In this work, a coupled system under coupled integral boundary conditions with Caputo-Fabrizio derivative (CFD) is considered. We intend to derive some necessary and sufficient results for the existence of at least one solution. In addition, we extend our analysis further to develop a monotone iterative scheme coupled with the upper and lower solution method to compute extremal solutions. Therefore, in this regard, Perov's fixed point theorem is applied to study the existing criteria for the solution. Also, results related to at least one solution are derived by using Schauder's fixed point theorem. Finally, we use a monotone iterative procedure together with upper and lower solution methods to study extremal solutions. Graphical presentations of upper and lower solutions are provided for some examples to illustrate our results.
Citation: Kamal Shah, Thabet Abdeljawad, Bahaaeldin Abdalla. On a coupled system under coupled integral boundary conditions involving non-singular differential operator[J]. AIMS Mathematics, 2023, 8(4): 9890-9910. doi: 10.3934/math.2023500
In this work, a coupled system under coupled integral boundary conditions with Caputo-Fabrizio derivative (CFD) is considered. We intend to derive some necessary and sufficient results for the existence of at least one solution. In addition, we extend our analysis further to develop a monotone iterative scheme coupled with the upper and lower solution method to compute extremal solutions. Therefore, in this regard, Perov's fixed point theorem is applied to study the existing criteria for the solution. Also, results related to at least one solution are derived by using Schauder's fixed point theorem. Finally, we use a monotone iterative procedure together with upper and lower solution methods to study extremal solutions. Graphical presentations of upper and lower solutions are provided for some examples to illustrate our results.
[1] | F. Liu, K. Burrag, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833. https://doi.org/10.1016/j.camwa.2011.03.002 doi: 10.1016/j.camwa.2011.03.002 |
[2] | K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012 |
[3] | M. Magdziarz, A. Weron, K. Burnecki, J. Klafter, Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics, Phys. Rev. Lett., 103 (2009), 180602. https://doi.org/10.1103/PhysRevLett.103.180602 doi: 10.1103/PhysRevLett.103.180602 |
[4] | F. Mainardi, Fractional calculus: theory and applications, Mathematics, 6 (2021), 145. https://doi.org/10.3390/math609014 doi: 10.3390/math609014 |
[5] | J. A. Tenreiro Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 639801. https://doi.org/10.1155/2010/639801 doi: 10.1155/2010/639801 |
[6] | H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019 |
[7] | S. Majumdar, S. Hazra, M. Dutta Choudhury, S. D. Sinha, S. Das, T. R. Middya, et al., A study of the rheological properties of visco-elastic materials using fractional calculus, Colloids Surf. A: Phys. Eng. Aspects, 516 (2017), 181–189. https://doi.org/10.1016/j.colsurfa.2016.12.019 doi: 10.1016/j.colsurfa.2016.12.019 |
[8] | A. Atangana, Application of fractional calculus to epidemiology, Fractional Dyn., 2015 (2015), 174–190. https://doi.org/10.1515/9783110472097-011 doi: 10.1515/9783110472097-011 |
[9] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[10] | Q. Yang, D. Chen, T. Zhao, Y. Chen, Fractional calculus in image processing: a review, FCAA, 19 (2016), 1222–1249. https://doi.org/10.1515/fca-2016-0063 doi: 10.1515/fca-2016-0063 |
[11] | X. Zhang, L. Liu, Y. Zou, Fixed-point theorems for systems of operator equations and their applications to the fractional differential equations, J. Funct. Spaces, 2018 (2018), 7469868. https://doi.org/10.1155/2018/7469868 doi: 10.1155/2018/7469868 |
[12] | K. Shah, R. A. Khan, Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory, Numer. Func. Anal. Opt., 37 (2016), 887–899. https://doi.org/10.1080/01630563.2016.1177547 doi: 10.1080/01630563.2016.1177547 |
[13] | Y. Li, W. Zhao, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216 (2010), 2276–2285. https://doi.org/10.1016/j.amc.2010.03.063 doi: 10.1016/j.amc.2010.03.063 |
[14] | M. Hamid, M. Usman, R. U. Haq, Z. Tian, A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations, Chaos Solitons Fract., 146 (2021), 110921. https://doi.org/10.1016/j.chaos.2021.110921 doi: 10.1016/j.chaos.2021.110921 |
[15] | J. S. Duan, R. Rach, D. Baleanu, A. M. Wazwaz, A review of the Adomian decomposition method and its applications to fractional differential equations, Commun. Frac. Calc., 3 (2012), 73–99. |
[16] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[17] | A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012 |
[18] | P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, J. F. Gómez-Aguilar, Mild solutions of coupled hybrid fractional order system with Caputo-Hadamard derivatives, Fractals, 29 (2021), 2150158. https://doi.org/10.1142/S0218348X21501589 doi: 10.1142/S0218348X21501589 |
[19] | H. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Tajadodi, A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel, Fractals, 29 (2021), 2150154. https://doi.org/10.1142/S0218348X21501541 doi: 10.1142/S0218348X21501541 |
[20] | O. Martínez-Fuentes, F. Meléndez-Vàzquez, G. Fernàndez-Anaya, J. F. Gómez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels: lyapunov stability and inequalities, Mathematics, 9 (2021), 2084. https://doi.org/10.3390/math9172084 doi: 10.3390/math9172084 |
[21] | J. F. Gómez-Aguilar, G. Rahman, M. Javed, Stability analysis for fractional order implicit $\varphi$-Hilfer differential equations, Math. Methods Appl. Sci., 45 (2022), 2701–2712. |
[22] | A. I. K. Butt, W. Ahmad, M. Rafiq, D. Baleanu, Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic, Alexandria Eng. J., 61 (2022), 7007–7027. https://doi.org/10.1016/j.aej.2021.12.042 doi: 10.1016/j.aej.2021.12.042 |
[23] | A. Gonzàlez-Calderón, L. X. Vivas-Cruz, M. A. Taneco-Hernández, J. F. Gómez-Aguilar, Assessment of the performance of the hyperbolic-NILT method to solve fractional differential equations, Math. Comput. Simul., 206 (2023), 375–390. https://doi.org/10.1016/j.matcom.2022.11.022 |
[24] | H. Khan, J. Alzabut, O. Tunç, M. K. Kaabar, A fractal-fractional COVID-19 model with a negative impact of quarantine on the diabetic patients, Results Control Optim., 10 (2023), 100199. https://doi.org/10.1016/j.rico.2023.100199 doi: 10.1016/j.rico.2023.100199 |
[25] | A. Shah, H. Khan, M. De la Sen, J. Alzabut, S. Etemad, C. T. Deressa, et al., On non-symmetric fractal-fractional modeling for ice smoking: mathematical analysis of solutions, Symmetry, 15 (2022), 87. https://doi.org/10.3390/sym15010087 doi: 10.3390/sym15010087 |
[26] | Y. Li, K. Shah, R. A. Khan, Iterative technique for coupled integral boundary value problem of non-integer order differential equations, Adv. Differ. Equ., 2017 (2017), 251. https://doi.org/10.1186/s13662-017-1308-x doi: 10.1186/s13662-017-1308-x |
[27] | L. Liu, X. Hao, Y. Wu, Positive solutions for singular second order differential equations with integral boundary conditions, Math. Comput. Model., 57 (2013), 836–847. https://doi.org/10.1016/j.mcm.2012.09.012 doi: 10.1016/j.mcm.2012.09.012 |
[28] | M. Arfan, K. Shah, T. Abdeljawad, N. Mlaiki, A. Ullah, A Caputo power law model predicting the spread of the COVID-19 outbreak in Pakistan, Alexandria Eng. J., 60 (2021), 447–456. https://doi.org/10.1016/j.aej.2020.09.011 doi: 10.1016/j.aej.2020.09.011 |
[29] | M. Al-Refai, K. Pal, New aspects of Caputo-Fabrizio fractional derivative, Progr. Fract. Differ. Appl., 5 (2019), 157–166. http://dx.doi.org/10.18576/pfda/050206 doi: 10.18576/pfda/050206 |
[30] | J. F. Gómez, L. Torres, R. F. Escobar, Fractional derivatives with Mittag-Leffler Kernel, Fractional Derivatives with Mittag-Leffler Kernel, Springer Cham, 2019. https://doi.org/10.1007/978-3-030-11662-0 |
[31] | Y. Nawaz, M. S. Arif, W. Shatanawi, A new numerical scheme for time fractional diffusive seair model with non-linear incidence rate: an application to computational biology, Fractal Fract., 6 (2022), 78. https://doi.org/10.3390/fractalfract6020078 doi: 10.3390/fractalfract6020078 |
[32] | R. Gul, M. Sarwar, K. Shah, T. Abdeljawad, F. Jarad, Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations, J. Funct. Spaces, 2020 (2020), 4714032. https://doi.org/10.1155/2020/4714032 doi: 10.1155/2020/4714032 |
[33] | T. M. Atanacković, S. Pilipović, D. Zorica, Properties of the Caputo-Fabrizio fractional derivative and its distributional settings, FCAA, 21 (2018), 29–44. https://doi.org/10.1515/fca-2018-0003 doi: 10.1515/fca-2018-0003 |
[34] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. http://dx.doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202 |
[35] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0 |
[36] | C. Urs, Coupled fixed point theorems and applications to periodic boundary value problems, Miskolc Math. Notes, 14 (2013), 323–333. https://doi.org/10.18514/MMN.2013.598 doi: 10.18514/MMN.2013.598 |
[37] | A. D. Filip, A. Petruşel, Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory Appl., 2010 (2010), 281381. https://doi.org/10.1155/2010/281381 doi: 10.1155/2010/281381 |
[38] | R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Model., 49 (2009), 703–708. https://doi.org/10.1016/j.mcm.2008.04.006 doi: 10.1016/j.mcm.2008.04.006 |
[39] | K. Latrach, M. A. Taoudi, A. Zeghal, Some fixed point theorems of the Schauder and the Krasnosel'skii type and application to nonlinear transport equations, J. Differ. Equ., 221 (2006), 256–271. https://doi.org/10.1016/j.jde.2005.04.010 doi: 10.1016/j.jde.2005.04.010 |
[40] | A. Browder, Mathematical analysis, New York: Springer-Verlag, 1996. https://doi.org/10.1007/978-1-4612-0715-3 |
[41] | Y. Cui, Y. Zou, Existence results and the monotone iterative technique for nonlinear fractional differential systems with coupled four-point boundary value problems, Abstr. Appl. Anal., 2014 (2014), 242591. https://doi.org/10.1155/2014/242591 doi: 10.1155/2014/242591 |
[42] | K. Shah, H. Khalil, R. A. Khan, Upper and lower solutions to a coupled system of nonlinear fractional differential equations, Progr. Fract. Differ. Appl., 2 (2016), 31–39. http://dx.doi.org/10.18576/pfda/020104 doi: 10.18576/pfda/020104 |