In this paper, we establish some new dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus by applying the reverse H ölder's inequality, integration by parts, and chain rule on time scales nabla calculus. As special cases of our results (when $ \mathbb{ T = R} $), we get the continuous analouges of inequalities proven by Benaissa and Sarikaya, and when $ \mathbb{T = N}_{0} $, the results to the best of the authors' knowledge are essentially new.
Citation: Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed. Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus[J]. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250
In this paper, we establish some new dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus by applying the reverse H ölder's inequality, integration by parts, and chain rule on time scales nabla calculus. As special cases of our results (when $ \mathbb{ T = R} $), we get the continuous analouges of inequalities proven by Benaissa and Sarikaya, and when $ \mathbb{T = N}_{0} $, the results to the best of the authors' knowledge are essentially new.
[1] | G. H. Hardy, Notes on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965 |
[2] | G. H. Hardy, Notes on some points in the integral calculus (LX), Mess. Math., 54 (1925), 150–156. |
[3] | G. H. Hardy, J. E. Littlewood, Elementary theorems concerning power series with positive coefficents and moment constants of positive functions, J. Reine Angew. Math., 157 (1927), 141–158. https://doi.org/10.1515/crll.1927.157.141 doi: 10.1515/crll.1927.157.141 |
[4] | Y. Bicheng, On a new Hardy type integral inequalities, Int. Math. Forum., 2 (2007), 3317–3322. |
[5] | B. Benaissa, M. Z. Sarikaya, Generalization of some Hardy-type integral inequality with negative parameter, Bull. Transilv. Univ. Bras. III, 13 (2020), 69–76. https://doi.org/10.31926/but.mif.2020.13.62.1.6 doi: 10.31926/but.mif.2020.13.62.1.6 |
[6] | G. Al Nemer, A. I. Saied, A. M. Hassan, C. Cesarano, H. M. Rezk, M. Zakarya, On some new dynamic inequalities involving C-Monotonic functions on time scales, Axioms, 11 (2022), 644. https://doi.org/10.3390/axioms11110644 doi: 10.3390/axioms11110644 |
[7] | E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412. https://doi.org/10.7153/jmi-2022-16-29 doi: 10.7153/jmi-2022-16-29 |
[8] | R. Bibi, M. Bohner, J. Pečarić, S. Varošanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal., 7 (2013), 299–312. https://doi.org/10.7153/jmi-07-28 doi: 10.7153/jmi-07-28 |
[9] | J. A. Oguntuase, L. E. Persson, Time scales Hardy-type inequalities via superquadracity, Ann. Funct. Anal., 5 (2014), 61–73. https://doi.org/10.15352/afa/1396833503 doi: 10.15352/afa/1396833503 |
[10] | P. Řehak, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 495–507. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495 |
[11] | H. M. Rezk, A. I. Saied, G. AlNemer, M. Zakarya, On Hardy-Knopp type inequalities with Kernels via time scale calculus, J. Math., 2022 (2022), 7997299. https://doi.org/10.1155/2022/7997299 doi: 10.1155/2022/7997299 |
[12] | S. H. Saker, E. Awwad, A. I. Saied, Some new dynamic inequalities involving monotonic functions on time scales, J. Funct. Space., 2019 (2019), 7584836. https://doi.org/10.1155/2019/7584836 doi: 10.1155/2019/7584836 |
[13] | S. H. Saker, A. I. Saied, M. Krnić, Some new dynamic Hardy-type inequalities with kernels involving monotone functions, Racsam Rev. R. Acad. A, 114 (2020), 1–16. https://doi.org/10.1007/s13398-020-00876-6 doi: 10.1007/s13398-020-00876-6 |
[14] | S. H. Saker, A. I. Saied, M. Krnić, Some new weighted dynamic inequalities for Monotone functions involving Kernels, Mediterr. J. Math., 17 (2020), 1–18. https://doi.org/10.1007/s00009-020-1473-0 doi: 10.1007/s00009-020-1473-0 |
[15] | S. H. Saker, J. Alzabut, A. I. Saied, D. O'Regan, New characterizations of weights on dynamic inequalities involving a Hardy operator, J. Inequal. Appl., 2021 (2021), 1–24. https://doi.org/10.1186/s13660-021-02606-x doi: 10.1186/s13660-021-02606-x |
[16] | S. H. Saker, A. I. Saied, D. R. Anderson, Some new characterizations of weights in dynamic inequalities involving monotonic functions, Qual. Theory Dyn. Syst., 20 (2021), 1–22. https://doi.org/10.1007/s12346-021-00489-3 doi: 10.1007/s12346-021-00489-3 |
[17] | M. Bohner, T. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445–1452. https://doi.org/10.1007/s11425-015-4974-8 doi: 10.1007/s11425-015-4974-8 |
[18] | M. J. Huntul, Identifying an unknown heat source term in the third-order pseudoparabolic equation from nonlocal integral observation, Int. Commun. Heat Mass, 128 (2021), 105550. https://doi.org/10.1016/j.icheatmasstransfer.2021.105550 doi: 10.1016/j.icheatmasstransfer.2021.105550 |
[19] | M. J. Huntul, I. Tekin, On an inverse problem for a nonlinear third order in time partial differential equation, Results Appl. Math., 15 (2022), 100314. https://doi.org/10.1016/j.rinam.2022.100314 doi: 10.1016/j.rinam.2022.100314 |
[20] | M. J. Huntul, M. Abbas, An inverse problem of fourth-order partial differential equation with nonlocal integral condition, Adv. Contin. Discrete Models, 2022 (2022), 1–27. https://doi.org/10.1186/s13662-022-03727-3 doi: 10.1186/s13662-022-03727-3 |
[21] | W. W. Mohammed, F. M. Al-Askar, C. Cesarano, On the dynamical behavior of solitary waves for coupled stochastic Korteweg-De Vries equations, Mathematics, 11 (2023), 3506. https://doi.org/10.3390/math11163506 doi: 10.3390/math11163506 |
[22] | W. W. Mohammed, F. M. Al-Askar, C. Cesarano, E. S. Aly, The soliton solutions of the stochastic shallow water wave equations in the sense of Beta-derivative, Mathematics, 11 (2023), 1338. https://doi.org/10.3390/math11061338 doi: 10.3390/math11061338 |
[23] | M. Alshammari, N. Iqbal, W. W. Mohammed, T. Botmart, The solution of fractional-order system of KdV equations with exponential-decay kernel, Results Phys., 38 (2022), 105615. https://doi.org/10.1016/j.rinp.2022.105615 doi: 10.1016/j.rinp.2022.105615 |
[24] | C. Zhang, T. Li, S. H. Saker, Oscillation of fourth-order delay differential equations, J. Math. Sci., 201 (2014), 296–309. https://doi.org/10.1007/s10958-014-1990-0 doi: 10.1007/s10958-014-1990-0 |
[25] | Y. Tian, Y. Yang, X. Ma, X. Su, Stability of discrete-time delayed systems via convex function-based summation inequality, Appl. Math. Lett., 2023 (2023), 108764. https://doi.org/10.1016/j.aml.2023.108764 doi: 10.1016/j.aml.2023.108764 |
[26] | Y. Tian, X. Su, C. Shen, X. Ma, Exponentially extended Dissipativity-based filtering of switched neural networks, Automatica, 161 (2024), 111465. https://doi.org/10.1016/j.automatica.2023.111465 doi: 10.1016/j.automatica.2023.111465 |
[27] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkhäuser, 2001. |
[28] | D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran, Nabla dynamic equations on time scales, Panam. Math. J., 13 (2003), 1–47. |
[29] | A. F. Güvenilir, B. Kaymakçalan, N. N. Pelen, Constantin's inequality for nabla and diamond-alpha derivative, J. Inequal. Appl., 2015 (2015), 1–17. https://doi.org/10.1186/s13660-015-0681-9 doi: 10.1186/s13660-015-0681-9 |
[30] | R. P. Agarwal, D. O'Regan, S. H. Saker, Dynamic inequalities on time scales, New York: Springer Cham, 2014. https://doi.org/10.1007/978-3-319-11002-8 |