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1. Introduction

Let b ≥ 2 and n ≥ 1 be integers. We call n a palindrome in base b (or b-adic palindrome) if the
b-adic expansion of n = (akak−1 · · · a0)b with ak , 0 has the symmetric property ak−i = ai for 0 ≤ i ≤ k.
As usual, if we write a number without specifying the base, then it is always in base 10, and if we write
n = (akak−1 · · · a0)b, then it means that n =

∑k
i=0 aibi, ak , 0, and 0 ≤ ai < b for all i = 0, 1, . . . , k.

Throughout this article, we let Ab(n) be the number of b-adic palindromes not exceeding n.
Previously, we [1] obtained an extremal order of Ab(n) and proved that if b > b1 ≥ 2 are integers,

then
lim sup

n→∞

(
Ab(n) − Ab1(n)

)
= +∞ and lim inf

n→∞

(
Ab(n) − Ab1(n)

)
< 0.

In addition, if log b
log b1

is irrational, then

lim inf
n→∞

(
Ab(n) − Ab1(n)

)
= −∞. (1.1)

Therefore, it is interesting to determine the value of the left-hand side of (1.1) when b is a rational
power of b1. In this article, we show in Theorem 3.1 that if log b/ log b1 is an integer, then the left-hand
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side of (1.1) is −1, and we obtain in Theorem 3.2 that if log b/ log b1 is rational but not integral, then
the left-hand side of (1.1) is −∞. We also propose some possible research problems at the end of
this article. We remark that the study on the ratio Ab(n)/Ab1(n) may be interesting too, but we were
previously interested in the sign changes of Ab(n) − Ab1(n), and so we focus only on the difference
not the ratio. Nevertheless, since Ab(n) − Ab1(n) has an infinite number of sign changes, if the limit of
Ab(n)/Ab1(n) as n→ ∞ exists, then it must be one.

Perhaps, one of the popular problems in palindromes is to determine whether or not there are
infinitely many palindromic primes. Although this problem is still open, Banks, Hart and Sakata [2]
showed that almost all palindromes in any fixed base b ≥ 2 are composite. Banks and Shparlinski [3]
also obtained results on prime divisors of palindromes, and there are many other interesting articles on
palindromes too. We refer the reader to Banks [4], Cilleruelo, Luca and Baxter [5], and Rajasekaran,
Shallit and Smith [6] for additive properties of palindromes, Bas̆ić [7, 8], Di Scala and Sombra [9],
Goins [10], Luca and Togbé [11] for the study of palindromes in different bases, Cilleruelo, Luca
and Tesoro [12] for palindromes in linear recurrence sequences, Harminc and Soták [13] for b-adic
palindromes in arithmetic progressions, and Pongsriiam [14] for the longest arithmetic progressions of
palindromes.

2. Preliminaries and lemmas

In this section, we provide some results which are needed in the proof of the main theorems. Recall
that for a real number x, ⌊x⌋ is the largest integer less than or equal to x, ⌈x⌉ is the smallest integer
greater than or equal to x, and {x} is the fractional part of x given by {x} = x− ⌊x⌋. It is also convenient
to define Cb(n) as follows.

Definition 2.1. Let b ≥ 2 and n = (akak−1 · · · a1a0)b be positive integers. We define Cb(n) =
(ckck−1 · · · c1c0)b to be the b-adic palindrome satisfying ci = ai for k − ⌊k/2⌋ ≤ i ≤ k. In other words,
Cb(n) is the b-adic palindrome having k + 1 digits whose first half digits are the same as those of n in
its b-adic expansion, that is, Cb(n) = (akak−1 · · · ak−⌊ k

2⌋
· · · ak−1ak)b.

In the following lemma, if P is a mathematical statement, then the Iverson notation [P] is defined
by [P] = 1 if P holds, and [P] = 0 otherwise. Then the formula for Ab(n) is as follows.

Lemma 2.1. [15] Let b ≥ 2, n ≥ 1, and n = (akak−1 · · · a1a0)b be integers. Then the number of b-adic
palindromes less than or equal to n is given by

Ab(n) = b⌈
k
2⌉ +

∑
0≤i≤⌊ k

2⌋

ak−ib⌊
k
2⌋−i + [n ≥ Cb(n)] − 2.

Lemma 2.2. Let a, r, s ≥ 2 be integers and (r, s) = 1. If a
r
s is an integer, then there exists an integer

c ≥ 2 such that a = cs.

