We present convergence and common fixed point conclusions of the Krasnosel'skii iteration which is one of the iterative methods associated with $ \alpha $-Krasnosel'skii mappings satisfying condition (E). Our conclusions extend, generalize and improve numerous conclusions existing in the literature. Examples are given to support our results.
Citation: Amit Gangwar, Anita Tomar, Mohammad Sajid, R.C. Dimri. Common fixed points and convergence results for $ \alpha $-Krasnosel'skii mappings[J]. AIMS Mathematics, 2023, 8(4): 9911-9923. doi: 10.3934/math.2023501
We present convergence and common fixed point conclusions of the Krasnosel'skii iteration which is one of the iterative methods associated with $ \alpha $-Krasnosel'skii mappings satisfying condition (E). Our conclusions extend, generalize and improve numerous conclusions existing in the literature. Examples are given to support our results.
[1] | N. Altwaijry, T. Aldhaban, S. Chebbi, H. Xu, Krasnoselskii-Mann viscosity approximation method for nonexpansive mappings, Mathematics, 8 (2020), 1153. http://dx.doi.org/10.3390/math8071153 doi: 10.3390/math8071153 |
[2] | S. Atailia, N. Redjel, A. Dehici, Some fixed point results for generalized contractions of Suzuki type in Banach spaces, J. Fixed Point Theory Appl., 21 (2019), 78. http://dx.doi.org/10.1007/s11784-019-0717-8 doi: 10.1007/s11784-019-0717-8 |
[3] | V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), 293–304. |
[4] | F. Browder, W. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Am. Math. Soc., 72 (1966), 571–575. |
[5] | C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, London: Springer, 2009. http://dx.doi.org/10.1007/978-1-84882-190-3 |
[6] | A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces, Berlin: Springer, 2013. http://dx.doi.org/10.1007/978-3-642-30901-4 |
[7] | G. Emmanuele, Asymptotic behavior of iterates of nonexpansive mappings in Banach spaces with Opial's condition, Proc. Am. Math. Soc., 94 (1985), 103–109. |
[8] | E. Fuster, E. Gálvez, The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal., 2011 (2011), 435686. http://dx.doi.org/10.1155/2011/435686 doi: 10.1155/2011/435686 |
[9] | K. Goebel, M. Pineda, A new type of nonexpansiveness, Proceedings of the 8-th International Conference on Fixed Point Theory and Applications, 2007, 16–22. |
[10] | K. Goebel, W. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc., 35 (1972), 171–174. |
[11] | G. Hardy, T. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. http://dx.doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0 |
[12] | S. He, Q. Dong, H. Tian, X. Li, On the optimal relaxation parameters of Krasnosel'ski-Mann iteration, Optimization, 70 (2021), 1959–1986. http://dx.doi.org/10.1080/02331934.2020.1767101 http://dx.doi.org/10.1080/02331934.2020.1767101 doi: 10.1080/02331934.2020.1767101 |
[13] | R. Kannan, Fixed point theorems in reflexive Banach spaces, Proc. Am. Math. Soc., 38 (1973), 111–118. |
[14] | W. Kirk, B. Sims, Handbook of metric fixed point theory, Dordrecht: Springer, 2011. http://dx.doi.org/10.1007/978-94-017-1748-9 |
[15] | W. Kirk, H. Xu, Asymptotic pointwise contractions, Nonlinear Anal.-Theor., 69 (2008), 4706–4712. http://dx.doi.org/10.1016/j.na.2007.11.023 doi: 10.1016/j.na.2007.11.023 |
[16] | M. Krasnosel'skii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl., 10 (1958), 345–409. |
[17] | A. Latif, R. Al Subaie, M. Alansari, Fixed points of generalized multi-valued contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123–138. http://dx.doi.org/10.23952/jnva.6.2022.1.07 doi: 10.23952/jnva.6.2022.1.07 |
[18] | A. Moslemipour, M. Roohi, A Krasnoselskii-Mann type iteration for nonexpansive mappings in Hadamard spaces, J. Adv. Math. Stud., 14 (2021), 85–93. |
[19] | A. Nicolae, Generalized asymptotic pointwise contractions and nonexpansive mappings involving orbits, Fixed Point Theory Appl., 2010 (2009), 458265. http://dx.doi.org/10.1155/2010/458265 doi: 10.1155/2010/458265 |
[20] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591–597. |
[21] | R. Pandey, R. Pant, V. Rakocevic, R. Shukla, Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math., 74 (2019), 7. http://dx.doi.org/10.1007/s00025-018-0930-6 doi: 10.1007/s00025-018-0930-6 |
[22] | R. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Func. Anal. Opt., 38 (2017), 248–266. http://dx.doi.org/10.1080/01630563.2016.1276075 doi: 10.1080/01630563.2016.1276075 |
[23] | R. Pant, P. Patel, R. Sukla, M. De la Sen, Fixed point theorems for nonexpansive type mappings in Banach spaces, Symmetry, 13 (2021), 585. http://dx.doi.org/10.3390/sym13040585 doi: 10.3390/sym13040585 |
[24] | E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pure. Appl., 6 (1890), 145–210. |
[25] | T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. http://dx.doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023 |
[26] | K. Ullah, J. Ahmad, M. Arshad, Z. Ma, Approximation of fixed points for enriched Suzuki nonexpansive operators with an application in Hilbert spaces, Axioms, 11 (2022), 14. http://dx.doi.org/10.3390/axioms11010014 doi: 10.3390/axioms11010014 |
[27] | H. Xu, N. Altwaijry, S. Chebbi, Strong convergence of Mann's iteration process in Banach spaces, Mathematics, 8 (2020), 954. |