First, we prove uniform-in-ϵ regularity estimates of local strong solutions to the Chern-Simons-Schrödinger equations in R2. Here ϵ is the dispersion coefficient. Then we prove the global well-posedness of strong solutions to the limit problem (ϵ=0).
Citation: Jishan Fan, Tohru Ozawa. Well-posedness for the Chern-Simons-Schrödinger equations[J]. AIMS Mathematics, 2022, 7(9): 17349-17356. doi: 10.3934/math.2022955
[1] | Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu . Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677 |
[2] | Yingying Xiao, Chuanxi Zhu, Li Xie . Existence of ground state solutions for the modified Chern-Simons-Schrödinger equations with general Choquard type nonlinearity. AIMS Mathematics, 2022, 7(4): 7166-7176. doi: 10.3934/math.2022399 |
[3] | Yonghang Chang, Menglan Liao . Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254 |
[4] | Saleh Almuthaybiri, Radhia Ghanmi, Tarek Saanouni . On the nonlinear Schrödinger equation with critical source term: global well-posedness, scattering and finite time blowup. AIMS Mathematics, 2024, 9(11): 30230-30262. doi: 10.3934/math.20241460 |
[5] | Saleh Almuthaybiri, Radhia Ghanmi, Tarek Saanouni . Correction: On the nonlinear Schrödinger equation with critical source term: global well-posedness, scattering and finite time blowup. AIMS Mathematics, 2025, 10(2): 2413-2414. doi: 10.3934/math.2025112 |
[6] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[7] | Yonghui Zou, Xin Xu, An Gao . Local well-posedness to the thermal boundary layer equations in Sobolev space. AIMS Mathematics, 2023, 8(4): 9933-9964. doi: 10.3934/math.2023503 |
[8] | Ning Duan, Xiaopeng Zhao . On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations. AIMS Mathematics, 2020, 5(6): 6457-6463. doi: 10.3934/math.2020416 |
[9] | Aissa Boukarou, Kaddour Guerbati, Khaled Zennir, Mohammad Alnegga . Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. AIMS Mathematics, 2021, 6(9): 10037-10054. doi: 10.3934/math.2021583 |
[10] | Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793 |
First, we prove uniform-in-ϵ regularity estimates of local strong solutions to the Chern-Simons-Schrödinger equations in R2. Here ϵ is the dispersion coefficient. Then we prove the global well-posedness of strong solutions to the limit problem (ϵ=0).
In this paper, we consider the following Chern-Simons-Schrödinger equations [1,2]:
i∂tϕ+(ϵ∇+iA)2ϕ=A0ϕ−λ|ϕ|2ϕ+if(x,t)ϕ, | (1.1) |
∂tA−∇A0=Im(ϵ¯ϕ∇⊥ϕ)+A⊥|ϕ|2, | (1.2) |
rotA=−12|ϕ|2 in R2×(0,∞), | (1.3) |
ϕ(⋅,0)=ϕ0(⋅) in R2, | (1.4) |
where ϕ is the complex scalar field, A0 and A:=(A1A2) are the real gauge fields. λ>0 is a coupling constant representing the strength of interaction potential. ϵ≥0 is the dispersion coefficient. i:=√−1,∇⊥:=(−∂2∂1),A⊥:=(−A2A1),rotϕ:=(∂2ϕ−∂1ϕ)=−∇⊥ϕ and rotA:=∂1A2−∂2A1. f is a complex smooth function.
The system (1.1)–(1.3) was proposed in [1,2] to deal with the electromagnetic phenomena in planar domains, such as the fractional quantum Hall effect or high-temperature superconductivity.
The system (1.1)–(1.3) is invariant under the following gauge transformations:
ϕ→ϕeiχ,A0→A0−∂tχ,A→A−∇χ, | (1.5) |
where χ:R2+1→R is a smooth function. In this work, we fix the Coulomb gauge:
divA=0 in R2×(0,∞). | (1.6) |
Taking div to (1.2), rot to (1.3), using rot2A=−ΔA+∇divA and (1.6), we can reformulate (1.1)–(1.3) as follows.
i∂tϕ+ϵ2Δϕ+2iϵA⋅∇ϕ−|A|2ϕ=A0ϕ−λ|ϕ|2ϕ+ifϕ, | (1.7) |
−ΔA0=ϵIm(∂1ϕ∂2¯ϕ−∂2ϕ∂1¯ϕ)−rot(|ϕ|2A), | (1.8) |
ΔA=12rot|ϕ|2 in R2×(0,∞), | (1.9) |
ϕ(⋅,0)=ϕ0(⋅) in R2. | (1.10) |
Bergé-de Bouard-Saut [3] proved that the Cauchy problem is locally well-posed when ϕ0∈H2. Huh [4] improved it to the case ϕ0∈H1. Lim [5] refined it to the case ϕ0∈Hs for s≥1. In [3], the authors also showed, by deriving a virial identity, that solutions blow up in finite time under certain conditions. The existence of a standing wave solution has also been proved in [6,7]. Liu-Smith-Tataru [8] proved the local well-posedness of (1.1)–(1.3) for small data ϕ0∈Hσ with any σ>0 under the Lorentz (heat) gauge:
A0=divA. | (1.11) |
Please see [9,10,11,12,13] for other studies of the problem (1.1)–(1.3).
All the above results dealt with the case ϵ=1. The aim of this paper is to prove the uniform regularity estimates independent of ϵ and prove the global well-posedness of strong solutions to the limit problem (ϵ=0). We will prove
Theorem 1.1. Let ϕ0∈Hs with s>1. Then there exists T0>0 such that the problem (1.7)–(1.10) has a unique local strong solution (ϕ,A0,A) on [0,T0] satisfying
supϵ∈[0,1] supt∈[0,T0]‖(ϕ,∇A0,∇A)(⋅,t)‖Hs≤C. | (1.12) |
Remark 1.1. Our approach is very much technically simpler than that in [5] when s>1.
Remark 1.2. We are unable to prove a similar result for the Maxwell-Schrödinger system.
When ϵ=0, the problem (1.7)–(1.10) reads as follows.
∂tϕ=−iA0ϕ−i|A|2ϕ+λi|ϕ|2ϕ+fϕ, | (1.13) |
ΔA0=rot(|ϕ|2A), | (1.14) |
ΔA=12rot|ϕ|2, | (1.15) |
divA=0 in R2×(0,∞), | (1.16) |
ϕ(⋅,0)=ϕ0(⋅) in R2. | (1.17) |
We have
Theorem 1.2. Let ϕ0∈Hs∩L∞ with s≥1. Then the problem (1.13)–(1.17) has a unique global strong solution (ϕ,A0,A) satisfying (1.12).
Remark 1.3. For recent literature on the concept of "well-posedness, " we refer the reader to [14,15,16]. Regarding vanishing dispersion limit for related equations, see [17,18,19].
In the following proofs, we will use the bilinear commutator and product estimates due to Kato-Ponce [20]:
‖Λs(fg)−fΛsg‖Lp≤C(‖∇f‖Lp1‖Λs−1g‖Lq1+‖g‖Lp2‖Λsf‖Lq2), | (1.18) |
‖Λs(fg)‖Lp≤C(‖f‖Lp1‖Λsg‖Lq1+‖Λsf‖Lp2‖g‖Lq2) | (1.19) |
with s>0,Λ:=(−Δ)12 and 1p=1p1+1q1=1p2+1q2.
Since the local well-posedness of smooth solution is well-known [5], we only need to show (1.12).
(1.7) can be written as
∂tϕ=iϵ2Δϕ−2ϵA⋅∇ϕ−iA0ϕ−i|A|2ϕ+iλ|ϕ|2ϕ+fϕ. | (2.1) |
Testing (2.1) by ¯ϕ, taking the real parts and using (1.5), we have
12ddt∫|ϕ|2dx=Re∫f|ϕ|2dx≤‖f‖L∞‖ϕ‖2L2, |
which gives
‖ϕ‖L2≤C. | (2.2) |
Applying Λs to (2.1), testing by Λs¯ϕ, taking the real parts, and using (1.5), (1.17) and (1.18), we get
12ddt∫|Λsϕ|2dx=−2ϵRe∫(Λs(A⋅∇ϕ)−A⋅∇Λsϕ)Λs¯ϕdx−Re i∫Λs(A0ϕ)Λs¯ϕdx−Re i∫Λs(|A|2ϕ)Λs¯ϕdx+Reλi∫Λs(|ϕ|2ϕ)Λs¯ϕdx+Re∫Λs(fϕ)Λs¯ϕdx≤C‖∇A‖L∞‖Λsϕ‖2L2+C‖∇ϕ‖Lp‖ΛsA‖L2pp−2‖Λsϕ‖L2(p:=2(2−s)+ if s<2 and p=4 if s≥2)+C‖A0‖L∞‖Λsϕ‖2L2+C‖ϕ‖L∞‖ΛsA0‖L2‖Λsϕ‖L2+C‖A‖2L∞‖Λsϕ‖2L2+C‖ϕ‖L∞‖A‖L∞‖ΛsA‖L2‖Λsϕ‖L2+C‖ϕ‖2L∞‖Λsϕ‖2L2+C‖f‖L∞‖Λsϕ‖2L2+C‖ϕ‖L∞‖Λsf‖L2‖Λsϕ‖L2. | (2.3) |
Noting
‖∇A‖L∞+‖ΛsA‖L2pp−2+‖ΛsA‖L2≤C‖∇A‖L2+C‖Λs+1A‖L2≤C‖ϕ‖2L4+C‖Λs(|ϕ|2)‖L2≤C‖ϕ‖2L4+C‖ϕ‖L∞‖Λsϕ‖L2≤‖ϕ‖2Hs | (2.4) |
and
‖ΛsA0‖L2≤C‖Λs−2div(Im(ϵ¯ϕ∇⊥ϕ)+A⊥|ϕ|2)‖L2≤C‖ϕ‖2Hs+C‖ϕ‖2L∞‖Λs−1A‖L2+C‖A‖L∞‖ϕ‖L∞‖Λs−1ϕ‖L2≤C‖ϕ‖4Hs+C, | (2.5) |
we obtain
‖A0‖L∞≤C‖A0‖L4+C‖ΛsA0‖L2≤C‖∇A0‖L43+C‖ΛsA0‖L2≤C‖¯ϕ∇⊥ϕ‖L43+C‖A⊥|ϕ|2‖L43+C‖ΛsA0‖L2≤C‖ϕ‖L4‖∇ϕ‖L2+C‖A‖L∞‖ϕ‖2L83+C‖ΛsA0‖L2≤C‖ϕ‖4Hs+C | (2.6) |
due to (1.2), and
‖A‖L∞≤C‖A‖L4+C‖Λs+1A‖L2≤C‖∇A‖L43+C‖Λs+1A‖L2≤C‖ϕ‖2L83+C‖Λs(|ϕ|2)‖L2≤C‖ϕ‖2L83+C‖ϕ‖L∞‖Λsϕ‖L2≤C‖ϕ‖2Hs. | (2.7) |
Inserting (2.4), (2.5), (2.6), and (2.7) into (2.3), we arrive at
ddt∫|Λsϕ|2dx≤C‖ϕ‖6Hs+C, | (2.8) |
which gives (1.12).
The proof is complete.
First, we still have (2.2).
