\int_{\Omega(0)}} (n+\rho) dV > 0 $, then the blowup of the solutions to the two-phase model will be formed in finite time in $ \mathbb{R}^{N} $. Furthermore, under the assumptions that the radially symmetric initial data and initial density contain vacuum states, the blowup of the smooth solutions to the two-phase model will be formed in finite time in $ \mathbb{R}^{N} (N \geq2) $.
[1] | D. Bresch, B. Desjardins, J. M. Ghidaglia, E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Ration Mech. Anal., 196 (2010), 599–629. http://doi.org/10.1007/s00205-009-0261-6 doi: 10.1007/s00205-009-0261-6 |
[2] | C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, New York: Springer-Verlag, 1994. |
[3] | D. H. Chae, E. Tadmor, On the finite time blow-up of the Euler-Poisson equations in $\mathbb{R}^{N}$, Commun. Math. Sci., 6 (2008), 785–789. http://doi.org/10.4310/CMS.2008.v6.n3.a13 doi: 10.4310/CMS.2008.v6.n3.a13 |
[4] | D. H. Chae, S. Y. Ha, On the formation of shocks to the compressible Euler equations, Commun. Math. Sci., 7 (2009), 627–634. http://doi.org/10.4310/CMS.2009.v7.n3.a6 doi: 10.4310/CMS.2009.v7.n3.a6 |
[5] | G. Q. Chen, Euler equations and related hyperbolic conservation laws, In: Handbook of differential equations: Evolutionary equations, 2 (2005), 1–104. https://doi.org/10.1016/S1874-5717(06)80004-6 |
[6] | G. Q. Chen, D. H. Wang, The Cauchy problem for the Euler equations for compressible fluids, In: Handbook of mathematical fluid dynamics, 1 (2002), 421–543. http://doi.org/10.1016/S1874-5792(02)80012-X |
[7] | A. Constantin, Breaking water waves, In: Encyclopedia of mathematical physics, Elsevier, 2006,383–386. |
[8] | H. B. Cui, H. Y. Wen, H. Y. Yin, Global classical solutions of viscous liquid-gas two-phase flow model, Math. Method. Appl. Sci., 36 (2013), 567–583. https://doi.org/10.1002/mma.2614 doi: 10.1002/mma.2614 |
[9] | J. W. Dong, M. W. Yuen, Some special self-similar solutions for a model of inviscid liquid-gas two-phase flow, Acta Math. Sci., 41 (2021), 114–126. http://doi.org/10.1007/s10473-021-0107-3 doi: 10.1007/s10473-021-0107-3 |
[10] | J. W. Dong, J. H. Zhu, H. X. Xue, Blow-up of smooth solutions to the Cauchy problem for the viscous two-phase model, Math. Phys. Anal. Geom., 21 (2018), 20. https://doi.org/10.1007/s11040-018-9279-z doi: 10.1007/s11040-018-9279-z |
[11] | D. Einzel, Superfluids, In: Encyclopedia of mathematical physics, Elsevier, 2006,115–121. |
[12] | S. Engelberg, Formation of singularities in the Euler and Euler-Poisson equations, Physica D, 98 (1996), 67–74. https://doi.org/10.1016/0167-2789(96)00087-5 doi: 10.1016/0167-2789(96)00087-5 |
[13] | F. Ferrari, S. Salsa, Regularity of the free boundary in two-phase problems for linear elliptic operators, Adv. Math., 214 (2007), 288–322. https://doi.org/10.1016/j.aim.2007.02.004 doi: 10.1016/j.aim.2007.02.004 |
[14] | Z. H. Guo, J. Yang, L. Yao, Global strong solution for a three-dimensional viscous liquid-gas two-phase flow model with vacuum, J. Math. Phys., 52 (2011), 093102. http://doi.org/10.1063/1.3638039 doi: 10.1063/1.3638039 |
[15] | C. C. Hao, H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304–1332. http://doi.org/10.1137/110851602 doi: 10.1137/110851602 |
[16] | M. Ishii, Thermo-fluid dynamic theory of two-phase flow, 1975. |
[17] | J. H. Jang, N. Masmoudi, Well-posedness for compressible Euler equations with physical vacuum singularity, Commun. Pure Appl. Math., 62 (2009), 1327–1385. https://doi.org/10.1002/cpa.20285 doi: 10.1002/cpa.20285 |
[18] | Z. Lei, Y. Du, Q. T. Zhang, Singularities of solutions to compressible Euler equations with vacuum, Math. Res. Lett., 20 (2013), 41–50. http://doi.org/10.4310/MRL.2013.v20.n1.a4 doi: 10.4310/MRL.2013.v20.n1.a4 |
[19] | J. L. Liu, J. J. Wang, M. W. Yuen, Blowup for $C^{1}$ solutions of compressible Euler equations with time-dependent damping, Commun. Math. Sci., 19 (2021), 513–528. https://doi.org/10.4310/CMS.2021.v19.n2.a9 doi: 10.4310/CMS.2021.v19.n2.a9 |
[20] | T. Makino, B. Perthame, Sur les solutions à symé trie sphérique de l'équation d'Euler-Poisson pour l'évolution d' étoiles gazeuses, Japan J. Appl. Math., 7 (1990), 165. https://doi.org/10.1007/BF03167897 doi: 10.1007/BF03167897 |
[21] | T. Makino, S. Ukai, S. Kawashima, Sur la solution à support compact de l'équations d'Euler compressible, Japan J. Appl. Math., 3 (1986), 249. https://doi.org/10.1007/BF03167100 doi: 10.1007/BF03167100 |
[22] | B. Perthame, Non-existence of global solutions to Euler-Poisson equations for repulsive forces, Japan J. Appl. Math., 7 (1990), 363–367. https://doi.org/10.1007/BF03167849 doi: 10.1007/BF03167849 |
[23] | V. H. Ransom, D. L. Hicks, Hyperbolic two-pressure models for two-phase flow, J. Comput. Phys., 53 (1984), 124–151. https://doi.org/10.1016/0021-9991(84)90056-1 doi: 10.1016/0021-9991(84)90056-1 |
[24] | B. Schweizer, On the three-dimensional Euler equations with a free boundary subject to surface tension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 753–781. https://doi.org/10.1016/j.anihpc.2004.11.001 doi: 10.1016/j.anihpc.2004.11.001 |
[25] | T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101 (1985), 475–485. https://doi.org/10.1007/BF01210741 doi: 10.1007/BF01210741 |
[26] | T. C. Sideris, Spreading of the free boundary of an ideal fluid in a vacuum, J. Differ. Equ., 257 (2014), 1–14. https://doi.org/10.1016/j.jde.2014.03.006 doi: 10.1016/j.jde.2014.03.006 |
[27] | D. De Seliva, F. Ferrari, S. Salsa, Regularity of the free boundary in problems with distributed sources, In: Geometric methods in PDE's, Springer, Cham, 13 (2015), 313–340. https://doi.org/10.1007/978-3-319-02666-4_17 |
[28] | T. Suzuki, Irrotational blowup of the solution to compressible Euler equation, J. Math. Fluid Mech., 15 (2013), 617–633. https://doi.org/10.1007/s00021-012-0116-z doi: 10.1007/s00021-012-0116-z |
[29] | H. Y. Wen, C. J. Zhu, Remarks on global weak solutions to a two-fluid type model, Commun. Pure. Appl. Anal., 20 (2021), 2839–2856. http://doi.org/10.3934/cpaa.2021072 doi: 10.3934/cpaa.2021072 |
[30] | G. B. Whitham, Linear and nonlinear waves, New York-London-Sydney: John Wiley & Sons, 1974. |
[31] | L. Yao, T. Zhang, C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874–1897. https://doi.org/10.1137/100785302 doi: 10.1137/100785302 |
[32] | L. Yao, C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differ. Equ., 247 (2009), 2705–2739. http://doi.org/10.1016/j.jde.2009.07.013 doi: 10.1016/j.jde.2009.07.013 |
[33] | L. Yao, C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903–928. http://doi.org/10.1007/s00208-010-0544-0 doi: 10.1007/s00208-010-0544-0 |
[34] | M. W. Yuen, Blowup for irrotational $C^{1}$ solutions of the compressible Euler equations in $\mathbb{R}^{N}$, Nonlinear Anal., 158 (2017), 132–141. https://doi.org/10.1016/j.na.2017.04.007 doi: 10.1016/j.na.2017.04.007 |
[35] | M. W. Yuen, Blowup for regular solutions and $C^{1}$ solutions of Euler equations in $\mathbb{R}^{N}$ with a free boundary, Eur. J. Mech.-B/Fluids, 67 (2018), 427–432. https://doi.org/10.1016/j.euromechflu.2017.09.017 doi: 10.1016/j.euromechflu.2017.09.017 |
[36] | M. W. Yuen, Blowup for projected 2-dimensional rotational $C^{2}$ solutions of compressible Euler equations, J. Math. Fluid Mech., 21 (2019), 54. https://doi.org/10.1007/s00021-019-0458-x doi: 10.1007/s00021-019-0458-x |
[37] | Y. H. Zhang, C. J. Zhu, Global existence and optimal convergence rates for the strong solutions in $H^{2}$ to the $3D$ viscous liquid Cgas two-phase flow model, J. Differ. Equ., 258 (2015), 2315–2338. http://doi.org/10.1016/j.jde.2014.12.008 doi: 10.1016/j.jde.2014.12.008 |
[38] | Y. H. Zhang, Decay of the $3D$ inviscid liquid-gas two-phase flow model, Z. Angew. Math. Phys., 67 (2016), 54. https://doi.org/10.1007/s00033-016-0658-7 doi: 10.1007/s00033-016-0658-7 |
[39] | N. Zuber, On the dispersed two-phase flow in the laminar flow regime, Chem. Eng. Sci., 19 (1964), 897–917. https://doi.org/10.1016/0009-2509(64)85067-3 doi: 10.1016/0009-2509(64)85067-3 |