Proof. Suppose a
r
s = m is an integer. Then ar = ms, and so a and m have the same set of prime divisors.

Let a =
∏k

i=1 pai
i and m =

∏k
i=1 pmi

i . Then air = mis for all i. Since s | air and (s, r) = 1, s | ai for all i.
Let c =

∏k
i=1 pai/s

i . Then c is an integer, c ≥ 2, and a = cs. So the proof is complete. □
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3. Main results

Theorem 3.1. Let b > b1 ≥ 2 and ℓ ≥ 2 be integers. Suppose that b = bℓ1. Then, the following
statements hold.

(i) Ab(n) − Ab1(n) ≥ −1 for all n ∈ N.
(ii) Ab(n) − Ab1(n) = −1 for infinitely many n ∈ N.

(iii) lim inf
n→∞

(
Ab(n) − Ab1(n)

)
= −1.

Proof. We first prove (i). Let n ≥ 1 and write

n = (akak−1 · · · a0)b1 = (crcr−1 · · · c0)b .

Since br ≤ crbr ≤ n < br+1, we see that r =
⌊

log n
log b

⌋
. Similarly, we have k =

⌊
log n
log b1

⌋
, and so r = ⌊k/ℓ⌋. By

the uniqueness of the b-adic and b1-adic representations, we can write c0, c1, c2, . . . , cr in terms of b1

and the a j as follows:
Considering n modulo b, we obtain

c0 ≡ a0 + a1b1 + a2b2
1 + · · · + aℓ−1bℓ−1

1 (mod b),

and both sides of the congruence are nonnegative integers less than b, and so they are equal. Similarly,
after reducing n modulo b2, b3, . . . , br+1, respectively, we obtain c1, c2, . . . cr. Thus

c j =

ℓ−1∑
i=0

a jℓ+ibi
1 for every j = 0, 1, 2, . . . , r,

where am = 0 if m > k. By Lemma 2.1, we have

Ab1(n) = b⌈
k
2⌉

1 +
∑

0≤i≤⌊ k
2⌋

ak−ib
⌊ k

2⌋−i
1 + [n ≥ Cb1(n)] − 2, (3.1)

Ab(n) = b⌈
r
2⌉ +

∑
0≤ j≤⌊ r

2⌋

cr− jb⌊
r
2⌋− j + [n ≥ Cb(n)] − 2

= b
ℓ

⌊
k
ℓ ⌋
2


1 +

∑
0≤ j≤⌊ k

2ℓ⌋

 ℓ−1∑
i=0

a(r− j)ℓ+ibi
1

 b
ℓ(⌊ k

2ℓ⌋− j)
1 + [n ≥ Cb(n)] − 2. (3.2)

It is useful to recall that if k ∈ Z and x ∈ R, then ⌊k + x⌋ = k + ⌊x⌋, and if k ∈ N and x ∈ R, then⌊
⌊x⌋
k

⌋
=
⌊

x
k

⌋
. We also let s = k mod ℓ be the least nonnegative residue of k modulo ℓ, that is, k ≡ s

(mod ℓ) and 0 ≤ s < ℓ. Then, from (3.1) and (3.2), we obtain

Ab1(n) =


b

k
2
1 +
∑

0≤i≤ k
2

ak−ib
k
2−i
1 + [n ≥ Cb1(n)] − 2, if k is even;

b
k+1

2
1 +

∑
0≤i≤ k−1

2

ak−ib
k−1

2 −i
1 + [n ≥ Cb1(n)] − 2, if k is odd,

(3.3)
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Ab(n) =


b

k−s
2

1 +
∑

0≤ j≤ k−s
2ℓ

ℓ−1∑
i=0

ak−s−ℓ j+ib
k−s

2 −ℓ j+i
1 + [n ≥ Cb(n)] − 2, if

⌊
k
ℓ

⌋
is even;

b
k−s+ℓ

2
1 +

∑
0≤ j≤ k−s−ℓ

2ℓ

ℓ−1∑
i=0

ak−s−ℓ j+ib
k−s−ℓ

2 −ℓ j+i
1 + [n ≥ Cb(n)] − 2, if

⌊
k
ℓ

⌋
is odd.

(3.4)

Next, we will reduce the double sum in (3.4) into a sum. We see that if
⌊

k
ℓ

⌋
is even, then −ℓ j + i

runs through the integers from − k−s
2 to ℓ − 1 exactly once as j runs through 0, 1, 2, . . . , k−s

2ℓ and i runs
through 0 to ℓ − 1. Similarly, if

⌊
k
ℓ

⌋
is odd, then −ℓ j + i ranges over the integers from − k−s−ℓ

2 to ℓ − 1

exactly once as j ranges over 0, 1, 2, . . . , k−s−ℓ
2ℓ and i ranges over 0 to ℓ − 1. So if

⌊
k
ℓ

⌋
is even, the first

double sum in (3.4) reduces to ∑
− k−s

2 ≤i≤ℓ−1

ak−s+ib
k−s

2 +i
1 .

We replace the index i by i − k−s
2 and recall that s ≤ ℓ − 1, a k−s

2 +i = 0 if i > k+s
2 , and ℓ − 1 + k−s

2 ≥
k+s

2 .
So the first double sum in (3.4) further reduces to∑

0≤i≤ k+s
2

a k−s
2 +ib

i
1.

Similarly, if
⌊

k
ℓ

⌋
is odd, then the second double sum in (3.4) reduces to∑

− k−s−ℓ
2 ≤i≤ℓ−1

ak−s+ib
k−s−ℓ

2 +i
1 =

∑
0≤i≤ k+s−ℓ

2

a k−s+ℓ
2 +ib

i
1.

From (3.4) and the above calculation, we obtain

Ab(n) =


b

k−s
2

1 +
∑

0≤i≤ k+s
2

a k−s
2 +ib

i
1 + [n ≥ Cb(n)] − 2, if

⌊
k
ℓ

⌋
is even;

b
k−s+ℓ

2
1 +

∑
0≤i≤ k+s−ℓ

2

a k−s+ℓ
2 +ib

i
1 + [n ≥ Cb(n)] − 2, if

⌊
k
ℓ

⌋
is odd.

(3.5)

Next, we divide the proof into four cases according to the parity of k and
⌊

k
ℓ

⌋
.

Case 1. Assume that k and
⌊

k
ℓ

⌋
are even. Then, s is even and∑

0≤i≤ k+s
2

a k−s
2 +ib

i
1 ≥ b

s
2
1

∑
s
2≤i≤ k+s

2

a k−s
2 +ib

i− s
2

1 = b
s
2
1

∑
0≤i≤ k

2

ak−ib
k
2−i
1 .

By (3.3), (3.5) and the above inequality, we obtain that Ab(n) − Ab1(n) is at least

b
k−s

2
1 − b

k
2
1 +

(
b

s
2
1 − 1

) ∑
0≤i≤ k

2

ak−ib
k
2−i
1 − 1 ≥ b

k−s
2

1 − b
k
2
1 + akb

k
2
1

(
b

s
2
1 − 1

)
− 1 = b

k
2
1

(
akb

s
2
1 + b−

s
2

1 − ak − 1
)
− 1.
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Since the function x 7→ akx + x−1 is increasing on [1,∞), the number in the above parenthesis is
nonnegative, and so Ab(n) − Ab1(n) ≥ −1.

Case 2. Assume that k is odd and
⌊

k
ℓ

⌋
is even. Then s is odd. Similar to Case 1, we obtain∑

0≤i≤ k+s
2

a k−s
2 +ib

i
1 ≥ b

s+1
2

1

∑
s+1
2 ≤i≤ k+s

2

a k−s
2 +ib

i− s+1
2

1 ≥ b
s+1
2

1

∑
0≤i≤ k−1

2

ak−ib
k−1

2 −i
1 .

By (3.3), (3.5) and the above inequality, we see that Ab(n) − Ab1(n) is at least

b
k−s

2
1 − b

k+1
2

1 + akb
k−1

2
1

(
b

s+1
2

1 − 1
)
− 1 = b

k
2
1

(
akb

s
2
1 + b−

s
2

1 − akb
− 1

2
1 − b

1
2
1

)
− 1.

Since x 7→ akx + x−1 is increasing on [1,∞) and b
s
2
1 ≥ b

1
2
1 ≥ 1, we have akb

s
2
1 + b−

s
2

1 ≥ akb
1
2
1 + b−

1
2

1 , and

Ab(n) − Ab1(n) ≥ b
k
2
1

(
akb

1
2
1 + b−

1
2

1 − akb
− 1

2
1 − b

1
2
1

)
− 1 = b

k
2
1 (ak − 1)

(
b

1
2
1 − b−

1
2

1

)
− 1 ≥ −1.

Case 3. Assume that k is even and
⌊

k
ℓ

⌋
is odd. Then ℓ ≡ k − s ≡ s (mod 2). So ℓ−s

2 is an integer and
ℓ−s

2 > 0. So ℓ−s
2 ≥ 1. Considering the first sum in (3.3) and changing the index from i to k+s−ℓ

2 − i, we
see that∑

0≤i≤ k
2

ak−ib
k
2−i
1 =

∑
− ℓ−s

2 ≤i≤ k+s−ℓ
2

a k−s+ℓ
2 +ib

i+ ℓ−s
2

1 = b
ℓ−s

2
1

∑
0≤i≤ k+s−ℓ

2

a k−s+ℓ
2 +ib

i
1 +

∑
− ℓ−s

2 ≤i<0

a k−s+ℓ
2 +ib

i+ ℓ−s
2

1

= b
ℓ−s

2
1

∑
0≤i≤ k+s−ℓ

2

a k−s+ℓ
2 +ib

i
1 +
∑

0≤i< ℓ−s
2

a k
2+ib

i
1 ≤ b

ℓ−s
2

1

∑
0≤i≤ k+s−ℓ

2

a k−s+ℓ
2 +ib

i
1 +

(
b
ℓ−s

2
1 − 1

)
.

By (3.3), (3.5) and the above inequality, we obtain

Ab(n) − Ab1(n) ≥ b
k−s+ℓ

2
1 − b

k
2
1 +

(
1 − b

ℓ−s
2

1

) ∑
0≤i≤ k+s−ℓ

2

a k−s+ℓ
2 +ib

i
1 −

(
b
ℓ−s

2
1 − 1

)
− 1. (3.6)

The sum on the right-hand side of (3.6) is less than or equal to b
k+s−ℓ

2 +1
1 − 1 and 1 − b

ℓ−s
2

1 is negative.
Therefore, Ab(n) − Ab1(n) is at least

b
k−s+ℓ

2
1 − b

k
2
1 +

(
1 − b

ℓ−s
2

1

) (
b

k+s−ℓ
2 +1

1 − 1
)
+

(
1 − b

ℓ−s
2

1

)
− 1 = b

k
2
1

(
b
ℓ−s

2
1 + b1− ℓ−s

2
1 − b1 − 1

)
− 1.

Since the function x 7→ bx
1+b1−x

1 is increasing on [1,∞) and ℓ−s
2 ≥ 1, the number in the above parenthesis

is nonnegative, and so Ab(n) − Ab1(n) ≥ −1.
Case 4. Assume that k and

⌊
k
ℓ

⌋
are odd. Changing the index from i to k−1

2 −
ℓ−s−1

2 − i, the second sum
in (3.3) is∑

0≤i≤ k−1
2

ak−ib
k−1

2 −i
1 =

∑
− ℓ−s−1

2 ≤i≤ k+s−ℓ
2

a k−s+ℓ
2 +ib

i+ ℓ−s−1
2

1 = b
ℓ−s−1

2
1

∑
0≤i≤ k+s−ℓ

2

a k−s+ℓ
2 +ib

i
1 +

∑
− ℓ−s−1

2 ≤i<0

a k−s+ℓ
2 +ib

i+ ℓ−s−1
2

1

≤ b
ℓ−s−1

2
1

∑
0≤i≤ k+s−ℓ

2

a k−s+ℓ
2 +ib

i
1 +

(
b
ℓ−s−1

2
1 − 1

)
.

AIMS Mathematics Volume 8, Issue 4, 9924–9932.



9929

By (3.3), (3.5) and the above inequality, we obtain that Ab(n) − Ab1(n) is at least

b
k−s+ℓ

2
1 − b

k+1
2

1 +

(
1 − b

ℓ−s−1
2

1

) ∑
0≤i≤ k+s−ℓ

2

a k−s+ℓ
2 +ib

i
1 −

(
b
ℓ−s−1

2
1 − 1

)
− 1

≥b
k−s+ℓ

2
1 − b

k+1
2

1 +

(
1 − b

ℓ−s−1
2

1

) (
b

k+s−ℓ
2 +1

1 − 1
)
+

(
1 − b

ℓ−s−1
2

1

)
− 1

=b
k+1

2
1

(
b
ℓ−s−1

2
1 + b−

ℓ−s−1
2

1 − 2
)
− 1.

Since x + x−1 ≥ 2 for all x > 0, we see that Ab(n) − Ab1(n) ≥ −1.
In any case, we obtain Ab(n) − Ab1(n) ≥ −1, as desired. This proves (i).
Next, we prove (ii). For each k ∈ N, let n = nk = b2ℓk−1

1 + 1. Then n = bℓ−1
1 b2k−1 + 1. By Lemma 2.1,

we obtain
Ab1(n) = b⌈

2ℓk−1
2 ⌉

1 + b⌊
2ℓk−1

2 ⌋
1 − 1 = bkℓ

1 + bkℓ−1
1 − 1,

Ab(n) = b⌈
2k−1

2 ⌉ + bℓ−1
1 b⌊

2k−1
2 ⌋ − 2 = bk + bℓ−1

1 bk−1 − 2 = bkℓ
1 + bkℓ−1

1 − 2.

Therefore Ab(n)−Ab1(n) = −1. Since n = nk and k is arbitrary, this shows that there are infinitely many
n ∈ N such that Ab(n) − Ab1(n) = −1. This proves (ii). Then (iii) follows immediately from (i) and (ii).
So the proof is complete. □

Since we have already got the answers to the cases when log b/ log b1 is irrational and when it is
integral, it remains to consider the case when log b/ log b1 is a rational number and is not an integer.

Theorem 3.2. Let b > b1 ≥ 2 be integers and b = b
r
s
1 where r, s ∈ N, r > s > 1, and (r, s) = 1. Then

lim inf
n→∞

(
Ab(n) − Ab1(n)

)
= −∞.

Proof. To prove this theorem, it is enough to find a sequence (nk)k≥1 of positive integers such that
nk → +∞ and Ab1(nk) − Ab(nk) → +∞ as k → +∞. We divide the calculation into three cases
according to parity of r and s, and adjust the exponents so that Ab1(n) is large and Ab(n) is small.

Case 1. Assume that s is even. Let k be a positive integer and n = nk = bs(2k+1) + 1. Since
(r, s) = 1, s is even, and br

1 = bs, we see that r is odd and n = br(2k+1)
1 + 1. By Lemma 2.1, we obtain

Ab(n) = 2bsk+ s
2 − 1 and

Ab1(n) = b
⌈

r(2k+1)
2

⌉
1 + b

⌊
r(2k+1)

2

⌋
1 − 1 = bkr+ r+1

2
1 + bkr+ r−1

2
1 − 1 = b

1
2
1 bsk+ s

2 + b−
1
2

1 bsk+ s
2 − 1.

Since x + x−1 > 2 for all x > 1, we see that b
1
2
1 + b−

1
2

1 − 2 is a positive constant. Therefore,

Ab1(n) − Ab(n) = bsk+ s
2

(
b

1
2
1 + b−

1
2

1 − 2
)
→ +∞ as k → +∞.

Case 2. Assume that s and r are odd. Since b
r
s
1 = b is an integer, we obtain by Lemma 2.2 an integer

b2 ≥ 2 such that b1 = bs
2, and so b = br

2. Since (2s, r) = 1, there exists a negative integer x such that
2sx ≡ 1 (mod r). Since the proof of Case 1 is finished, we will define a new sequence (nk)k≥1 using
the same notation. Let k be a positive integer and let n = nk = b2x(1−s)+2rk+1

1 + 1. For convenience, let
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ℓ = x(1 − s) + rk. So ℓ ∈ N, ℓ ≥ 5, and n = b2ℓ+1
1 + 1. By Lemma 2.1 and the fact that b1 = bs

2, we
obtain

Ab1(n) = bℓ+1
1 + bℓ1 − 1 = bsℓ+s

2 + bsℓ
2 − 1. (3.7)

Next, let y = s(2ℓ+1)−1
r . By the definition of ℓ and x, we have

s(2ℓ + 1) = 2sx(1 − s) + 2srk + s ≡ 1 (mod r).

Therefore y is a positive integer. Since s(2ℓ + 1) − 1 is even and r is odd, we see that y is even. To
calculate Ab(n), we write

n = b2ℓ+1
1 + 1 = bs(2ℓ+1)

2 + 1 = bry+1
2 + 1 = b2 · by + 1.

So b2 is the leading digit in the b-adic representation of n. Since y is even and b = br
2, we obtain by

Lemma 2.1 that
Ab(n) = b

ry
2

2 (1 + b2) − 2 = bsℓ+ s−1
2

2 (1 + b2) − 2. (3.8)

From (3.7) and (3.8), we obtain

Ab1(n) − Ab(n) = bsℓ+ s
2

2 B + 1, where B = b
s
2
2 + b−

s
2

2 − b−
1
2

2 − b
1
2
2 .

Since the function x 7→ x + x−1 is strictly increasing on (1,∞) and b
s
2
2 > b

1
2
2 > 1, we see that B is a

positive constant. Therefore, Ab1(n)−Ab(n) = bsℓ+ s
2

2 B+1→ +∞ as ℓ → +∞. Since ℓ = x(1−s)+rk ≥ k,
we see that Ab1(n) − Ab(n)→ +∞ as k → +∞. So the proof of Case 2 is complete.

Case 3. Assume that s is odd and r is even. This case is similar to Case 2 and we only need
to modify some calculations. Again, we have b1 = bs

2 and b = br
2 for some integer b2 ≥ 2. Since

(2r, 2s) = 2 and 2 | 1 − s, there exists a positive integer k such that

2sk ≡ 1 − s (mod 2r). (3.9)

In fact, there are infinitely many positive integers k satisfying (3.9), so we can choose k to be arbitrarily
large. Let n = nk = b2k+1

1 + 1. By Lemma 2.1 and the fact that b1 = bs
2, we obtain

Ab1(n) = bk+1
1 + bk

1 − 1 = bsk+s
2 + bsk

2 − 1. (3.10)

Next, let y = s(2k+1)−1
r . By (3.9), we have s(2k + 1) = 2sk + s ≡ 1 (mod 2r). Therefore 2r divides

s(2k + 1) − 1, and thus y = 2
(

s(2k+1)−1
2r

)
is an even positive integer. To calculate Ab(n), we write

n = b2k+1
1 + 1 = bs(2k+1)

2 + 1 = bry+1
2 + 1 = b2 · by + 1.

By Lemma 2.1, we obtain

Ab(n) = b
ry
2

2 (1 + b2) − 2 = bks+ s−1
2

2 (1 + b2) − 2. (3.11)

From (3.10), (3.11) and a similar reason as in Case 2, we obtain

Ab1(n) − Ab(n) = bks+ s
2

2

(
b

s
2
2 + b−

s
2

2 − b−
1
2

2 − b
1
2
2

)
+ 1→ +∞ as k → +∞.

This completes the proof. □
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4. Conclusions

Let us record all related results that we obtained as follows.
Summary of the results:
Let b > b1 ≥ 2 be integers. Then, the following statements hold.

(i) If log b
log b1

is not an integer, then,

lim sup
n→∞

(
Ab(n) − Ab1(n)

)
= +∞ and lim inf

n→∞

(
Ab(n) − Ab1(n)

)
= −∞.

(ii) If log b
log b1

is an integer, then,

lim sup
n→∞

(
Ab(n) − Ab1(n)

)
= +∞ and lim inf

n→∞

(
Ab(n) − Ab1(n)

)
= −1.

(iii) Ab(n) − Ab1(n) has an infinite number of sign changes as n→ ∞.
(iv) If sb and sb1 are the sums of the reciprocal of palindromes in bases b and b1, respectively, then sb

and sb1 are finite and sb > sb1 .

The statements (i)–(iii) come directly from [1, Theorems 11 and 12], and Theorems 3.1 and 3.2 of
this article. The finiteness of sb and sb1 in (iv) is given by Shallit and Klauser [16] and the inequality
sb > sb1 is obtained from [17, Theorem 3].

Now that for all cases we have obtained results for the comparison between the number of
palindromes in two bases, it is natural to extend this to more than two bases. So let k ≥ 2 and
b1 > b2 > · · · > bk ≥ 2 be integers. Let c1, c2, . . . , ck be any permutation of b1, b2, . . . , bk.

Question 4.1. Does the inequality Ac1(n) < Ac2(n) < · · · < Ack(n) hold for infinitely many n ∈ N? We
conjecture that if log bi/ log b j is irrational for every distinct i, j = 1, 2, . . . , k, then the inequality holds
for infinitely many n ∈ N. What are the answers when one of the following situations occur?

(i) log bi
log bi+1

is integral for every i = 1, 2, . . . , k − 1;

(ii) log bi
log b j

is rational but not integral for each distinct i, j;

(iii) The set
{

log bi
log b j

∣∣∣∣ 1 ≤ i < j ≤ k
}

contains both an irrational number and a rational number.
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