First, we prove uniform-in-$ \epsilon $ regularity estimates of local strong solutions to the Chern-Simons-Schrödinger equations in $ \mathbb{R}^2 $. Here $ \epsilon $ is the dispersion coefficient. Then we prove the global well-posedness of strong solutions to the limit problem $ (\epsilon = 0) $.
Citation: Jishan Fan, Tohru Ozawa. Well-posedness for the Chern-Simons-Schrödinger equations[J]. AIMS Mathematics, 2022, 7(9): 17349-17356. doi: 10.3934/math.2022955
First, we prove uniform-in-$ \epsilon $ regularity estimates of local strong solutions to the Chern-Simons-Schrödinger equations in $ \mathbb{R}^2 $. Here $ \epsilon $ is the dispersion coefficient. Then we prove the global well-posedness of strong solutions to the limit problem $ (\epsilon = 0) $.
[1] | R. Jackiw, S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500–3513. https://doi.org/10.1103/PhysRevD.42.3500 doi: 10.1103/PhysRevD.42.3500 |
[2] | R. Jackiw, S.-Y. Pi, Self-dual Chern-Simons solitons, Prog. Theor. Phys., 107 (1992), 1–40. https://doi.org/10.1143/PTPS.107.1 doi: 10.1143/PTPS.107.1 |
[3] | L. Bergé, A. de Bouard, J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235–253. https://doi.org/10.1088/0951-7715/8/2/007 doi: 10.1088/0951-7715/8/2/007 |
[4] | H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), 590653. https://doi.org/10.1155/2013/590653 doi: 10.1155/2013/590653 |
[5] | Z. Lim, Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differ. Equations, 264 (2018), 2553–2597. https://doi.org/10.1016/j.jde.2017.10.026 doi: 10.1016/j.jde.2017.10.026 |
[6] | J. Byeon, H. Huh, J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575–1608. https://doi.org/10.1016/j.jfa.2012.05.024 doi: 10.1016/j.jfa.2012.05.024 |
[7] | H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702. https://doi.org/10.1063/1.4726192 doi: 10.1063/1.4726192 |
[8] | B. Liu, P. Smith, D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Notices, 2014 (2014), 6341–6398. https://doi.org/10.1093/imrn/rnt161 doi: 10.1093/imrn/rnt161 |
[9] | S. Demoulini, Global existence for a nonlinear Schrödinger-Chern-Simons system on a surface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 207–225. https://doi.org/10.1016/j.anihpc.2006.01.004 doi: 10.1016/j.anihpc.2006.01.004 |
[10] | H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967–974. https://doi.org/10.1088/0951-7715/22/5/003 doi: 10.1088/0951-7715/22/5/003 |
[11] | S. Demoulini, D. Stuart, Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system, Commun. Math. Phys., 290 (2009), 597–632. https://doi.org/10.1007/s00220-009-0844-y doi: 10.1007/s00220-009-0844-y |
[12] | B. Liu, P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equaiton, Rev. Mat. Iberoam., 32 (2016), 751–794. https://doi.org/10.4171/rmi/898 doi: 10.4171/rmi/898 |
[13] | S.-J. Oh, F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Notices, 2015 (2015), 13122–13147. https://doi.org/10.1093/imrn/rnv093 doi: 10.1093/imrn/rnv093 |
[14] | S. Jha, P. Das, S. Bandhyopadhyay, S. Treanţǎ, Well-posedness for multi-time variational inequality problems via generalized monotonicity and for variational problems with multi-time variational inequality constraints, J. Comput. Appl. Math., 407 (2022), 114033. https://doi.org/10.1016/j.cam.2021.114033 doi: 10.1016/j.cam.2021.114033 |
[15] | S. Treanţǎ, S. Jha, On well-posedness associated with a class of controlled variational inequalities, Math. Model. Nat. Phenom., 16 (2021), 52. https://doi.org/10.1051/mmnp/2021046 doi: 10.1051/mmnp/2021046 |
[16] | S. Treanţǎ, On well-posed isoperimetric-type constrained variational control problems, J. Differ. Equations, 298 (2021), 480–499. https://doi.org/10.1016/j.jde.2021.07.013 doi: 10.1016/j.jde.2021.07.013 |
[17] | Y. Cho, T. Ozawa, On the semi-relativistic Hartree type equation, SIAM J. Math. Anal., 38 (2006), 1060–1074. https://doi.org/10.1137/060653688 doi: 10.1137/060653688 |
[18] | J. Fan, T. Ozawa, Cauchy problem and vanishing dispersion limit for Schrödinger-improved Boussinesq equations, J. Math. Anal. Appl., 485 (2020), 123857. https://doi.org/10.1016/j.jmaa.2020.123857 doi: 10.1016/j.jmaa.2020.123857 |
[19] | T. Ozawa, K. Tomioka, Vanishing dispersion limit for Schrödinger-improved Boussinesq system in two space dimensions, Asymptotic Anal., in press. https://doi.org/10.3233/ASY-221758 |
[20] | T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704 |