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1. Introduction

A self-mapping ¥ on a convex, closed, and bounded subset K of a Banach space U is known
as nonexpansive if [|Fu — FV|| < |lu—v|, u,v € U and need not essentially possess a fixed point.
It is widely known that a point u € U is a fixed point or an invariant point if ¥u = u. However,
some researchers ensured the survival of a fixed point of nonexpansive mapping in Banach spaces
utilizing suitable geometric postulates. Numerous mathematicians have extended and generalized these
conclusions to consider several nonlinear mappings. One such special class of mapping is Suzuki
generalized nonexpansive mapping (SGNM). Many extensions, improvements and generalizations of
nonexpansive mappings are given by eminent researchers (see [8-10, 13, 15,17, 19, 21, 22, 25], and
so on). On the other hand, Krasnosel’skii [16] investigated a novel iteration of approximating fixed
points of nonexpansive mapping. A sequence {u;} utilizing the Krasnosel’skii iteration is defined as:
uy = u,uzy = (1 — @)u; + aF u;, where a € (0, 1) is a real constant. This iteration is one of the iterative
methods which is the extension of the celebrated Picard iteration [24], u;.; = ¥ u;. The convergence
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rate of the Picard iteration [24] is better than the Krasnosel’skii iteration although the Picard iterative
scheme is not essentially convergent for nonexpansive self-mappings. It is interesting to see that the
fixed point of a self-mapping ¥ is also a fixed point of the iteration ¥" (n € N), of the self-mapping ¥
but the reverse implication is not feasible. Recently several authors presented extended and generalized
results for better approximation of fixed points (see [1,3,11,23,26,27]).

We present convergence and common fixed point conclusions for the associated a-Krasnosel’skii
mappings satisfying condition (E) in the current work. Also, we support these with nontrivial
illustrative examples to demonstrate that our conclusions improve, generalize and extend comparable
conclusions of the literature.

2. Preliminaries

We symbolize F(¥), to be the collection of fixed points of a self-mapping ¥, that is, F(F) =
{u € U : Fu = u}. We begin with the discussion of convex Banach spaces, a-Krasnosel’skii mappings
and the condition (E) (see [12, 18,20,23]).

Definition 2.1. [14] A Banach space U is uniformly convex if, for € € (0,2] 36 > 0 satisfying, ||5*||
<1-98sothat|lu—v||>eandl|ul|=|vl=1, uveU.

Definition 2.2. [/4] A Banach space U is strictly convex if, ||”T+V|| < 1 so that u # v,||ul| = |v|| = 1,
u,veuU.

Theorem 2.1. [5] Suppose U is a uniformly convex Banach space. Then 1 ay > 0, satisfying
||%(I/l + WIS [1-y5l6foreverye, 6> 0sothat|lu—vl| =€ |ull <6 and|l| <96, foru,veU.

Theorem 2.2. [14] The subsequent postulates are equivalent in a Banach space U:
(i) U is strictly convex.
(iif) u=0o0rv=0o0rv=cuforc>0, whenever |lu + v|| = ||ull + ||v|l,u,v € U.

Definition 2.3. Suppose ¥ is a self-mapping on a non-void subset V of a Banach space U.

(i) Suppose foru € U, Av € V so that for allw € V, ||v — u|| <||w — u||. Then v is a metric projection [6]
of U onto V, and is symbolized by Py(.). The mapping Py(u) : U — V is the metric projection if Py(x)
exists and is determined uniquely for each x € U.

(ii) ¥ satisfies condition (E,) [23] on V if 3 u > 1, satisfying |lu — FvI| < pllu — Full +lu -V, u,ve
V. Moreover,  satisfies condition (E) on 'V, if ¥ satisfies (E,,).

(iii) F satisfies condition (E) [23] and F(F) # 0, then F is quasi-nonexpansive.

(iv) F is a generalized a-Reich-Suzuki nonexpansive [21] if for an « € [0,1), %Ilu - Ful| <
|u —v|| = |[Fu—Fv|| <max{a||Fu-—ul|l+a||Fv—-v|+(1-2a)|u-v|, al|lFu-v|+a||Fv-—ul|+
(1 =-2a)|lu—-vll}, Yu,veV.

(v) A self-mapping ¥, : V — V is an a-Krasnosel’skii associated with F [2] if, Fou = (1 —@)u+ aF u,
forae(0,1),ucV.

(vi) F is asymptotically regular [4] UC,}LTOHT"M — FHy|| = 0.

(vii) F is a generalized contraction of Suzuki type [2], if A8 € (0,1) and ay,a,, a3z € [0, 1], where
ay + 2a; + 2a3 = 1, satisfying Bllu — F ul| < ||lu — v|| implies

1Fu—FvIl < aillu — vl + ax(llu = Full + v =FVI) +az(llu—-Fvll+llv-Ful), uvel.
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(viii) F is a-nonexpansive [7] if Aan a < 1 satisfying
lFu—Fvl <allFu-v|+alFv—ull+ (1 -2a)lu-vl, uvel.

Theorem 2.3. [5] A continuous mapping on a non-void, convex and compact subset V of a Banach
space U has a fixed point in V.

Pant et al. [23] derived a proposition that if § = % then a generalized contraction of Suzuki type
is a generalized a-Reich-Suzuki nonexpansive. Moreover, the reverse implication may not necessarily
hold.

Lemma 2.1. [2] Let F be a generalized contraction of the Suzuki type on a non-void subset V of a
Banach space U. Let B € [ %, 1), then

2+a; +ar + 33
1—0/2—0’3

|l — F vl é( )Ilu—?'ull + ||l = vl|.

Proposition 2.1. [23] Let ¥ be a generalized contraction of the Suzuki type on a non-void subset V
of a Banach space U, then F satisfies condition (E).

The converse of this proposition is not true, which can be verified by the following example.
Example 2.1. Suppose U = (R?,]|.||) with the Euclidean norm and V = [—1, 1] x [-1, 1] be a subset of
U.LetF : V — V be defined as

), if gl < A
Flu,uz) = { Curss), if ] > L.
Case L Let x = (u;,u2),y = (vi,v2) with [ug| < 1, || < 1. Then,
IFx = Fyl = H(%M) - (%)

= \/M_,_(uz_\,z)z

< Vi = vi)? + (1 — v2)?

= [lx =yl

which implies

llx = Fyll < llx = F ol + 1 x = Fyll < llx = Fxll + [lx =yl

Case IL If u;| < 1, | > 1

e = 3l = At + v + (s — )

=yl = V(= 1) + (g — vp)?

_ ||
llx — Fx|| = >
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Consider
Ix = Fyll = VG —vi)? + (s — )2 + duyv,
< s = v + (2 — v2)? + 4y
< N —vi)? + (g — )% + Huy .
Hence,

llx = Fyll < 8llx = Fxll + llx =yl

Here u = 8 satisfies the inequality.
Case IIL If [u)| > 3, vi| < 3

2
Ix = Fyll = \/(ul - %) T — o)

o =yl = V(g +v1)? + (1 — v)?

llx = F x| = 2lus].
Consider
b =yl = \/(ul - %)2 + (11 = v2)
< N —vi)? + (3 — vy)?
< N = vi)2 + (uz = v2)* + luy]
< N = v)? + (12 — v2)? + 20y .
So,

llx = Fyll < llx = Fyll + llx =yl

Case IV.If |u;| > § and |vi| > 1, then

lx = Fyll = V@ +vi)? + (uy — v,)?

lx = yll = V@ = vi)? + (uy — v)?
llx = Fxll = 2Juy.

Since |u;| > % and |v¢| > % by simple calculation as above, we attain
llx = Fyll < pelle = Fxll + llx =yl

Thus, ¥ satisfies condition (E) for u = 4.
Now, suppose x = (3, 1) and y = (1,1), so

1 1
ﬁllx—?-’x||=,3(§—z):§

AIMS Mathematics
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1
<llx=yll = 5
Clearly, ||Fx — Fyl|l = (%)2 +(1=-1)2= %‘
Consider
@y [lx = yll + aallx = Fxll + [y = FyD) + as(llx = Fyll + lly = F )
1 1 1
m(5Q—GJ>+@(GAy«IQ4wmn—eLm0

1 1
—,1|-(-1,1 LD— (=1
of|(51] - oo (o))
:%+%+202+%+%
a; 9
:?1+Z(a/2+cy3)
=@ 212 oy Definition 2.3 (vii))
= 3 4 ) y pennition <. Vil
_o 9 o
2 8 8
_2
8 8

Since ay, as, a3 > 0, therefore
IF x = Fyll > arllx =yl + ax(llx = Fyll + |ly = FylD) + as(llx = Fyll + [y — FxI),

which is a contradiction.
Thus, ¥ is not a generalized contraction of the Suzuki type.

3. Results

Now, we establish results for a pair of @-Krasnosel’skii mappings using condition (E).

Theorem 3.1. Let F;, for i € {1,2}, be self-mappings on a non-void convex subset V of a uniformly
convex Banach space U and satisfy condition (E) so that F(F1 N F,) # ¢. Then the a-Krasnosel’skii
mappings F;,, « € (0,1) and i € {1,2} are asymptotically regular.

Proof. Letvy € V. Define v, = ¥, v, fori € {1,2} and n € N U {0}. Thus,
?’

Ly

Vo =Ype1 = (1 = @)y, + aFv, forie(l,2},

and

ﬁ(y

Vo =V = Fi vy — Fi Vo1 = @(Fiv, —v,)  forie{l,2}.
It is sufficient to show that lim||%;v,, — v,|| = O to prove F;, is asymptotically regular.
By definition, for uy € F(%1 N F3), we have

lluo — Fivall < lluo —vall fori e (1,2} (3.1
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and fori € {1, 2},

lleto — Vil = lluo — Fi, vall
= |lup — (1 — @)v, — aFwill
< (I = a)llug = vall + allug — Fivill
= (1 = a)|luo — vall + allug — vl
= |luo = vall. (3.2)

Thus, the sequence {||uy — v,||} is bounded by sy = ||ug — vo||. From inequality (3.2), v, = up as n — oo,
if v,, = up, for some ny € N. So, assume v, # uy, forn € N, and

_ Up—Vy u0_7:ivn

w, = and e, = , forief{l,2}. (3.3)
lleeg — vall lleto — vall
Ifa <1 and using Eq (3.3), we obtain
o = Visrll = lluo — Fi,vall, fori € {1,2}

= |lup — (1 — @)v, —aFv,l|, fori e {1,2}

= |lug — v, + @v,, — @F;v, — 2aug + 2auy + av, — av,||, fori e {1,2}
= (1 = 2a)ug — (1 = 2a)v, + Laug — av, — aFv,)|, forie {1,2}
< (1 =20)lup — vall + ll2Zug — v, = Fivill

W, + e,
= 2a|lug — vllll I+ (1 = 2a)|lug — vall- (3.4)
As the space U is uniformly convex with ||w,|| < 1, |le,|| < 1 and |[w, — e,|| = ”ﬁ:,;:fvivﬁ” > IIvn—s?vnll =€
(say) for i € {1,2}, we obtain
n T €n n— 7iVn .
e tenll gl =Fwall i e (1), (3.5)
2 Sy
From inequalities (3.4) and (3.5),
”Vn - 7:lvnll
o = vl < (2a(1 - (55— + (1 =2a) [ |luo — vall
= (1 - ZQé(w) )lluo .l (3.6)
S0

By induction, it follows that

50

o = val< [ | (1 - M(M)) 50 (37)

j=1

We shall prove that lim||F;v, — v,|| = O for i € {1,2}. On the contrary, consider that {||%;v, — v,||} for

i € {1,2} is not converging to zero, and we have a subsequence {v,,}, of {v,}, satisfying ||F;v,, — v,,||
converges to { > 1. As § € [0, 1] is increasing and a < % 1- 2&6@ €[0,1],i € {1, 2}, for all
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k € N. Since ||[Fv,, — v, |l = ¢ so, for sufficiently large k, [|Fv,, — vyl = %, from inequality (3.7), we
have

(mg+1)
g = Vir1ll < S0 (1 — 2&6( ¢ )) . (3.8)

2—50

Making k — oo, it follows that v,, — uy. By inequality (3.1), we get F;v,, — up and ||v,, — Fiv,, || = 0
as k — oo, which is a contradiction. If @ > % ,thenl —a < %, because @ € (0,1). Now, fori € {1,2}

llttg = Vil = lluto — (1 — @)y, — @F |
= lugp — v, + v, —aFv, + 2 = 20)uy — 2 = 2a)ug + Fiv, — Fiva + aFiv, — aFv,l|
= 1uo = va = Fiva) — @QCuo = vy — Fiva) + 2a(uo — Fiva) — (uo — Fiva)ll
< (1= a)2up — vy — Fivall + Ca = Dllug = vyl

[wa + ell
< 2(1 = 2a) flug = va | ——— + 2 = 1) [luo = vall.

By the uniform convexity of U, we attain, for i € {1, 2},

o

lx0 = Yns1ll < (2(1 —a)-2(l-a) o + (1 —2a/))||x0—yn||. (3.9

By induction, we get

- v, = Fovjl
lluo = vipsill< l_[ (1 -2(1-a) ¢ (% 5.
Jj=1 0

Similarly, it can be easily proved that ||F;v, —v,|| = 0 as n — oo, which implies that 7; fori € {1,2},
is asymptotically regular. O

Next, we demonstrate by a numerical experiment that a pair of @-Krasnosel’skii mappings are
asymptotically regular for fix @ € (0, 1) .

Example 3.1. Assume U = (R%,|\.|) with Euclidean norm and V = {u € R? : ||lu|| < 1}, to be a convex
subset of U. F; for i € {1,2} be self-mappings on V, satisfying

Fr(uy, uz) = (uy, un)

u

Falir, ) = (5. 0)
Then, clearly both F| and F, satisfy the condition (E) and F(5, N F3) = (0, 0). Now, we will show that
the a-Krasnosel’skii mappings F;, for a € (0, 1) and i € {1,2} are asymptotically regular.
Since ¥ is the identity map, a- Krasnosel’skii mapping ¥, is also identity and hence asymptotically

regular.
Now, we show T, is asymptotically regular, let u = (u,uy) € V

Foottr, uz) = (1 — @)(uy, ux) + aF>(uy, un)
= (1 = @)uy, (1 — a)uy) + a(%,O)

AIMS Mathematics Volume 8, Issue 4, 9911-9923.
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au
= (0 = = (1 - @),

F2 (uyup) = (1 — @)y — % (1 = @)uy) + aFaluy — % (1 = @)uy)

2 2
= (1 + 5 =354 (1 - @) + (5 = . 0)
2
= (u; — auy + a4u1’ (1 - a)*x).

Continuing in this manner, we get
n @ \n n
Jro(ur,u2) = ((u1 - 5) (1= a)'uy).

Since (uy,uz) € V and a € (0, 1), we get that lim (u; — $)" = 0 and lim(1 — )" = 0. Now, consider

r}i_{g” 21, up) = Fou ()|
: o n a n n n
= sup lim||(u; — 5)" = (; — )", (1 - )" = (1 = )" xy|
) 2
=0.
Hence, ¥, is also asymptotically regular.

Theorem 3.2. Let F; be quasi-nonexpansive self-mappings on a non-void and closed subset V of a
Banach space U for i € {1,2}, and satisfy condition (E) so that F(F1 N F2) # 0. Then, F(F1 N )
is closed in V. Also, if U is strictly convex, then F(F1 N F) is convex. Furthermore, if U is strictly
convex, V is compact, and F is continuous, then for any sy € V,a € (0,1), the a-Krasnosel’skii
sequence {ﬁ:(so)}, convergesto s € F(F1NF?).

Proof. (i) We assume {s,} € F( ¥, N%>) sothats, — s € F(¥, N%>,) asn — oo. Hence, F;s, = s, for
i € {1,2}. Next, we show that F;s = s for i € {1, 2}. Since ¥; are quasi-nonexpansive, we get

s, = Fisll < Ils, — sl for i € {1,2},

that is, ;s = s fori = 1,2, hence F (¥, N F>) is closed.
(i1) V is convex since U is strictly convex. Also fixy € (0,1) and u,v € F(, N ;) so that u # v.
Take s = yu + (1 — y)v € V. Since mapping ¥; satisfy condition (E),

llu = Fisll < llu = Foull + llu = sl| = llu — s|| for i € {1,2}.
Similarly,
v —Fisl| < |lv—s|l forie{l,2}.
Using strict convexity of U, thereisaf € [ 0,1] sothat F;s =0u+ (1 —6O)vfori=1,2

(1 = 0) [lu = vl = |Fiu = Fisll < llu = sll = (1 =) lu—vll, fori e {1,2}, (3.10)

AIMS Mathematics Volume 8, Issue 4, 9911-9923.
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and
Ollu — vl = [|[Fiv = Fisll < llv = sll = yllu — vl|, fori € {1,2}. (3.11)
From inequalities (3.10) and (3.11), we obtain
1-60<1-7vyand@ < yimplies that § = y.

Hence, ;s = s fori = 1,2, implies s € F(F1 N 7).
(ii1) Let us define {s,} by s, = 7’7{:5‘0, so € V, where ¥ so = (1 — @)so + aFiso,@ € (0,1) . We have a
subsequence {s,, } of {s,} converging to some s € V, since V is compact. Using the Schauder theorem
and the continuity of F;, we have F(F, N ;) # ¢. We shall demonstrate that s € F(7; N F5). Let
wo € F(F7 N F,), consider

llsn — woll = [IF" s0 — woll

-1
< F:" so — wol

= |l5,-1 — woll.

Therefore, {||s,, — wy||} converges as it is a decreasing sequence that is bounded below by 0. Moreover,
since ¥;, for i = 1,2 is continuous, we have

llwo — soll = ,}LIgollsnk+1 = Sl
= ,}Lrgollﬁ(,snk — soll
= ||Fias — Soll

=|I(1 —a@)s + aFis — sol| (3.12)
< (1 —a)lls — soll + al|Fis — so|l| forie{l,2}.

Since a > 0, we get

Is — soll < ||Fis — soll, fori € {1,2}. (3.13)
Since ¥; are quasi-nonexpansive maps, we get

|Fis — soll < |ls — soll, fori € {1,2}, (3.14)
and from inequalities (3.13) and (3.14), we get

|Fis — soll = |ls — soll, fori e {1,2}. (3.15)
Now, from inequality (3.12), we have

IIs — soll < |I(1 — @)s + aF;s — soll, forie {1,2}

< (1 = a)lls = soll + allF;s — soll, fori € {1,2}

= ”S - S()”,
which implies that
I(1 = a@)s + aFis — soll = (1 = @)lls — soll + allFis — soll, fori € {1,2}.

Since U is strictly convex, either F;s — 5o = a(s — so) for some a > 0 or s = s59. From Eq (15), it follows
that a = 1, then, ;s = sfori = 1,2 and s € F(¥, N ¥). Since lim||s, — so|| exists and {s,;} converges

strongly to s. Hence, {s,} converges strongly to s € F(F; N F>). O
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The next conclusion for metric projection is slightly more fascinating.

Theorem 3.3. Let F; be quasi-nonexpansive self-mappings on a non-void, closed, and convex subset V
of a uniformly convex Banach space U fori € {1, 2}, and satisfies condition (E) so that F(F1N%>) # ¢.
Let P : U — F(F1 N F,) be the metric projection. Then, for every u € U, the sequence {P¥u} for
i ={1,2}, converges to s € F(F| N F?).

Proof. Letue V. Forn,me N
|PF"u — F'ull < ||PF"u—F"ull, forn >m, i e{l1,2}. (3.16)
Since u € F(F1 N F3) ,n € N and F; are quasi-nonexpansive maps, for i € {1,2} we have
IPF"u — F'ull = |PF"u — FiF7" ul
< |PF"u — F""ull.
Therefore, for n > m, it follows that
|PF"u — Full < ||PF"u— F"ull, forie {1,2}. (3.17)
From inequalities (3.16) and (3.17), we have
|1PF u— F"ull < ||PF"u—F"ull, forie {1,2},
which implies that ’}1_)12 |PF"u — F"ull exists. Taking 31_)12 |IPF u—F"ull =L
If [ = 0, then we have an integer ny( €) for € > 0, satisfying
|PF"u — F'ul| > 2 fori e {1,2}, (3.18)
for n > ny. Therefore, if n > m > n( and using inequalities (3.17) and (3.18), we have, for i € {1, 2},

IPF?'u = PF"ull < IIPF'u — PFull + [ PF; " = F"ul
< \PF7'u = F'ull + |F7"u = PFull + [ PF" = F"ull + |57 = PF; "l
< PF7'u = F7'ull + |F;u = PFull + [ PF" = F"ull + |5 = PF;ul

€ € € €
<—4+-+-+=-
44 4 4

= E.

That is, {PF"u} for i = {1,2} is a Cauchy sequence in F(#; N ;). Using the completeness of U and
the closedness of F(#, N ;) from the above theorem, {PF/"x} for i = 1,2, converges in F(¥; N F3).
Taking [ > 0, we claim that the sequence {P¥"u} for i = 1,2, is a Cauchy sequence in U . Also we
have, an g > 0 so that, for each ny € N, we have some ry, so > ng satisfying

IPF°u — PF."ull > &, forie{1,2}.
Now, we choose a 8§ > 0

€0
[+0)|1 —6—— 0.
¢+ )( l+0)<

AIMS Mathematics Volume 8, Issue 4, 9911-9923.
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Let m be as large as possible such that for g > my
[ <|IPFu—Flull <I1+6.
For this my, there exist g, g, such that g, g, > my and
\PF" u— PFull > € fori € {1,2}.
Thus, for gy > max{q,, g,}, we attain
IPF" x — F2x|| > |PF"x — F " xl| < 1 +6,
and
IPFx — F2x| > |IPF"x — F " xll < 1+ 6 forief{l,2}.
Now, using the uniform convexity of U, we attain

PF"x + PF%x

I <||IPF"x—F x|l < ||— 3 — — Fx]|, forie({1,2}
€
<(1+6 (1 —5—)
( ) [+6
<0,

a contradiction. Hence for every u € V, the sequence {P¥;"u} for i = 1,2, converges to some s €

F(F1 0 %) O
4. Conclusions

We have proved some properties of common fixed points and also showed that if two mappings
have common fixed points, then their a-Krasnosel’skii mappings are asymptotically regular. To show
the superiority of our results, we have provided an example. Further, we have proved that the a-
Krasnosel’skii sequence and its projection converge to a common fixed whose collection is closed.

Acknowledgments

Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding
publication of this project.

Conflict of interest
The authors declare no conflict of interest.

References

1. N. Altwaijry, T. Aldhaban, S. Chebbi, H. Xu, Krasnoselskii-Mann viscosity approximation method
for nonexpansive mappings, Mathematics, 8 (2020), 1153. http://dx.doi.org/10.3390/math8071153

AIMS Mathematics Volume 8, Issue 4, 9911-9923.


http://dx.doi.org/http://dx.doi.org/10.3390/math8071153

9922

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Atailia, N. Redjel, A. Dehici, Some fixed point results for generalized contractions
of Suzuki type in Banach spaces, J. Fixed Point Theory Appl, 21 (2019), 78.
http://dx.doi.org/10.1007/s11784-019-0717-8

V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij
iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), 293-304.

F. Browder, W. Petryshyn, The solution by iteration of nonlinear functional equations in Banach
spaces, Bull. Am. Math. Soc., 72 (1966), 571-575.

C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, London: Springer,

20009. http://dx.doi.org/10.1007/978-1-84882-190-3

A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces, Berlin: Springer, 2013.
http://dx.doi.org/10.1007/978-3-642-30901-4

G. Emmanuele, Asymptotic behavior of iterates of nonexpansive mappings in Banach spaces with
Opial’s condition, Proc. Am. Math. Soc., 94 (1985), 103—1009.

E. Fuster, E. Gélvez, The fixed point theory for some generalized nonexpansive mappings, Abstr.
Appl. Anal., 2011 (2011), 435686. http://dx.doi.org/10.1155/2011/435686

K. Goebel, M. Pineda, A new type of nonexpansiveness, Proceedings of the 8-th International
Conference on Fixed Point Theory and Applications, 2007, 16-22.

K. Goebel, W. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am.
Math. Soc., 35 (1972), 171-174.

G. Hardy, T. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16
(1973), 201-206. http://dx.doi.org/10.4153/CMB-1973-036-0

S. He, Q. Dong, H. Tian, X. Li, On the optimal relaxation parameters of Krasnosel’ski-Mann
iteration, Optimization, 70 (2021), 1959-1986. http://dx.doi.org/10.1080/02331934.2020.1767101
http://dx.doi.org/10.3390/math8060954

R. Kannan, Fixed point theorems in reflexive Banach spaces, Proc. Am. Math. Soc., 38 (1973),
111-118.

W. Kirk, B. Sims, Handbook of metric fixed point theory, Dordrecht: Springer, 2011.
http://dx.doi.org/10.1007/978-94-017-1748-9

W. Kirk, H. Xu, Asymptotic pointwise contractions, Nonlinear Anal.-Theor., 69 (2008), 4706—
4712. http://dx.doi.org/10.1016/j.na.2007.11.023

M. Krasnosel’skii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl., 10 (1958),
345-409.

A. Latif, R. Al Subaie, M. Alansari, Fixed points of generalized multi-valued
contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123-138.
http://dx.doi.org/10.23952/jnva.6.2022.1.07

A. Moslemipour, M. Roohi, A Krasnoselskii-Mann type iteration for nonexpansive mappings in
Hadamard spaces, J. Adv. Math. Stud., 14 (2021), 85-93.

A. Nicolae, Generalized asymptotic pointwise contractions and nonexpansive mappings involving
orbits, Fixed Point Theory Appl., 2010 (2009), 458265. http://dx.doi.org/10.1155/2010/458265

AIMS Mathematics Volume 8, Issue 4, 9911-9923.


http://dx.doi.org/http://dx.doi.org/10.1007/s11784-019-0717-8
http://dx.doi.org/http://dx.doi.org/10.1007/978-1-84882-190-3
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-30901-4
http://dx.doi.org/http://dx.doi.org/10.1155/2011/435686
http://dx.doi.org/http://dx.doi.org/10.4153/CMB-1973-036-0
http://dx.doi.org/http://dx.doi.org/10.1080/02331934.2020.1767101
http://dx.doi.org/http://dx.doi.org/10.3390/math8060954
http://dx.doi.org/http://dx.doi.org/10.1007/978-94-017-1748-9
http://dx.doi.org/http://dx.doi.org/10.1016/j.na.2007.11.023 
http://dx.doi.org/http://dx.doi.org/10.23952/jnva.6.2022.1.07
http://dx.doi.org/http://dx.doi.org/10.1155/2010/458265

9923

20.

21.
22.

23.
24.

25.
26.

27.

% AIMS Press

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive
mappings, Bull. Am. Math. Soc., 73 (1967), 591-597.

R. Pandey, R. Pant, V. Rakocevic, R. Shukla, Approximating fixed points of a general class
of nonexpansive mappings in Banach spaces with applications, Results Math., 74 (2019), 7.
http://dx.doi.org/10.1007/s00025-018-0930-6

R. Pant, R. Shukla, Approximating fixed points of generalized a-nonexpansive
mappings in Banach spaces, Numer Func. Anal. Opt, 38 (2017), 248-266.
http://dx.doi.org/10.1080/01630563.2016.1276075

R. Pant, P. Patel, R. Sukla, M. De la Sen, Fixed point theorems for nonexpansive type mappings in
Banach spaces, Symmetry, 13 (2021), 585. http://dx.doi.org/10.3390/sym13040585

E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des
approximations successives, J. Math. Pure. Appl., 6 (1890), 145-210.

T. Suzuki, Fixed point theorems and convergence theorems for some generalized
nonexpansive  mappings, J.  Math. Anal. Appl, 340 (2008), 1088-1095.
http://dx.doi.org/10.1016/j.jmaa.2007.09.023

K. Ullah, J. Ahmad, M. Arshad, Z. Ma, Approximation of fixed points for enriched
Suzuki nonexpansive operators with an application in Hilbert spaces, Axioms, 11 (2022), 14.
http://dx.doi.org/10.3390/axioms11010014

H. Xu, N. Altwaijry, S. Chebbi, Strong convergence of Mann’s iteration process in Banach spaces,
Mathematics, 8 (2020), 954.

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 4, 9911-9923.


http://dx.doi.org/http://dx.doi.org/10.1007/s00025-018-0930-6
http://dx.doi.org/http://dx.doi.org/10.1080/01630563.2016.1276075
http://dx.doi.org/http://dx.doi.org/10.3390/sym13040585
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmaa.2007.09.023 
http://dx.doi.org/http://dx.doi.org/10.3390/axioms11010014
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Results
	Conclusions

