Research article

A complete comparison for the number of palindromes in different bases

  • Received: 07 November 2022 Revised: 05 February 2023 Accepted: 12 February 2023 Published: 23 February 2023
  • MSC : 11A63, 11A25, 11B75

  • Let $ b $ and $ b_1 $ be distinct positive integers larger than $ 1 $, and let $ A_{b} (n) $ and $ A_{b_1} (n) $ be the number of palindromes in bases $ b $ and $ b_1 $ that are less than or equal to $ n $, respectively. In this article, we finish the comparative study of the functions $ A_b (n) $ and $ A_{b_1} (n) $. As a result, we present the full picture of the asymptotic behavior of their difference.

    Citation: Phakhinkon Napp Phunphayap, Prapanpong Pongsriiam. A complete comparison for the number of palindromes in different bases[J]. AIMS Mathematics, 2023, 8(4): 9924-9932. doi: 10.3934/math.2023502

    Related Papers:

  • Let $ b $ and $ b_1 $ be distinct positive integers larger than $ 1 $, and let $ A_{b} (n) $ and $ A_{b_1} (n) $ be the number of palindromes in bases $ b $ and $ b_1 $ that are less than or equal to $ n $, respectively. In this article, we finish the comparative study of the functions $ A_b (n) $ and $ A_{b_1} (n) $. As a result, we present the full picture of the asymptotic behavior of their difference.



    加载中


    [1] P. Phunphayap, P. Pongsriiam, Extremal orders and races between palindromes in different bases, AIMS Math., 7 (2022), 2237–2254. https://doi.org/10.3934/math.2022127 doi: 10.3934/math.2022127
    [2] W. D. Banks, D. N. Hart, M. Sakata, Almost all palindromes are composite, Math. Res. Lett., 11 (2004), 853–868. https://doi.org/10.4310/MRL.2004.v11.n6.a10 doi: 10.4310/MRL.2004.v11.n6.a10
    [3] W. D. Banks, I. E. Shparlinski, Prime divisors of palindromes, Period. Math. Hung., 51 (2005), 1–10. https://doi.org/10.1007/s10998-005-0016-6 doi: 10.1007/s10998-005-0016-6
    [4] W. D. Banks, Every natural number is the sum of forty-nine palindromes, Integers, 16 (2016), 1–9.
    [5] J. Cilleruelo, F. Luca, L. Baxter, Every positive integer is a sum of three palindromes, Math. Comput., 87 (2018), 3023–3055. https://doi.org/10.1090/mcom/3221 doi: 10.1090/mcom/3221
    [6] A. Rajasekaran, J. Shallit, T. Smith, Sums of palindromes: an approach via automata, In: 35th symposium on theoretical aspects of computer science (STACS 2018), 54: 1–54: 12. https://doi.org/10.4230/LIPIcs.STACS.2018.54
    [7] B. Bašić, On $d$-digit palindromes in different bases: the number of bases is unbounded, Int. J. Number Theory, 8 (2012), 1387–1390. https://doi.org/10.1142/S1793042112500819 doi: 10.1142/S1793042112500819
    [8] B. Bašić, On " very palindromic" sequences, J. Korean Math. Soc., 52 (2015), 765–780. https://doi.org/10.4134/jkms.2015.52.4.765 doi: 10.4134/jkms.2015.52.4.765
    [9] A. J. Di Scala, M. Sombra, Intrinsic palindromes, Fibonacci Quart., 42 (2004), 76–81.
    [10] E. H. Goins, Palindromes in different bases: a conjecture of J. Ernest Wilkins, Integers, 9 (2009), 725–734. https://doi.org/10.1515/INTEG.2009.059 doi: 10.1515/INTEG.2009.059
    [11] F. Luca, A. Togbé, On binary palindromes of the form $10^n \pm1$, C. R. Math., 346 (2008), 487–489. https://doi.org/10.1016/j.crma.2008.03.015 doi: 10.1016/j.crma.2008.03.015
    [12] J. Cilleruelo, R. Tesoro, F. Luca, Palindromes in linear recurrence sequences, Monatsh. Math., 171 (2013), 433–442. https://doi.org/10.1007/s00605-013-0477-2 doi: 10.1007/s00605-013-0477-2
    [13] M. Harminc, R. Soták, Palindromic numbers in arithmetic progressions, Fibonacci Quart., 36 (1998), 259–261.
    [14] P. Pongsriiam, Longest arithmetic progressions of palindromes, J. Number Theory, 222 (2021), 362–375. https://doi.org/10.1016/j.jnt.2020.10.018 doi: 10.1016/j.jnt.2020.10.018
    [15] P. Pongsriiam, K. Subwattanachai, Exact formulas for the number of palindromes up to a given positive integer, Int. J. Math. Comput. Sci., 14 (2019), 27–46.
    [16] H. Klauser, J. Shallit, Sum of base-b palindrome reciprocals, Fibonacci Quart., 19 (1981), 469.
    [17] P. Phunphayap, P. Pongsriiam, Reciprocal sum of palindromes, J. Integer Seq., 22 (2019), 1–13.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1115) PDF downloads(53) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog