Processing math: 100%
Research article Special Issues

Well-posedness for the Chern-Simons-Schrödinger equations

  • First, we prove uniform-in-ϵ regularity estimates of local strong solutions to the Chern-Simons-Schrödinger equations in R2. Here ϵ is the dispersion coefficient. Then we prove the global well-posedness of strong solutions to the limit problem (ϵ=0).

    Citation: Jishan Fan, Tohru Ozawa. Well-posedness for the Chern-Simons-Schrödinger equations[J]. AIMS Mathematics, 2022, 7(9): 17349-17356. doi: 10.3934/math.2022955

    Related Papers:

    [1] Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu . Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677
    [2] Yingying Xiao, Chuanxi Zhu, Li Xie . Existence of ground state solutions for the modified Chern-Simons-Schrödinger equations with general Choquard type nonlinearity. AIMS Mathematics, 2022, 7(4): 7166-7176. doi: 10.3934/math.2022399
    [3] Yonghang Chang, Menglan Liao . Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254
    [4] Saleh Almuthaybiri, Radhia Ghanmi, Tarek Saanouni . On the nonlinear Schrödinger equation with critical source term: global well-posedness, scattering and finite time blowup. AIMS Mathematics, 2024, 9(11): 30230-30262. doi: 10.3934/math.20241460
    [5] Saleh Almuthaybiri, Radhia Ghanmi, Tarek Saanouni . Correction: On the nonlinear Schrödinger equation with critical source term: global well-posedness, scattering and finite time blowup. AIMS Mathematics, 2025, 10(2): 2413-2414. doi: 10.3934/math.2025112
    [6] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [7] Yonghui Zou, Xin Xu, An Gao . Local well-posedness to the thermal boundary layer equations in Sobolev space. AIMS Mathematics, 2023, 8(4): 9933-9964. doi: 10.3934/math.2023503
    [8] Ning Duan, Xiaopeng Zhao . On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations. AIMS Mathematics, 2020, 5(6): 6457-6463. doi: 10.3934/math.2020416
    [9] Aissa Boukarou, Kaddour Guerbati, Khaled Zennir, Mohammad Alnegga . Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. AIMS Mathematics, 2021, 6(9): 10037-10054. doi: 10.3934/math.2021583
    [10] Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793
  • First, we prove uniform-in-ϵ regularity estimates of local strong solutions to the Chern-Simons-Schrödinger equations in R2. Here ϵ is the dispersion coefficient. Then we prove the global well-posedness of strong solutions to the limit problem (ϵ=0).



    In this paper, we consider the following Chern-Simons-Schrödinger equations [1,2]:

    itϕ+(ϵ+iA)2ϕ=A0ϕλ|ϕ|2ϕ+if(x,t)ϕ, (1.1)
    tAA0=Im(ϵ¯ϕϕ)+A|ϕ|2, (1.2)
    rotA=12|ϕ|2  in  R2×(0,), (1.3)
    ϕ(,0)=ϕ0()  in  R2, (1.4)

    where ϕ is the complex scalar field, A0 and A:=(A1A2) are the real gauge fields. λ>0 is a coupling constant representing the strength of interaction potential. ϵ0 is the dispersion coefficient. i:=1,:=(21),A:=(A2A1),rotϕ:=(2ϕ1ϕ)=ϕ and rotA:=1A22A1. f is a complex smooth function.

    The system (1.1)–(1.3) was proposed in [1,2] to deal with the electromagnetic phenomena in planar domains, such as the fractional quantum Hall effect or high-temperature superconductivity.

    The system (1.1)–(1.3) is invariant under the following gauge transformations:

    ϕϕeiχ,A0A0tχ,AAχ, (1.5)

    where χ:R2+1R is a smooth function. In this work, we fix the Coulomb gauge:

    divA=0  in  R2×(0,). (1.6)

    Taking div to (1.2), rot to (1.3), using rot2A=ΔA+divA and (1.6), we can reformulate (1.1)–(1.3) as follows.

    itϕ+ϵ2Δϕ+2iϵAϕ|A|2ϕ=A0ϕλ|ϕ|2ϕ+ifϕ, (1.7)
    ΔA0=ϵIm(1ϕ2¯ϕ2ϕ1¯ϕ)rot(|ϕ|2A), (1.8)
    ΔA=12rot|ϕ|2  in  R2×(0,), (1.9)
    ϕ(,0)=ϕ0()  in  R2. (1.10)

    Bergé-de Bouard-Saut [3] proved that the Cauchy problem is locally well-posed when ϕ0H2. Huh [4] improved it to the case ϕ0H1. Lim [5] refined it to the case ϕ0Hs for s1. In [3], the authors also showed, by deriving a virial identity, that solutions blow up in finite time under certain conditions. The existence of a standing wave solution has also been proved in [6,7]. Liu-Smith-Tataru [8] proved the local well-posedness of (1.1)–(1.3) for small data ϕ0Hσ with any σ>0 under the Lorentz (heat) gauge:

    A0=divA. (1.11)

    Please see [9,10,11,12,13] for other studies of the problem (1.1)–(1.3).

    All the above results dealt with the case ϵ=1. The aim of this paper is to prove the uniform regularity estimates independent of ϵ and prove the global well-posedness of strong solutions to the limit problem (ϵ=0). We will prove

    Theorem 1.1. Let ϕ0Hs with s>1. Then there exists T0>0 such that the problem (1.7)(1.10) has a unique local strong solution (ϕ,A0,A) on [0,T0] satisfying

    supϵ[0,1] supt[0,T0](ϕ,A0,A)(,t)HsC. (1.12)

    Remark 1.1. Our approach is very much technically simpler than that in [5] when s>1.

    Remark 1.2. We are unable to prove a similar result for the Maxwell-Schrödinger system.

    When ϵ=0, the problem (1.7)–(1.10) reads as follows.

    tϕ=iA0ϕi|A|2ϕ+λi|ϕ|2ϕ+fϕ, (1.13)
    ΔA0=rot(|ϕ|2A), (1.14)
    ΔA=12rot|ϕ|2, (1.15)
    divA=0  in  R2×(0,), (1.16)
    ϕ(,0)=ϕ0()  in  R2. (1.17)

    We have

    Theorem 1.2. Let ϕ0HsL with s1. Then the problem (1.13)(1.17) has a unique global strong solution (ϕ,A0,A) satisfying (1.12).

    Remark 1.3. For recent literature on the concept of "well-posedness, " we refer the reader to [14,15,16]. Regarding vanishing dispersion limit for related equations, see [17,18,19].

    In the following proofs, we will use the bilinear commutator and product estimates due to Kato-Ponce [20]:

    Λs(fg)fΛsgLpC(fLp1Λs1gLq1+gLp2ΛsfLq2), (1.18)
    Λs(fg)LpC(fLp1ΛsgLq1+ΛsfLp2gLq2) (1.19)

    with s>0,Λ:=(Δ)12 and 1p=1p1+1q1=1p2+1q2.

    Since the local well-posedness of smooth solution is well-known [5], we only need to show (1.12).

    (1.7) can be written as

    tϕ=iϵ2Δϕ2ϵAϕiA0ϕi|A|2ϕ+iλ|ϕ|2ϕ+fϕ. (2.1)

    Testing (2.1) by ¯ϕ, taking the real parts and using (1.5), we have

    12ddt|ϕ|2dx=Ref|ϕ|2dxfLϕ2L2,

    which gives

    ϕL2C. (2.2)

    Applying Λs to (2.1), testing by Λs¯ϕ, taking the real parts, and using (1.5), (1.17) and (1.18), we get

    12ddt|Λsϕ|2dx=2ϵRe(Λs(Aϕ)AΛsϕ)Λs¯ϕdxRe iΛs(A0ϕ)Λs¯ϕdxRe iΛs(|A|2ϕ)Λs¯ϕdx+ReλiΛs(|ϕ|2ϕ)Λs¯ϕdx+ReΛs(fϕ)Λs¯ϕdxCALΛsϕ2L2+CϕLpΛsAL2pp2ΛsϕL2(p:=2(2s)+  if  s<2  and  p=4  if  s2)+CA0LΛsϕ2L2+CϕLΛsA0L2ΛsϕL2+CA2LΛsϕ2L2+CϕLALΛsAL2ΛsϕL2+Cϕ2LΛsϕ2L2+CfLΛsϕ2L2+CϕLΛsfL2ΛsϕL2. (2.3)

