Let $ b $ and $ b_1 $ be distinct positive integers larger than $ 1 $, and let $ A_{b} (n) $ and $ A_{b_1} (n) $ be the number of palindromes in bases $ b $ and $ b_1 $ that are less than or equal to $ n $, respectively. In this article, we finish the comparative study of the functions $ A_b (n) $ and $ A_{b_1} (n) $. As a result, we present the full picture of the asymptotic behavior of their difference.
Citation: Phakhinkon Napp Phunphayap, Prapanpong Pongsriiam. A complete comparison for the number of palindromes in different bases[J]. AIMS Mathematics, 2023, 8(4): 9924-9932. doi: 10.3934/math.2023502
Let $ b $ and $ b_1 $ be distinct positive integers larger than $ 1 $, and let $ A_{b} (n) $ and $ A_{b_1} (n) $ be the number of palindromes in bases $ b $ and $ b_1 $ that are less than or equal to $ n $, respectively. In this article, we finish the comparative study of the functions $ A_b (n) $ and $ A_{b_1} (n) $. As a result, we present the full picture of the asymptotic behavior of their difference.
[1] | P. Phunphayap, P. Pongsriiam, Extremal orders and races between palindromes in different bases, AIMS Math., 7 (2022), 2237–2254. https://doi.org/10.3934/math.2022127 doi: 10.3934/math.2022127 |
[2] | W. D. Banks, D. N. Hart, M. Sakata, Almost all palindromes are composite, Math. Res. Lett., 11 (2004), 853–868. https://doi.org/10.4310/MRL.2004.v11.n6.a10 doi: 10.4310/MRL.2004.v11.n6.a10 |
[3] | W. D. Banks, I. E. Shparlinski, Prime divisors of palindromes, Period. Math. Hung., 51 (2005), 1–10. https://doi.org/10.1007/s10998-005-0016-6 doi: 10.1007/s10998-005-0016-6 |
[4] | W. D. Banks, Every natural number is the sum of forty-nine palindromes, Integers, 16 (2016), 1–9. |
[5] | J. Cilleruelo, F. Luca, L. Baxter, Every positive integer is a sum of three palindromes, Math. Comput., 87 (2018), 3023–3055. https://doi.org/10.1090/mcom/3221 doi: 10.1090/mcom/3221 |
[6] | A. Rajasekaran, J. Shallit, T. Smith, Sums of palindromes: an approach via automata, In: 35th symposium on theoretical aspects of computer science (STACS 2018), 54: 1–54: 12. https://doi.org/10.4230/LIPIcs.STACS.2018.54 |
[7] | B. Bašić, On $d$-digit palindromes in different bases: the number of bases is unbounded, Int. J. Number Theory, 8 (2012), 1387–1390. https://doi.org/10.1142/S1793042112500819 doi: 10.1142/S1793042112500819 |
[8] | B. Bašić, On " very palindromic" sequences, J. Korean Math. Soc., 52 (2015), 765–780. https://doi.org/10.4134/jkms.2015.52.4.765 doi: 10.4134/jkms.2015.52.4.765 |
[9] | A. J. Di Scala, M. Sombra, Intrinsic palindromes, Fibonacci Quart., 42 (2004), 76–81. |
[10] | E. H. Goins, Palindromes in different bases: a conjecture of J. Ernest Wilkins, Integers, 9 (2009), 725–734. https://doi.org/10.1515/INTEG.2009.059 doi: 10.1515/INTEG.2009.059 |
[11] | F. Luca, A. Togbé, On binary palindromes of the form $10^n \pm1$, C. R. Math., 346 (2008), 487–489. https://doi.org/10.1016/j.crma.2008.03.015 doi: 10.1016/j.crma.2008.03.015 |
[12] | J. Cilleruelo, R. Tesoro, F. Luca, Palindromes in linear recurrence sequences, Monatsh. Math., 171 (2013), 433–442. https://doi.org/10.1007/s00605-013-0477-2 doi: 10.1007/s00605-013-0477-2 |
[13] | M. Harminc, R. Soták, Palindromic numbers in arithmetic progressions, Fibonacci Quart., 36 (1998), 259–261. |
[14] | P. Pongsriiam, Longest arithmetic progressions of palindromes, J. Number Theory, 222 (2021), 362–375. https://doi.org/10.1016/j.jnt.2020.10.018 doi: 10.1016/j.jnt.2020.10.018 |
[15] | P. Pongsriiam, K. Subwattanachai, Exact formulas for the number of palindromes up to a given positive integer, Int. J. Math. Comput. Sci., 14 (2019), 27–46. |
[16] | H. Klauser, J. Shallit, Sum of base-b palindrome reciprocals, Fibonacci Quart., 19 (1981), 469. |
[17] | P. Phunphayap, P. Pongsriiam, Reciprocal sum of palindromes, J. Integer Seq., 22 (2019), 1–13. |