It is clear that
ddt|ϕ|2=(f+¯f)|ϕ|2≤2‖f‖L∞‖ϕ‖2L∞, |
and thus
‖ϕ‖2L∞≤‖ϕ0‖2L∞+2∫t0‖f‖L∞‖ϕ‖2L∞dτ, |
which yields
‖ϕ‖L∞≤C. | (3.1) |
Applying ∇ to (1.12), testing by ∇¯ϕ, taking the real parts and using (1.15), (2.2) and (3.1), we see that
12ddt∫|∇ϕ|2dx=−Re i∫ϕ∇A0∇¯ϕdx−Re i∫ϕ∇|A|2⋅∇¯ϕdx+λRe i∫ϕ∇¯ϕ∇|ϕ|2dx+Re∫∇(fϕ)∇¯ϕdx≤‖ϕ‖L∞‖∇A0‖L2‖∇ϕ‖L2+2‖ϕ‖L∞‖A‖L4‖∇A‖L4‖∇ϕ‖L2+2λ‖ϕ‖2L∞‖∇ϕ‖2L2+‖f‖L∞‖∇ϕ‖2L2+‖ϕ‖L∞‖∇f‖L2‖∇ϕ‖L2≤C‖|ϕ|2A‖L2‖∇ϕ‖L2+C‖A‖L4‖∇A‖L4‖∇ϕ‖L2+C‖∇ϕ‖2L2+C≤C‖ϕ‖2L8‖A‖L4‖∇ϕ‖L2+C‖∇A‖L43‖∇A‖L4‖∇ϕ‖L2+C‖∇ϕ‖2L2+C≤C‖∇A‖L43‖∇ϕ‖L2+C‖∇A‖L43‖∇A‖L4‖∇ϕ‖L2+C‖∇ϕ‖2L2+C≤C‖|ϕ|2‖L43‖∇ϕ‖L2+C‖|ϕ|2‖L43‖|ϕ|2‖L4‖∇ϕ‖L2+C‖∇ϕ‖2L2+C≤C‖∇ϕ‖2L2+C, |
which implies
‖ϕ(⋅,t)‖H1≤C. | (3.2) |
Here we have used the estimates
‖∇A‖Lq≤C‖|ϕ|2‖Lq≤C for 1<q<∞, | (3.3) |
and
‖∇A0‖L2≤C‖A⊥|ϕ|2‖L2≤C‖A‖L4≤C‖∇A‖L43≤C, | (3.4) |
On the other hand, noting that
‖A0‖L∞≤C‖A0‖L4+C‖∇A0‖L4≤C‖∇A0‖L43+C‖∇A0‖L4≤C‖|ϕ|2A‖L43+C‖|ϕ|2A‖L4≤C‖A‖L4≤C, | (3.5) |
and
‖A‖L∞≤C‖A‖L4+C‖∇A‖L4≤C. | (3.6) |
Then applying Λs to (1.12), testing by Λs¯ϕ, taking the real parts, using (1.18), (3.1), (3.5) and (3.6), we obtain
12ddt∫|Λsϕ|2dx=−Re i∫Λs(A0ϕ)Λs¯ϕdx−Re i∫Λs(|A|2ϕ)Λs¯ϕdx+λRe i∫Λs(|ϕ|2ϕ)Λs¯ϕdx+Re∫Λs(fϕ)Λs¯ϕdx≤C‖A0‖L∞‖Λsϕ‖2L2+C‖ϕ‖L∞‖ΛsA0‖L2‖Λsϕ‖L2+C‖A‖2L∞‖Λsϕ‖2L2+C‖ϕ‖L∞‖A‖L∞‖ΛsA‖L2‖Λsϕ‖L2+C‖ϕ‖2L∞‖Λsϕ‖2L2+C‖f‖L∞‖Λsϕ‖2L2+C‖ϕ‖L∞‖Λsf‖L2‖Λsϕ‖L2≤C‖Λsϕ‖2L2+C‖ΛsA0‖L2‖Λsϕ‖L2+C‖ΛsA‖L2‖Λsϕ‖L2+C≤C‖Λsϕ‖2L2+C‖Λs−1(|ϕ|2A)‖L2‖Λsϕ‖L2+C‖Λs−1(|ϕ|2)‖L2‖Λsϕ‖L2+C≤C‖Λsϕ‖2L2+C‖Λs−1A‖L2‖Λsϕ‖L2+C‖Λs−1ϕ‖L2‖Λsϕ‖L2+C≤C‖Λsϕ‖2L2+C, |
which leads to (1.12).
Here we have used the estimates
‖ΛsA‖L2≤C‖Λs−1(|ϕ|2)‖L2≤C‖Λs−1ϕ‖L2≤C‖Λsϕ‖L2+C, | (3.7) |
and
‖ΛsA0‖L2≤C‖Λs−1(|ϕ|2A)‖L2≤C‖Λs−1ϕ‖L2+C‖Λs−1A‖L2≤C‖Λsϕ‖L2+C. | (3.8) |
The proof is complete.
We have obtained the Sobolev estimates on local time interval uniformly in the dispersion coefficient ϵ∈(0,1]. Moreover, we have proved the existence and uniqueness of global solutions to the limit problem ϵ=0.
Fan is partially supported by NSFC (No. 11971234).
The authors declare no conflict of interest.
[1] |
R. Jackiw, S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500–3513. https://doi.org/10.1103/PhysRevD.42.3500 doi: 10.1103/PhysRevD.42.3500
![]() |
[2] |
R. Jackiw, S.-Y. Pi, Self-dual Chern-Simons solitons, Prog. Theor. Phys., 107 (1992), 1–40. https://doi.org/10.1143/PTPS.107.1 doi: 10.1143/PTPS.107.1
![]() |
[3] |
L. Bergé, A. de Bouard, J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235–253. https://doi.org/10.1088/0951-7715/8/2/007 doi: 10.1088/0951-7715/8/2/007
![]() |
[4] |
H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), 590653. https://doi.org/10.1155/2013/590653 doi: 10.1155/2013/590653
![]() |
[5] |
Z. Lim, Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differ. Equations, 264 (2018), 2553–2597. https://doi.org/10.1016/j.jde.2017.10.026 doi: 10.1016/j.jde.2017.10.026
![]() |
[6] |
J. Byeon, H. Huh, J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575–1608. https://doi.org/10.1016/j.jfa.2012.05.024 doi: 10.1016/j.jfa.2012.05.024
![]() |
[7] |
H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702. https://doi.org/10.1063/1.4726192 doi: 10.1063/1.4726192
![]() |
[8] |
B. Liu, P. Smith, D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Notices, 2014 (2014), 6341–6398. https://doi.org/10.1093/imrn/rnt161 doi: 10.1093/imrn/rnt161
![]() |
[9] |
S. Demoulini, Global existence for a nonlinear Schrödinger-Chern-Simons system on a surface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 207–225. https://doi.org/10.1016/j.anihpc.2006.01.004 doi: 10.1016/j.anihpc.2006.01.004
![]() |
[10] |
H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967–974. https://doi.org/10.1088/0951-7715/22/5/003 doi: 10.1088/0951-7715/22/5/003
![]() |
[11] |
S. Demoulini, D. Stuart, Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system, Commun. Math. Phys., 290 (2009), 597–632. https://doi.org/10.1007/s00220-009-0844-y doi: 10.1007/s00220-009-0844-y
![]() |
[12] |
B. Liu, P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equaiton, Rev. Mat. Iberoam., 32 (2016), 751–794. https://doi.org/10.4171/rmi/898 doi: 10.4171/rmi/898
![]() |
[13] |
S.-J. Oh, F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Notices, 2015 (2015), 13122–13147. https://doi.org/10.1093/imrn/rnv093 doi: 10.1093/imrn/rnv093
![]() |
[14] |
S. Jha, P. Das, S. Bandhyopadhyay, S. Treanţǎ, Well-posedness for multi-time variational inequality problems via generalized monotonicity and for variational problems with multi-time variational inequality constraints, J. Comput. Appl. Math., 407 (2022), 114033. https://doi.org/10.1016/j.cam.2021.114033 doi: 10.1016/j.cam.2021.114033
![]() |
[15] |
S. Treanţǎ, S. Jha, On well-posedness associated with a class of controlled variational inequalities, Math. Model. Nat. Phenom., 16 (2021), 52. https://doi.org/10.1051/mmnp/2021046 doi: 10.1051/mmnp/2021046
![]() |
[16] |
S. Treanţǎ, On well-posed isoperimetric-type constrained variational control problems, J. Differ. Equations, 298 (2021), 480–499. https://doi.org/10.1016/j.jde.2021.07.013 doi: 10.1016/j.jde.2021.07.013
![]() |
[17] |
Y. Cho, T. Ozawa, On the semi-relativistic Hartree type equation, SIAM J. Math. Anal., 38 (2006), 1060–1074. https://doi.org/10.1137/060653688 doi: 10.1137/060653688
![]() |
[18] |
J. Fan, T. Ozawa, Cauchy problem and vanishing dispersion limit for Schrödinger-improved Boussinesq equations, J. Math. Anal. Appl., 485 (2020), 123857. https://doi.org/10.1016/j.jmaa.2020.123857 doi: 10.1016/j.jmaa.2020.123857
![]() |
[19] | T. Ozawa, K. Tomioka, Vanishing dispersion limit for Schrödinger-improved Boussinesq system in two space dimensions, Asymptotic Anal., in press. https://doi.org/10.3233/ASY-221758 |
[20] |
T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
![]() |