    Noting

    AL+ΛsAL2pp2+ΛsAL2CAL2+CΛs+1AL2Cϕ2L4+CΛs(|ϕ|2)L2Cϕ2L4+CϕLΛsϕL2ϕ2Hs (2.4)

    and

    ΛsA0L2CΛs2div(Im(ϵ¯ϕϕ)+A|ϕ|2)L2Cϕ2Hs+Cϕ2LΛs1AL2+CALϕLΛs1ϕL2Cϕ4Hs+C, (2.5)

    we obtain

    A0LCA0L4+CΛsA0L2CA0L43+CΛsA0L2C¯ϕϕL43+CA|ϕ|2L43+CΛsA0L2CϕL4ϕL2+CALϕ2L83+CΛsA0L2Cϕ4Hs+C (2.6)

    due to (1.2), and

    ALCAL4+CΛs+1AL2CAL43+CΛs+1AL2Cϕ2L83+CΛs(|ϕ|2)L2Cϕ2L83+CϕLΛsϕL2Cϕ2Hs. (2.7)

    Inserting (2.4), (2.5), (2.6), and (2.7) into (2.3), we arrive at

    ddt|Λsϕ|2dxCϕ6Hs+C, (2.8)

    which gives (1.12).

    The proof is complete.

    First, we still have (2.2).

    It is clear that

    ddt|ϕ|2=(f+¯f)|ϕ|22fLϕ2L,

    and thus

    ϕ2Lϕ02L+2t0fLϕ2Ldτ,

    which yields

    ϕLC. (3.1)

    Applying to (1.12), testing by ¯ϕ, taking the real parts and using (1.15), (2.2) and (3.1), we see that

    12ddt|ϕ|2dx=Re iϕA0¯ϕdxRe iϕ|A|2¯ϕdx+λRe iϕ¯ϕ|ϕ|2dx+Re(fϕ)¯ϕdxϕLA0L2ϕL2+2ϕLAL4AL4ϕL2+2λϕ2Lϕ2L2+fLϕ2L2+ϕLfL2ϕL2C|ϕ|2AL2ϕL2+CAL4AL4ϕL2+Cϕ2L2+CCϕ2L8AL4ϕL2+CAL43AL4ϕL2+Cϕ2L2+CCAL43ϕL2+CAL43AL4ϕL2+Cϕ2L2+CC|ϕ|2L43ϕL2+C|ϕ|2L43|ϕ|2L4ϕL2+Cϕ2L2+CCϕ2L2+C,

    which implies

    ϕ(,t)H1C. (3.2)

    Here we have used the estimates

    ALqC|ϕ|2LqC  for  1<q<, (3.3)

    and

    A0L2CA|ϕ|2L2CAL4CAL43C, (3.4)

    On the other hand, noting that

    A0LCA0L4+CA0L4CA0L43+CA0L4C|ϕ|2AL43+C|ϕ|2AL4CAL4C, (3.5)

    and

    ALCAL4+CAL4C. (3.6)

    Then applying Λs to (1.12), testing by Λs¯ϕ, taking the real parts, using (1.18), (3.1), (3.5) and (3.6), we obtain

    12ddt|Λsϕ|2dx=Re iΛs(A0ϕ)Λs¯ϕdxRe iΛs(|A|2ϕ)Λs¯ϕdx+λRe iΛs(|ϕ|2ϕ)Λs¯ϕdx+ReΛs(fϕ)Λs¯ϕdxCA0LΛsϕ2L2+CϕLΛsA0L2ΛsϕL2+CA2LΛsϕ2L2+CϕLALΛsAL2ΛsϕL2+Cϕ2LΛsϕ2L2+CfLΛsϕ2L2+CϕLΛsfL2ΛsϕL2CΛsϕ2L2+CΛsA0L2ΛsϕL2+CΛsAL2ΛsϕL2+CCΛsϕ2L2+CΛs1(|ϕ|2A)L2ΛsϕL2+CΛs1(|ϕ|2)L2ΛsϕL2+CCΛsϕ2L2+CΛs1AL2ΛsϕL2+CΛs1ϕL2ΛsϕL2+CCΛsϕ2L2+C,

    which leads to (1.12).

    Here we have used the estimates

    ΛsAL2CΛs1(|ϕ|2)L2CΛs1ϕL2CΛsϕL2+C, (3.7)

    and

    ΛsA0L2CΛs1(|ϕ|2A)L2CΛs1ϕL2+CΛs1AL2CΛsϕL2+C. (3.8)

    The proof is complete.

    We have obtained the Sobolev estimates on local time interval uniformly in the dispersion coefficient ϵ(0,1]. Moreover, we have proved the existence and uniqueness of global solutions to the limit problem ϵ=0.

    Fan is partially supported by NSFC (No. 11971234).

    The authors declare no conflict of interest.



    [1] R. Jackiw, S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500–3513. https://doi.org/10.1103/PhysRevD.42.3500 doi: 10.1103/PhysRevD.42.3500
    [2] R. Jackiw, S.-Y. Pi, Self-dual Chern-Simons solitons, Prog. Theor. Phys., 107 (1992), 1–40. https://doi.org/10.1143/PTPS.107.1 doi: 10.1143/PTPS.107.1
    [3] L. Bergé, A. de Bouard, J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235–253. https://doi.org/10.1088/0951-7715/8/2/007 doi: 10.1088/0951-7715/8/2/007
    [4] H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), 590653. https://doi.org/10.1155/2013/590653 doi: 10.1155/2013/590653
    [5] Z. Lim, Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differ. Equations, 264 (2018), 2553–2597. https://doi.org/10.1016/j.jde.2017.10.026 doi: 10.1016/j.jde.2017.10.026
    [6] J. Byeon, H. Huh, J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575–1608. https://doi.org/10.1016/j.jfa.2012.05.024 doi: 10.1016/j.jfa.2012.05.024
    [7] H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702. https://doi.org/10.1063/1.4726192 doi: 10.1063/1.4726192
    [8] B. Liu, P. Smith, D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Notices, 2014 (2014), 6341–6398. https://doi.org/10.1093/imrn/rnt161 doi: 10.1093/imrn/rnt161
    [9] S. Demoulini, Global existence for a nonlinear Schrödinger-Chern-Simons system on a surface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 207–225. https://doi.org/10.1016/j.anihpc.2006.01.004 doi: 10.1016/j.anihpc.2006.01.004
    [10] H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967–974. https://doi.org/10.1088/0951-7715/22/5/003 doi: 10.1088/0951-7715/22/5/003
    [11] S. Demoulini, D. Stuart, Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system, Commun. Math. Phys., 290 (2009), 597–632. https://doi.org/10.1007/s00220-009-0844-y doi: 10.1007/s00220-009-0844-y
    [12] B. Liu, P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equaiton, Rev. Mat. Iberoam., 32 (2016), 751–794. https://doi.org/10.4171/rmi/898 doi: 10.4171/rmi/898
    [13] S.-J. Oh, F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Notices, 2015 (2015), 13122–13147. https://doi.org/10.1093/imrn/rnv093 doi: 10.1093/imrn/rnv093
    [14] S. Jha, P. Das, S. Bandhyopadhyay, S. Treanţǎ, Well-posedness for multi-time variational inequality problems via generalized monotonicity and for variational problems with multi-time variational inequality constraints, J. Comput. Appl. Math., 407 (2022), 114033. https://doi.org/10.1016/j.cam.2021.114033 doi: 10.1016/j.cam.2021.114033
    [15] S. Treanţǎ, S. Jha, On well-posedness associated with a class of controlled variational inequalities, Math. Model. Nat. Phenom., 16 (2021), 52. https://doi.org/10.1051/mmnp/2021046 doi: 10.1051/mmnp/2021046
    [16] S. Treanţǎ, On well-posed isoperimetric-type constrained variational control problems, J. Differ. Equations, 298 (2021), 480–499. https://doi.org/10.1016/j.jde.2021.07.013 doi: 10.1016/j.jde.2021.07.013
    [17] Y. Cho, T. Ozawa, On the semi-relativistic Hartree type equation, SIAM J. Math. Anal., 38 (2006), 1060–1074. https://doi.org/10.1137/060653688 doi: 10.1137/060653688
    [18] J. Fan, T. Ozawa, Cauchy problem and vanishing dispersion limit for Schrödinger-improved Boussinesq equations, J. Math. Anal. Appl., 485 (2020), 123857. https://doi.org/10.1016/j.jmaa.2020.123857 doi: 10.1016/j.jmaa.2020.123857
    [19] T. Ozawa, K. Tomioka, Vanishing dispersion limit for Schrödinger-improved Boussinesq system in two space dimensions, Asymptotic Anal., in press. https://doi.org/10.3233/ASY-221758
    [20] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1873) PDF downloads(85) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog