Research article

Local well-posedness to the thermal boundary layer equations in Sobolev space

  • Received: 17 October 2022 Revised: 04 January 2023 Accepted: 18 January 2023 Published: 23 February 2023
  • MSC : 35Q30, 35Q35, 76D10

  • In this paper, we study the local well-posedness of the thermal boundary layer equations for the two-dimensional incompressible heat conducting flow with nonslip boundary condition for the velocity and Neumann boundary condition for the temperature. Under Oleinik's monotonicity assumption, we establish the local-in-time existence and uniqueness of solutions in Sobolev space for the boundary layer equations by a new weighted energy method developed by Masmoudi and Wong.

    Citation: Yonghui Zou, Xin Xu, An Gao. Local well-posedness to the thermal boundary layer equations in Sobolev space[J]. AIMS Mathematics, 2023, 8(4): 9933-9964. doi: 10.3934/math.2023503

    Related Papers:

  • In this paper, we study the local well-posedness of the thermal boundary layer equations for the two-dimensional incompressible heat conducting flow with nonslip boundary condition for the velocity and Neumann boundary condition for the temperature. Under Oleinik's monotonicity assumption, we establish the local-in-time existence and uniqueness of solutions in Sobolev space for the boundary layer equations by a new weighted energy method developed by Masmoudi and Wong.



    加载中


    [1] R. Alexandre, Y. Wang, C. Xu, T. Yang, Well-posedness of the Prandtl equation in Sobolev spaces, J. Amer. Math. Soc., 28 (2015), 745–784. https://doi.org/10.1090/S0894-0347-2014-00813-4 doi: 10.1090/S0894-0347-2014-00813-4
    [2] R. Caflisch, M. Sammartino, Existence and singularities for the Prandtl boundary layer equations, ZAMM Z. Angew. Math. Mech., 80 (2000), 733–744. https://doi.org/10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L doi: 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L
    [3] D. Chen, Y. Wang, Z. Zhang, Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces, J. Differential Equations, 264 (2018), 5870–5893. https://doi.org/10.1016/j.jde.2018.01.024 doi: 10.1016/j.jde.2018.01.024
    [4] W. E. B. Engquist, Blow up of solutions of the unsteady Prandtl equation, Comm. Pure Appl. Math., 50 (1997), 1287–1293. https://doi.org/10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4 doi: 10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4
    [5] L. Fan, L. Ruan, A. Yang, Local well-posedness of solutions to the boundary layer equations for 2D compressible flow, J. Math. Anal. Appl., 493 (2021), 124565. https://doi.org/10.1016/j.jmaa.2020.124565 doi: 10.1016/j.jmaa.2020.124565
    [6] D. Gérard-Varet, E. Dormy, On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc., 23 (2010), 591–609. https://doi.org/10.1090/S0894-0347-09-00652-3 doi: 10.1090/S0894-0347-09-00652-3
    [7] D. Gerard-Varet, Y. Maekawa, N. Masmoudi, Gevrey stability of Prandtl expansions for 2-dimensional Navier-Stokes flows, Duke Math. J., 167 (2018), 2531–2631. https://doi.org/10.1215/00127094-2018-0020 doi: 10.1215/00127094-2018-0020
    [8] S. Gong, Y. Guo, Y. Wang, Boundary layer problems for the two-dimensional compressible Navier-Stokes, Anal. Appl. (Singap.), 14 (2016), 1–37. https://doi.org/10.1142/S0219530515400011 doi: 10.1142/S0219530515400011
    [9] I. Kukavica, N. Masmoudi, V. Vicol, T. K. Wong, On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal., 46 (2014), 3865–3890. https://doi.org/10.1137/140956440 doi: 10.1137/140956440
    [10] C. Liu, Y. Wang, T. Yang, Study of boundary layers in compressible non-isentropic flows, Methods Appl. Anal., 28 (2021), 453–466. https://dx.doi.org/10.4310/MAA.2021.v28.n4.a3 doi: 10.4310/MAA.2021.v28.n4.a3
    [11] C. Liu, F. Xie, T. Yang, MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity Ⅰ: Well-Posedness Theory, Comm. Pure Appl. Math., 72 (2019), 63–121. https://doi.org/10.1002/cpa.21763 doi: 10.1002/cpa.21763
    [12] C. Liu, D. Wang, F. Xie, T. Yang, Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces, J. Funct. Anal., 279 (2020), 108637. https://doi.org/10.1016/j.jfa.2020.108637 doi: 10.1016/j.jfa.2020.108637
    [13] C. Liu, F. Xie, T. Yang, A note on the ill-posedness of shear flow for the MHD boundary layer equations, Sci. China Math., 61 (2018), 2065–2078. https://doi.org/10.1007/s11425-017-9306-0 doi: 10.1007/s11425-017-9306-0
    [14] C. Liu, F. Xie, T. Yang, Justification of Prandtl ansatz for MHD boundary layer, SIAM J. Math. Anal., 51 (2019), 2748–2791. https://doi.org/10.1137/18M1219618 doi: 10.1137/18M1219618
    [15] X. Lin, T. Zhang, Almost global existence for 2D magnetohydrodynamics boundary layer system, Math. Methods Appl. Sci., 41 (2018), 7530–7553. https://doi.org/10.1002/mma.5217 doi: 10.1002/mma.5217
    [16] N. Masmoudi, T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Comm. Pure Appl. Math., 68 (2015), 1683–1741. https://doi.org/10.1002/cpa.21595 doi: 10.1002/cpa.21595
    [17] O. A. Oleinik, On the system of Prandtl equations in boundary-layer theory, Dokl. Akad. Nauk SSSR, 150 (1963), 28–31.
    [18] O. A. Oleinik, V. N. Samokhin. Mathematical models in boundary layer theory, Routledge, 2018. https://doi.org/10.1201/9780203749364
    [19] L. Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandl. III, Intern. Math. Kongr, 1904,575–584.
    [20] X. Qin, T. Yang, Z. Yao, W. Zhou, Vanishing shear viscosity limit and boundary layer study for the planar MHD system, Math. Models Methods Appl. Sci., 29 (2019), 1139–1174. https://doi.org/10.1142/S0218202519500180 doi: 10.1142/S0218202519500180
    [21] M. Sammartino, R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. Ⅰ. Existence for Euler and Prandtl equations, Comm. Math. Phys., 192 (1998), 433–461. https://doi.org/10.1007/s002200050304 doi: 10.1007/s002200050304
    [22] M. Sammartino, R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. Ⅱ. Construction of the Navier-Stokes solution, Comm. Math. Phys., 192 (1998), 463–491. https://doi.org/10.1007/s002200050305 doi: 10.1007/s002200050305
    [23] H. Schlichting, K. Gersten, Boundary-Layer Theory, Enlarged Edition. New York: Springer-Verlag, 2000. https://doi.org/10.1007/978-3-662-52919-5
    [24] D. Wang, F. Xie, Inviscid limit of compressible viscoelastic equations with the no-slip boundary condition, J. Differential Equations, 353 (2023), 63–113. https://doi.org/10.1016/j.jde.2022.12.041 doi: 10.1016/j.jde.2022.12.041
    [25] Y. Wang, F. Xie, T. Yang, Local well-posedness of Prandtl equations for compressible flow in two space variables, SIAM J. Math. Anal., 47 (2015), 321–346. https://doi.org/10.1137/140978466 doi: 10.1137/140978466
    [26] Y. Wang, S. Zhu, Well-posedness of thermal boundary layer equation in two-dimensional incompressible heat conducting flow with analytic datum, Math. Methods Appl. Sci., 43 (2020), 4683–4716. https://doi.org/10.1002/mma.6226 doi: 10.1002/mma.6226
    [27] Y. Wang, S. Zhu, Back flow of the two-dimensional unsteady Prandtl boundary layer under an adverse pressure gradient, SIAM J. Math. Anal., 52 (2020), 954–966. https://doi.org/10.1137/19M1270355 doi: 10.1137/19M1270355
    [28] Y. Wang, S. Zhu, Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow, Commun. Pure Appl. Anal., 19 (2020), 3233–3244. https://doi.org/10.3934/cpaa.2020141 doi: 10.3934/cpaa.2020141
    [29] Y. Wang, S. Zhu, On back flow of boundary layers in two-dimensional unsteady incompressible heat conducting flow, J. Math. Phys., 63 (2022), 081504. https://doi.org/10.1063/5.0088618 doi: 10.1063/5.0088618
    [30] Y. Wang, Z. Zhang, Global $C^{\infty}$ regularity of the steady Prandtl equation with favorable pressure gradient, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 1989–2004. https://doi.org/10.1016/J.ANIHPC.2021.02.007 doi: 10.1016/J.ANIHPC.2021.02.007
    [31] Y. Wang, Z. Zhang, Asymptotic behavior of the steady Prandtl equation, Math. Ann., 1 (2022), 1–43. https://doi.org/10.1007/s00208-022-02486-6 doi: 10.1007/s00208-022-02486-6
    [32] F. Xie, T. Yang, Lifespan of solutions to MHD boundary layer equations with analytic perturbation of general shear flow, Acta Math. Appl. Sin. Engl. Ser., 35 (2019), 209–229. https://doi.org/10.1007/s10255-019-0805-y doi: 10.1007/s10255-019-0805-y
    [33] F. Xie, T. Yang, Global-in-Time Stability of 2D MHD Boundary Layer in the Prandtl–Hartmann Regime, SIAM J. Math. Anal., 50 (2018), 5749–5760. https://doi.org/10.1137/18M1174969 doi: 10.1137/18M1174969
    [34] C. Xu, X. Zhang, Long time well-posedness of Prandtl equations in Sobolev space, J. Differential Equations, 263 (2017), 8749–8803. https://doi.org/10.1016/j.jde.2017.08.046 doi: 10.1016/j.jde.2017.08.046
    [35] Z. Xin, L. Zhang, On the global existence of solutions to the Prandtl's system, Adv. Math., 181 (2004), 88–133. https://doi.org/10.1016/S0001-8708(03)00046-X doi: 10.1016/S0001-8708(03)00046-X
    [36] P. Zhang, Z. Zhang, Long time well-posedness of Prandtl system with small and analytic initial data, J. Funct. Anal., 270 (2016), 2591–2615. https://doi.org/10.1016/j.jfa.2016.01.004 doi: 10.1016/j.jfa.2016.01.004
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1208) PDF downloads(102) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog