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1. Introduction

The concept of the boundary layer was first proposed by Ludwig Prandtl in 1904 ( [19]). For the
incompressible viscous fluid satisfying the non-slip boundary condition, Prandtl obtained a degenerate
parabolic equation coupled with the elliptic equation, namely the famous Prandtl equation, to describe
the fluid motion in the boundary layer.

Since Prandtl boundary layer theory was put forward, many mathematicians have devoted them-
selves to establishing its mathematical theory (cf. [2, 3,5, 7-9, 17, 18, 23, 25, 27, 29-31, 34-36]).
Oleinik [17] performed the first rigorous mathematical systematic work by showing that under the
monotonic condition of the boundary normal tangential velocity field, local well-posedness of the
Prandtl system can be proved in two-dimensional by using the Crocco transformation. This well-
posedness result was also obtained in the Sobolev spaces by using energy method (cf. [1, 16]). The
key ingredient in the proof is a nonlinear cancellation mechanism that can be used to eliminate the
problematic terms in the equations.
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Without the monotonicity condition, Caflisch and Sammartino [21,22] established the local well-
posedness in the framework of analytic functions. If the initial data is neither monotonic in the normal
variable nor analytic, E and Engquist [4] constructed a finite time blowup solution to the Prandtl equa-
tions. See also the instability results of Gérard-Varet and Dormy [6]. Recently, there are also many
important studies on the boundary layer problem for some more complex fluids, such as the MHD sys-
tem and viscoelastic equations. Interested readers can refer to [11-15,20,24,32,33] for more details.

In reality, most fluids have thermal conductivity, so the study of heat-conducting viscous fluid has
important theoretical significance and application background. The main object of this paper is to
establish the local well-posedness of the thermal boundary layer equations for two-dimensional in-
compressible heat conducting flow with non-slip boundary condition. Namely, we will consider the
following system in the two-dimensional half space Q := T X R* = {(x,y) | x e R/Z,0 < y < oo}

Ot + udu + voyu = Ohu — 0,P — (0 — 0. ,

0,0+ ud,0 +v,0 = 320 + (dyu)

O+ 0, =0,

u(t, x,y) li=0= uo(x,y), 0(t, x,¥) li=o= Oo(x, y),

l/l(t, X, )’) |y:0: Oa V(t, X, y) |y:0: 09 aye(t9 X, J’) |y:0: Hb(ta .X),
lim u(t,x,y) = U(t,x), lim (¢, x,y) = O(t, x),
y—=+00 y—+eo

(1.1)

where (u, v) is the velocity field, and 6 is the absolute temperature. The U(t, x), O(¢, x) and P(t, x) are
the traces at the boundary {y = 0} of the tangential velocity, temperature, and pressure of the outer
inviscid flow with heat conduction, respectively. The reference temperature 6, is assumed to be a
positive constant in this paper. The states U, ®, and P are interrelated through

{@U + U U =-0,P-(©-6.),

(1.2)
8,0+ Ud,0 = 0.

The mathematical theory of the thermal boundary layer equations was first studied by Wang and
Zhu in [26], where they proved the local existence and uniqueness of solutions under the assumption
of analyticity. In [28], they also proved finite time blowup of the solutions if the monotonic condition is
violated. On back flow of boundary layers in two-dimensional unsteady incompressible heat conduct-
ing flow be studied in [29]. Recently, Liu, Wang and Yang [10] developed energy method to prove the
well-posedness of a viscous layer problem when the tangential velocity is monotonically increasing in
the normal variable. In this paper, we are going to show the local well-posedness of the system (1.1)
in Sobolev space under the monotonic condition. This extends the Oleinik local well-posedness theory
to the thermal boundary layer equations.

To state the main result, we first introduce some notations and the function spaces in which the
initial-boundary value problem (1.1) will be solved under the strictly monotonic assumption on the
tangential velocity in the normal variable

w = Oyu > 0.

First, C 1s a genetic constant which may change from line to line throughout this paper. We denote the
tangential derivative operator by

& =09, B=(Bp) N,
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and the full derivative operator is given by
:6)‘?0;1’ a = (ﬁam) = (ﬁlaﬁ2am) €N3'
We also use the following notations
er =(1,0), e =(0,1),

and
E, =(1,0,0), E,=(0,1,0), E3=(0,0,1).

Second, H*(Q2) and H*(T) is the usual Sobolev space on spatial domain Q and T respectively. We
also define the weighted Sobolev space H*Y(Q2) by

sy 1= > oy Do,

lal<s

LX)

with u(z, x,y) : [0,T] x Q — R and
m=1+y
Finally, we set § = § — © and define the space H;g for (w,0) : [0,T] x Q — R by

Hj = { ‘Il(w Dllrr < o0, (Y0 26, ) |67 D"(w,0)] < —} (1.3)

l|<2
withs > 6,y > 1,u>y+ % and 6 € (0, 1).

Remark 1. 1 The condition u > y + l is indispensable for the definition of the space H >7. Actually,
ifu<vy + %, one can check that H”” s is an empty set. For example, taking u =y = 1,a = 0, we find

that ||(y)w|| 2 < 00, {y)w > 0, |<y)a)| < (—5 can not hold at the same time. The same hypothesis is also

explained by Masmoudi and Wong (see Remark 2.1 in [16]). The reason for introducing the weighted
Xw 90 Pw 920

b b

space H”” .5 IS 10 give the control of terms like =

Before state the main result, we assume 6, = 0 throughout this paper for the sake of simplicity. We
claim that the result still holds if we have a non-trivial 6,. Moreover, it is easy to find that the vorticity
w satisfies

0w + udw + voyw = 6§w - 0,0. (1.4)

Now, we are ready to state the main results of this paper in the following theorem.

Theorem 1.2. Given any even integer s > 6, real numbers y > l,u > vy + %,6 € (0, 1), assume the
following conditions on the initial data and the outer flow U and ©:

i) The initial data uy — U € H*""Y(Q) and (w,, 6,) € H;g(S Here, the time derivatives of the initial data
is expressed by solving equation (1.1) and (1.4) repeatly for 0*(w, ) and substituting the initial data
into the result, for example:

at(x)o = —[uo(?xwo + Voaywo - 6)2/(1)0 + 8y00], (15)
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with vo = — foy 0 updy.
ii)The outer flow U and ® is supposed to satisfy

s
5+1

sup Y 191(U, Oy < +eo.
" =0

Then there exists a time T = T (s, v, 0, ||(wo, 00|z, U, ®) > 0 such that the initial-boundary value
problem (1.1) has a unique classical solution (u, v, 0) satisfying

u—UeL*(0,TLH)NC(0, T H® —w),

and
(8yu,0) € L=([0,T]; H,j’g) NC0,TI;H’ —w),

where H® — w is the space H* endowed with its weak topology.

Remark 1.3. Ifthe Dirichlet boundary condition for temperature is given, some boundary terms cannot
be handled in the proof. In this paper, we give the Neumann boundary condition to the temperature 0
and it is interesting to investigate the Dirichlet boundary condition case. Another interesting question
is how to extend the results to fractional problems.

Remark 1.4. We assume s > 6 in Theorem 1.2 mainly because we need to derive the uniform upper
bound and lower bound of the solutions, and s needs to be an even number. Moreover, we didn’t get
the result similar to (5.3) in [16], so we need to assume s > 6 to get our results.

Remark 1.5. From the definition of H;Z;, we can see that both the vorticity and the temperature enjoy
some decay properties with respect to (y) at the far field y = +oco. We refer to Appendix C of [16] for
more details about the far-fields behavior of the vorticity, and the decay rates of the temperature can
be obtained similarly.

Let us briefly describe the strategy of the proof of our main theorem. As mentioned earlier, we will
use the energy method developed by Masmoudi and Wong [16] to prove the local well-posedness of
the thermal boundary layer equations. To do this, we first need to construct a regularized system by
adding the viscous terms £0%u and £6%6 to the original equations. This will make the system no longer
degenerate and the local existence of the regularized system can be established by using the classical
local well-posedness theory of the hyperbolic-parabolic system. Next, to construct local solutions of
the original system, we will derive the uniform-in-& estimates of the solutions to the regularized system,
which is the main part of this paper. The uniform estimates are divided into two parts. The first part is
the weighted L? estimates on D%(w, 0) with || < s,|8] < s — 1 and the second part is to get the estimate
of & (w, d) with || = s.

Different from classical Prandtl equations [16] where only spatial derivatives of the solutions need
to be estimated, here we give the control of both spatial and time derivatives of the solutions, because
the time derivatives of 6 will be involved in estimating the boundary integral fT 0,D*wDwdx (see
Lemma 3.3 for example). Similarly, the control of d*w is also needed when we encountered with the
boundary term fr ayD“éDaédx. However, estimating D?(w, ) will bring us new difficulties when we

have the term fTayD“wDawdx with |a| = |(81,0,m)| = s and m = 2k + 1 is odd. Since there are no
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x-derivatives here, we can not use integrating by parts to reduce the s + 1 order derivatives which will
prevent us from using trace estimate to estimate the boundary term. The remedy is to replace Ggl“w
and 07w by using the equations repeatedly to get

f 8,0 wD W), = f P10, - 22) " w+QIP (0, - £&) @.P-0)+ Py,
T T

where P, and @ are low order terms. Now, as we already have x-derivatives in the above boundary
integral, we can use integrating by parts and the trace lemma to control it.

The estimate of 8)3((60, 6) mainly based on the nonlinear cancellation method invented in [16]. Here
we note that we only need the monotonic assumption on the tangential velocity « in the normal variable
but have no restrictions on the absolute temperature . With the uniform estimates of the solutions, we
show that the solutions of the regularized system actually exists in a time interval [0, 7] independent of
&. Moreover, we can use the Aubin-Lions lemma to extract a solution sequence and prove that the limit
of this sequence is the solution of the original thermal boundary layer equations. Thus the existence of
the local solution is constructed. Finally, the uniqueness of the solution is also proved by the energy
estimate.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries. In
Section 3, we first introduce the regularized system (3.1) and the regularized vorticity system (3.3) in
order to construct the approximate solutions. Then we give the uniform estimates of the solutions. The
local-in-time existence and uniqueness of the solution to the initial-boundary value problem (1.1) will
be proved in Sections 4 and Section 5 respectively based on the uniform weighted estimates derived in
Section 3. The proof of some useful inequalities and the derivation of some equations will be given in
the Appendix.

2. Preliminaries

In this section, we introduce some notations and collect some preliminary results which will be used
in the rest part of this paper.

As the Prandtl system, the key point for obtaining the energy estimates of solutions is to eliminate
the terms vo,u and vd,6 appeared in the first and the second equations of (1.1) respectively. Recalling
that in [10] (see also [1, 16] for a similar transformation), the authors introduce w = ay(ﬁ) and

0=6- %u. Here a little different from [10], we define

1

0yw . 0,
gp = Ow - 7<9§(u -U),  hy:=080- Uaﬁ(u - V),
then we can introduce a weighted norm for the vorticity

ooy = D10V 8allraey + X 107 D@2 2.1)
Bl=s lal<s

|Bl<s—1
and a weighted norm for the absolute temperature

18Oy = D 0 sl + D, I DB o 2.2)

=5 la|<s
|ﬂ| |Bl<s—1
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Obviously, the main difference between norms || - ||gsxq) and || - || H;”(Q)a” || HY(©@ is that the weighted

L2 norm of & w and & with || = s is replaced by that of gg, hs. As we will see later, by estimating
the weighted norms (2.1) and (2.2) of the solutions, we can avoid the loss of x-derivative through a
delicate nonlinear cancellation.

Moreover, similar to those in [16], one can show that [|w||gsvq) and ||w|| (@) are almost equivalent.

That is, for any (w, 0) € H/%(Q)’ there exists a positive constant C such that
C Nl < lwllsy + I = Dllgsrr < Clwllgsr + 107 UI12), (2.3)
and
11152 < ClBllgz2> + Nwllzgyr + 135 Ull2).- (2.4)

Remark 2.1. Although hg is similar to gg in form, the weighted norm lall Y does not share the almost

equivalent relationship with the norm 6]lv. However, the above inequality (2.4) is enough to solve
the problem.

Next, let us introduce several useful inequalities which will be frequently used in this paper. We
omit the proofs of these inequalities for the sake of simplicity and interested readers may refer to [11]
and [16] and the references therein for more details.

Lemma 2.2 (Hardy type inequality). Let u : Q — R. Then
0)ify> —% and lim u(x,y) = 0, we have
y—+00

2
1Y ull@y < 5= 107 Oyl

i) ify < —%, we have

1 2 .
|mwwmms\F5:7wmmw®—5:jmw“aﬂb@.

Lemma 2.3 (Sobolev type inequality). Let u : Q — R. Then there exists a positive constant C such
that

sy < € (Illlziay + 19:tdllz2cy + [[02] 1)

Lemma 2.4 (Trace estimate). Let u,v : Q — R. If lim (uv)(x,y) = 0, then
y—+o00

' f (uv)ly=odx
T

Lemma 2.5 (Aubin-Lions). Let Qy C Q C Q be three Banach spaces, with compact embedding
Qo C Q and continuous embedding Q C Q,. Let p,q > 1, then

= ”‘9)’””3(9) IVll2@) + el 2 ||‘9y"||L2<Q> :

L7([0, T1; Qo) N H"([0, TT; ),

is compactly embedded into LP([0, T]; Q).
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Finally, we also need the following lemma which will be used to control certain L? and L* norms
of u, v, w, 0, 8, hg and their derivatives in terms of the weighted norms [|w(z, -)| Y and ||6(¢, || Y The

proof of this lemma is given in the Appendix A.

Lemma 2.6. Let the vector field (u,v) defined on Q satisfy the condition d.u + d,v = 0, the Dirichlet
boundary condition uly—y = v|y—o = 0 and lim u = U. If (w, ) e H;g for some constants s > 6,y >
y—+00 i

Lu>y+ % and 6 € (0, 1), then we have the following estimates:
A) Weighted L? estimates.
(i) Forall|B| =0,1,---,s,

Ky ™' & = U)ll> < Cllwllgsr + 107U 2).
(i) Forall IB| = 0,1,--- ,5s — 1,
1)~ @y + Y3 Ul < Clwllgzr + 10 UI2).
(iii) For all |B| < s,

Cllwllysr +112Ull2) — if 1B = s,

K" Doz < .
"7 Cllwlly if1Bl # 5.

and
C(Iléllﬂy + llwllgs> + ||6§U||L2) if 1Bl = s,

Ky " DPO)2 < - .
ClIBllo if 1Bl # s.
(iv) Forall Bl =1,2,---, s,

Cllwll +15Ul)  ifBl<s—1,

Y <
WWgAu—{quy i 1Bl = s,

and

Clbll + ol +185UN2)  if 1Bl < s -1,

Y hgllie <47 )
S ol /P if 1Bl = s.

B) Weighted L™ estimates.
(v) Forall 1B =0,1,--- ,5s—1,

[13ulls < Cllwllgs> + 11U L2).
(vi) For all Forall |B| =0,1,--- ,5 =2,
1)~ Evlle < Clllwllgyr + 13U + 1),
(vii) For all |a| < s — 2,

1Y " Deolly < Cllwllysr, 10" DBl < Cllfllyer.

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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3. Uniform estimates to the regularized system

In this section, in order to prove the local-in-time existence of the initial-boundary value problem
(1.1), we consider the following regularized equations for any € > O:
Ou® + u0u’ +v°ou° = 826)26148 + 6§u8 -0.P°—(¢°-0,),
00 + UP0,0° +1°0,6° = £2056° + 026° + (),
Ou® +0,° =0,

€ & 31
W) o= to(xy), (%) o= Bo(x. ), G-b
ug(t’ X, y) |y=O: 0, Vg(ta X, y) |y=0: 0, aygg(l(’ X,y) |y:0: 0,

lim u®(t, x,y) = U®(t,x), lim 6°(¢, x,y) = O°%(t, x).
y—=+00 y—+too
The states U® and P? are interrelated through
0,U? + U*0,U° = &*0°U* — 3,P° — (©° - 6,,),
5 (3.2)
0,0° + U?0,0° = g°0,0°.

By a direct calculation, we find that the regularized vorticity w® := d,u® and §° = ¢° — ©F satisfies the
following regularized system

0,0° + U0, w* +1V°0yw° = ezaiws + 05608 - 0,6°,
08 + U007 +1°0,6° = E2050° + 020° + () — 16,07, (3.3)
6yw8 |y:0: axP‘E - (98 |y:0 _Qoo)’ ayég |y:0: 0.

Here, the velocity field (u®,v?) is given by

+00 Y
u®(t, x,y) = U — f w’(t, x, y)dy, Vet x,y) = —f 0u’(t, x, y)dy.
y 0

Now, the regularized system (3.3) constitutes a hyperbolic-parabolic equations. For any fixed € > 0,
the well-posedness can be established in a standard way. Actually, we have

Lemma 3.1 (Local Existence of the Regularized Equations). Let s > 6 be an even integer, y > 1, >

y+3i6€ (0, %) and € € (0, 1) . If (wo, ) € H;Esz’y, then there exist a time

T :=T(s,y,0,& wo, b, U,0),

and a solution

£ fe . sty . Iys+2,
(w®,6°) € C(I0, T]; Hy ") N C([0, T1; H2),

to the regularized system (3.3). Moreover, the velocity (u®,v®) and the absolute temperature 6° satisfy
the regularized system (3.1) as well.

By Lemma 3.1, we have obtained the local existence of solution in [0, 7] which depends on
(s,7,0,wo, 0y, U,O) as well as the parameter € > 0. To get a solution in a time interval indepen-
dent of ¢ for the original system, we need to derive the uniform-in-& estimates of the solutions. From
now on, we omit the superscript € of the solution for the sake of simplicity.
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The proof of the uniform estimates will be divided into four parts. First, we will give the weighted
estimates of D%(w, f) with |a| < s and |8] < s — 1 in Subsection 3.1. Then we study the estimates of
Dﬁ((u, 6) with |8| = s in Subsection 3.2. In Subsection 3.3, the weighted H* estimates of the solution are
obtained by combining the estimates in the last two parts. Finally, to ensure that our solution belongs
to the function space H;zy, we also need to deal with the L™ estimates of the solution and this will be
given in Subsection 3.4.

3.1. Weighted L? estimates on D*(w, 0) with |a| < s, Bl <s—1

The main goal of this part is to prove:

Theorem 3.2. Let s > 6 be an even integer, y > 1,u >y + %,5 €(0,1),and e € (0,1]. If

(@,8) € C10, TL: H,57) 0 C' (0, T Hy 3

0 w7

and (u, v, w, 0) solves (3.1) and (3.3), then we have

d ~ -
= 2 Iy D @, B, ~ & ) 16,5001,

o .
- 1 =
<= 3 IOV @ DI~ 5 D )00 @, DI

lal<s lal<s

e 1BI<s—1
-2 2 2
+ C(+ ol Nl + Cliwllr + 107Ul + Dllwll
s/2

[ 2 n2 2
+C D NDP ey + Cllollgg 181,05 + Cllolly Bl
=0

+C(1 + ||9||H,;W)s_2||9||§,;y + Cllwllgyr + 15Uy + l)lléllzz,y
+ Cll37 Ol (lwllgs + 1 Ull2er) 16l

where C is a constant independent of € and t.

(3.4)

Proof. Applying the operator D* = 8?8;” for @ = (B,m) = (By,B2,m) with |a| < s,|6] < s — 1 to the
equation (3.3),, (3.3),, multiplying by (y)?*?"D%w, (y)***?" D@ respectively, then integrating over Q,

we have

1d
2dt

AIMS Mathematics

[0y Dewlf), = & f W ED WD w + f WP D WD w
Q Q

- f (yy v (u@xD”w + vayD"a)) Dw — f 7" D*wd, D8
Q Q

- Z ( ) f (y)2r+2m (D‘TuaxD“—“w+D‘fvayD“—“w) Dw
Q

(07
O<o<a g

= ZSJ Ji,
i=1

(3.5)
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and
1d

mimnan 2 m AT n P
§E||<y>y+ D[, =& f<y>27+2 8:D"6D 9+f<y>27+2 G2D*ID" ]
Q Q
- f 372" (40, D8 + vd,D"G) D8
f YY" (D7ud, D78 + D"vd,D""§) D"
Q

- 3.6
f<y>2)/+2mD0'wDa—0'wDag ( )
Q

|
| I
| |M| ©
S R QS 2 9 R

f<y>2y+2mD0'ﬁaxDa—<r®Daé
Q

Now, we will give the estimates of J; and K; as follows. First of all, for Ji, it holds that

2

I == oy D]

where an integration by parts in the x-variable is used. For J;, utilizing integration by parts in the
y-variable, we have

5 = = [0y e, D, - 2y +2m) f G, DD  w + f 0,D"wD"w
Q T

y=0
- _ ||<y)7+’"8ny’w||i2 + 5+ J;5.
Clearly, J, can be controlled by using the Cauchy inequality

1 1
5y < 7 lorapral, + ¢ oy ool < 7 [0y a0, + Clll,.

However, the estimate of the boundary integral J; is very complicated. To handle it, we need to
introduce the following lemma and the proof of this lemma is given in the Appendix B.

Lemma 3.3. (Reduction of Boundary Data). Under the hypotheses of Theorem 3.2, we have

Oyw| _, = 0xP = Oly—g + bcs,
Pol  =(6,- 2@ P P S
yw|y:0 = ( ,— & x)( P = 0=0) + wi wly— + y9|y:0-
Forany2 < k < 3, we have
k
B wlymy = (9, = £°0%) (0P = Oly=0) + Pilyo, (3.8)

where Py denotes a polynomial
Pr = PIDjy<oe 1@ Dy (0:P, 0)].
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Now, we claim that

1 m (02 2 §—
; <g oy oD, + € + ol el

5/2 3.9
+ ClAIE, +2* ) 10,0501, + CZ 100 P,
1BI=s

We prove the above claim in two cases |a| < s — 1 and |@| = s. When |a| < s — 1, we find

f 0,D*wD"w
T

2
< 18y D wll2|ID wllz2 + [16yD ]2 10y D wl| 2
y=0

1
§||02D“w|| + C(ID*wll7, + 16,Dwl[>.)
1
< SI8D Wl + Cllwl.
While when |a| = s, we must have m > 1 since |5] < s — 1. Two cases need to be considered here.

Case 1: m = 2k is an even number.
In this case, we can use Lemma 3.3 to obtain

f 8,D*wD"wly— = f D wd’ (a,—ezai)k (0.P—0) + f D wPyly0.
T T T

Therefore, applying the trace estimate in Lemma 2.3 and the Cauchy-Schwarz inequality to the above
equation, we get

1 o
< glloy Dol + a1 + ol ol
s/2 (3.10)
CIBIE +&* )" 10,8, + CZ 100 P,
1Bl=s
Case 2: m = 2k + 1 is an odd number.
In this case, since s is even, we have |5] = || + |B2| > 1.
(1) When 3, > 1. Using integration by parts in x, we have
f dyD*wD" wdxly—o = — f D* 5 wh, D wdxl . (3.11)
T T

Now, the term d,Dwly=p = 6§+828§’"“wly:0 has an odd number of y derivatives. Hence, we can apply
Lemma 3.2 to reduce the order of the right hand side of (3.11). Similar to the Case 1, we can further
apply Lemma 2.4 to eventually obtain the following estimates:

1 2
2 1 —E>+E -2 2
Ly =g oy DB Bl + OO+ wllgg) il

5/2 (3.12)
+ ClIE, + & 16,0785 + cz 101D Py
1Bl=s
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(2) When g3, = 0. There is no derivative of x here, so we cannot integrate by parts with respect to x
directly. However, we can substitute the y—derivative of w by using Lemma 3.3 and

k+1
8§k+2w = (Gt - 82(9)%) w+ Q,

which is obtained by applying d;* to (3.3), and @ is a polynomial of D*(w, §) with |a| < 2k + 1. This
substitution gives us the derivative with respect to x, so we have
fayDa(UDawly:O — fa[ﬁlaik+2wafla§k+lw
T T
_ f #1(0 - 0) " w0+ QI (3, - £5) @.P—0)+ Py,
T

The difficulty lies in the term £%*2 [ 1022w (9,- £20%)X(0,P—0), since the others can be estimated
directly by the trace estimate. Integrating by parts with respect to x, we have

f 0%+ (9, — 202 (0P - 0) = — f 1071w (8, — 202 00 P — 0). (3.13)
T T

Now, the order of the derivatives of (w, 6) in (3.13) is no larger than 8, + 2k + 1 = s, so we can further
apply Lemma 2.4 to eventually obtain the following estimates:
m (0% 2 S—
I3 < 2 |ly 0, D[, + (1 + wlly) llwll,
5/2 (3.14)
Zi2 2 Zi2 ! 2
+ ClAI + & D 1081 + C D N0OPI oy

Bl=s =0

oo =—

Thus, combining estimates (3.10), (3.12), (3.14), we prove (3.9). As a result, J, can be estimated as

1 m a 2 S—
hr <= S [[oy a0l . + €A+ lwllgg)y el

s/2
+ ClI + & ) 18,0515 + C D 10} OPI sy
1Bl=s 1=0

For the term J3, we can use integration by parts and the equation d,u + d,v = 0 to get
Jy = — fg (y)Hrram (uaxD“w + vé?yD“a)) Dw = 2y + 2m) fg; WYy V(DY w)?
< Cllwllgzr + N Ul ey + 1)||wlli,;.y.
Next, we can estimate the term J4 by using Cauchy-Schwarz inequality directly:
i == [ P 0,00 < YO, + ol

Finally, we will show the estimate of

== (Z) fg Y72 (D7ud, D" w + DVvO,D" " w) D*w 1= Ji + J3,
O<o<a
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where o = (7, m) = (071, 05, m). For J}, we have two cases:
Case 1: m =0, and |6| < s — 1. Here we have

[ orrem g B onte < Joul,. oy 0 Bl o Dl

(3.15)
< Clllewllgs> + IIGfiUIILzm))IIwIIﬁ,;y.
Case 2: m > 1. In this case, by Lemma 2.4, we find
f <y>27+2m DauaxDaf—a'wDaw < ||<y>7+m DO-_E3CL)DQ_O-+E2CU||L2 ||<y>)’+m Daw”L2
Q (3.16)
< Clllewllgs> + ”6§U”L2(T))”Q)H§I;y-
While for .152, we need to consider the following four cases:
Casel: m=0,05, =s5—1,
f <y>2y+2mDa'vayDa—a'wDaw
Q
< ClIY) @V + yE U)oy " Dol ) " DT Bl BT
< Cllwll + 1 Ulla)lwl-
For the other three cases, by using d,u + d,v = 0 and Lemma 2.4, one has
Case2: m=0,05 < s-2,
J; < Cllwllgr + ”8§U”L2(T))”w”i[§~7- (3.18)
Case3: m =1,
J; < Cllwllgr + ||(9§U||L2<T>)Ilwllf,§.y- (3.19)
Cased4: m <2,
J5 < Cllwllyyr- (3.20)
Combining estimates (3.15)-(3.20), we get
Js < Clllwllgsr + 10Ul 2ry + l)llwllf,;y- (3.21)

In the following part, we will give the estimates of the right-hand side terms of (3.6). First, for K, it
directly follows from an integration by parts in the x-variable that

Ki = =&’ |y)"*" 9. D07, (3.22)

Integrating by parts in the y-variable in K,, we have

K> == [Ky)*"8,D"0|I;, — 2y + 2m) f )7+ 19,D*0D"6 + f 8,D*0D"0),-o
Q T (3.23)

== [Kyy*"0,D°8l7, + K, + K.
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Here K can be controlled by the Cauchy-Schwarz inequality
1 ~ ~ 1 ~ -
K, < ZIKy)”m(?yD“@IIiz + CllKy) " D8I}, < ZII(y)”’"(?yD“@IIiz +C ||9||§,Z,y. (3.24)

Similar to the estimate of J3, the boundary integral K7 is controlled in the following two cases: |a| <
s — 1 and || = s. When |a| < s — 1, we can use the basic trace estimate directly to control K§ since the
order of the derivatives in the boundary integral is no larger than s. While for the case |a| = s, we have
to appeal to the boundary reduction argument as before. Actually, we have the following lemma.

Lemma 3.4. (Reduction of Boundary Data). Under the hypotheses of Theorem 3.2, for any 2 < k <
we have

%
6§k+1é|y:0 = 7_{/(9
‘H; denotes a polynomial, and
Hi = H[Djpyenp_y w, D|7;r|§2k(é’ ©)].
The proof of this Lemma is based on an elementary use of the original equation (1.1), so we just

omit it. With this Lemma, we can give the estimate of K3 in a similar fashion with J;. By direct
calculations, one has

K < %I|<y>7+m5yD“9IIiz +C(1+ |I9IIH;’V)S_2||9IIZ;W +C IIwIIﬁ,;,y- (3.25)
Collecting the estimates (3.23), (3.24) and (3.25), we obtain

K, < —%H(y)”m@yD“@IIiz +C(1 + ”é”H;”)S_z”é”lquW + Cllwllég,y.
For K5 we have

Ky=— fg (yy2riom (uaxpaé + v(in“é) D0 < Clwllgsr + 13Ul + 1)||é||§12,y.
The estimate of K is similar to J5. Namely, we can use a similar strategy to get
Ky < Cllollgyr + 10U 2y + 1)||9||12L,;,y-
The term K5 can be estimated by using Lemma 2.6 directly:
Ks<C IIwIIf,;yllélly,j%

Similarly, K satisfies
K¢ < C||6§+ez®||L°°(||w||H§’7 + ”6/€U”L2(T))”é”H;’7-

Finally, putting all the above estimates of J; and K; into (3.5) and (3.6), we can obtain the desired
estimate (3.4). This completes the proof of Theorem 3.2. O
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3.2. Weighted L* estimates on gg, hs with || = s

In this subsection, we will derive the weighted L? estimates on gg and hg by using standard energy

method. We need to derive the evolution equations of gz and hj first.

Leta = 6‘%’ ,b= %’9, then after a tedious but straightforward calculation (see Appendix C), we have

0
(0, + udy + v, — 0% - Bi)g,g = 282(0B+6217t -

+ —(9Bu ab&Bu — Z (ﬁ)&g Bugﬁ+ez

0<B<B

va Y, (Jortevdta

O<ﬁ<ﬁ

a +2gp0,a — gezﬁ)'iU

and

@ + ud, + vy — £ — hy = 267 (a§ @ {) d.b — d,(ab)d’i

o

d P w
— he,U — b*Fit - a%éﬁﬁ + b%&ﬁa
= 20,wdit + 200wd,b + 0,01

- Z (ﬁ)aﬁ Puhg,., + b Z (ﬂ) Iy

0<B<pB 0<B<B
- Z (ﬁ)@ﬁﬁ 88B6 b(’)ﬁw) ('))B(a)z
0<B<B
woora- Y, (Fortudiae.
0<B<B

Theorem 3.5. Let s > 6 be an even integer, y > 1,u >y + 5 1.6€(0,1), and e € (0,1]. If
(w,8) € C([0,T); H,;"") N C'([0, TT; H ),
and (u, v, w, 0) solves (3.1) and (3.3), then we have

35S o s ol + S = S oy autga holl + > Do astes ol
B=s B=s 1BI=s

< Clllwllgyr + 13Ul + Dllwllggr + 107 Ullescrplillgs + CINFOPll 2
+ Cllllggr + 13 Ullsery + DAlwllggr + 137 Ul Bl

+ C(I Ul o) + |Iﬁ)’?“z@IIim(T))(llélli,;y + Ileli,g,y)

+ C(llwllgyr + N1 Ullscr) + 1)|I9II§Z.7.

where C is a constant independent of € and t.

(3.26)

(3.27)

(3.28)
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Proof. Multiplying the equation (3.26) by (y)* gp and integrating the resulting equation over 2, we
have

e T f Y Psgs + f Y P gsgs - fQ P (udgs + v0,25) 85
W
+2&° L(y}zygﬁ (G)B(J'ezﬁ— " 8§u) 8xa+2fs;(y)2"g§8}a
2 2 6§é ~ 2 ~
— f ()78p8e, U + f »” Ygﬁ—ﬂﬁu— f () gpabdii

-, (ﬁ) f 0 850 Pugpee — (ﬂ) f ) 80" Py (0,0 w - adlw)

0<B<B 0<B<B

va (B) f ) g P U - f )7 85080, + f ()7 g5

0sp<p
13

; Oyw o
where g; = (9;((,«) — Tax(u - U).
Then we shall estimate L; term by term as follows. It directly follows from an integration by parts in
the x-variable that

L= -& ||<y>y8xgﬁ||iz .

Integrating by parts in the y-variable, we have

Ly = = ||V dy84],. - @) fg P '0,8585 + fT 0,8585 = [0V a8, + Ly + 13 (3.29)
-

L, is controlled by the Cauchy inequality

Ly< < ||<y>76ygﬁ||Lz +C oy e, < 3 ||<y>76ygﬁ||Lz + Cllwllz. (3.30)
For the boundary integral L2, a direct calculation yields
: O w

oyw ,_ _ojw Oyw _, _0;
0,8p = Gy(ﬁﬁw - yj(?ﬁu) = Bfiﬁyw - %uyj - a(é}‘;w - }jé}ﬁu) =0,0,w — 8§u}7 —agg. (33D

This combined with dywly—g = P — 6l,—¢ + 0 and ul,—y = 0 gives

2

w
— A —
0,85l = (0. = B0 + 0) + KU~ . (agﬁ)L:O. (3.32)
Substituting (3.32) to L and using Lemma 2.4, we get
0w
L= fgﬁ [aﬁ (0.P—0+6,)+ a‘;Uy— - agﬂ)
T y=0 (3.33)

1
<~ oy a,gll.. + ||<y>ya Bglly2 + I, + Clllr (1 + 18U ) + 16 0P
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20) . o e
where I%l < (é is used. Combining (3.29)-(3.33), we have

1 2 1 2 ~
Ly < =2 |0 0yl = 5 [0 O]l 2 + CHBIEso + Cllwllo (14 NF VI a)) + 1 DuP)

For L3, by integrating by parts in the x-variable and y-variable, and using the equation d.u + d,v = 0,
we have

Ly=- f 0 (ud.gs + vdy5) 85 = 2y f PO e < Cllwllysr + Ul + Dllwlysr.
Q Q &
The term L, is estimated as follows:
Ly =2¢° f 3)?7gp (aﬁu -
Q

< 28[IK ™ ol + 1)

0,
w&fﬁﬁ) 0.a
w

0y
=il ] [0 gl 1699l

+£’2,2
Since § < YWw <67, Y [ Dwl* < 672, we have [|(y)d,all;~ < 6-2. Note that wd, (aﬁw ) =
08p + c?xaﬁ)‘iﬁ, and since u >y + 1 we can use Lemma 2.2 to get
+e ~
oyt = ||y~ ew=—
LZ
+e ~
< l @)%Wlw
0 w
LZ
6E+62ﬁ
< Cllg U + C <y>7w3y( R
w
L2

< C (115 Ul + ||3) Dcggl . + 10 0,adfill2)

Thus, we get
& 2 e
Li < = [0)0:g] 2 + Clwllgr + 167 Ullo)lwll

Since ||(9ya||loo < C, we have
[s < Cllw 25, .

The estimates of Ls — L3 are straightforward, so we omit the details for simplicity. Actually, we have
Le < ClI Ulli=(lllr + 1057 Ul el
Ly + Ls + Ly + Lio < C(llwllzz + 10 Ullz2cry + Dllewller
Ly < C||8)€+62 Ulle(“w”H;” + ||(9§+e2 U||Lz)||0)||H§ﬂ/,
1 2
L < 4 H()’yayhﬁ”u + C”wllilg”’
Lis < CQBl> + 10Ul ol
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Now let us estimate hg. Multiplying the equation (3.27) by ) hg and integrating the resulting equa-
tion over 2, we have

1d 2
silorml =& [ aha+ [ 07 5hha [ 00 (b +v0he) g

w22 [[omy (o= i) - [P @i

2y 2y 1,298~ 2y ‘939 ~
- f(;(y> hﬂhezagU_ L(Y) hﬁb a)ﬁ(u_ fg;(y) hﬁajﬁﬁu

2 (95(,() ~ 2 2 -
+ L(W Vhﬁbjéﬁu +2 L(y) " hpdbdw — ZL@) " hpdywdl it

_ Z (g) f <y>2yhﬁa)€_'guhﬁ+ez - Z (g) f <y>27hﬁa)‘é-ﬁv(ayé))‘ié—b8)‘iw)
Q Q

0<B<B 0<B<p
+b Z (g) L<y>2)’hﬁa)€—ﬁ+62 Ua)B(ﬁ - Z (’g) L<y>27hﬁa/€_ﬁa)6§w
0<p<p 0<p<p

+ fg 3 hsbdPf - >

(o mataso- [[ormaons
0<B<p Q

where iy = 3.6 - 229 (u— U).
Each M; need to be estimated now. However, since the estimate of M; is similar to L;, we only give a
skeleton of the proof. From integration by parts in the x-variable, we have

2
My = =& |[(0)d:hg| . -
Similar to the estimate of L,, we have

M = — oY a,hLs - @) f 59219, gy + f Ouhghy| o= — [y ol + ML+ M2 (3.34)
Q T

y=0
where M, is controlled by the Cauchy inequality
1 2 2 1 2 ~
M; < 2 |[6Y Oyt + C [0 Rl < 5 (|0 Duag][ . + CUIGo- (3.35)
Using the boundary conditions ayé|y:0 = 0 and ul,—op = 0, we have
20
= 2 —
o,y = AU = (bg)| - (3.36)
y=0
Substituting (3.36) to Mg and using Lemma 2.4, we get
2 835 1 y 2 2112 2
M3 = | hg|fU——bgs| <7 [[0)7@Ogs 0l 2 + CUBIG (L + 17Uy (3.37)
T
y=0
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Combining (3.34)—(3.37), we have
My < -2y a,glFs = L0 am| + AR (1 + 1P UL
2 < = |0V Dugill,. = 5 100 O]l + O (1 + 1K VI ).
We can give the control of Mj as
- [ 0 (udaty + v0,5) = @) [ POY I <l + 102U, + DB
Q Q

The term M, can be controlled in a similar fashion as L4, we just skip the details to get

Ox
M, = 26 fQ Y7 hy (aj+u - wwaﬁa) d.b

< 2&?

<y>7—1 (aﬁwza _ axwa)‘ia)

[ || . 11€9)0sbll v

8
<< 160785l + Clwllysr + 182 Ull )81 -
By tedious but straightforward calculations, we find
Ms < C(llwllgsr + 1 U )6l g5
My < ClF Ul 0l (101l + Nl + 105 Ul ),

M; + Mg + Mg + My < C(||CU||H;’7 + ||6§U”L2(T))”é”H;’7,
My, < C(llwllggr + ||5§U||L2<T))II9IIH;~7IIa)IIH;Y-

Here we have used [[(y)all;~ < C, |yl < C, ||<Y> ||L°° < C, II(y
C, |02 |I~ < C, |{y)*dy(ab)||r~ < C, since (w,6) € H;’y For M,,, we have

< Gl abll- <

My, = Z (B) f OV g P, <105 P Al Y A 2110 gl 12
0<B<B
< Cllwllgr + 15Ul Ubll s> + Nlewllgsr + 107Ul

By direct calculations, one can show that
S -
M < Clwllgr + 1 Ul + Dl + 10l
M4 < Cllwllgzr + 13U N2 1Bl 1 Ul

Mis < Clllle> + 1P Ul Bl el
M < C(||é||H;'7 + ||6)B(U”L2(T))”é”H;’y'

The term M, can be estimated by using Lemma 2.6 directly:

M7 = Z (ﬁ)<Y>th & '8u65+62® < C||(95+62®||L K)o Pl 21K0) hgll 2
0<B<B
< C||5§+62®||L°°(||w”H§‘7 + ||(9)€U||L2(T))||é“H,j'7~
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The last term Mg can also be estimated by using Lemma 2.6:
Mg = f (" hpo, @it < 116,01 hgll 211y Ell > < Cllwllggsr + 1 U2l 0O s l16l g2
Q

Finally combining all the above estimates, we obtain the estimate (3.28), and this completes the proof
of Theorem 3.5. O

3.3, Weighted H* estimates on w and 0

In this subsection, we can derive the weighted H* estimates on w, 8 by employing Theorem 3.2 and
Theorem 3.5. The aim of this subsection is to derive the growth rate control (3.38) on the weighted H*
energy of w, 0.

Theorem 3.6. Let s > 6 be an even integer, y > 1,u >y + %,6 €(0,1), and e € (0,1]. If

(@,6) € C0, TT; Hy ™) 0 CH((0, T); Hyi™),

and (u, v, w, 0) solves (3.1) and (3.3), then we have

!
IIwIIf{;y + |I9llf{;.y < {Ilwollig,y + ||éo||i,;m + fo Y (T)dT}
-2 (3.38)

52 5=2
s ~ ! 2
. {1 _ c(5 _ 1)(||w0||§,v,y + B0l + f Y(T)dT) t} =G
8 0

where C is a constant independent of € and t. The function Y (t) is expressed by

s/2
Y(1) = CUIE > UDlscry + 11052 O scry + 1 + C Z |I5ﬁ(5xP)(t)|lf,sfzz(T)- (3.39)
=0

Proof. Combining estimates (3.4) and (3.28), we find

d _ _ s/2
E{Ilw(t)lli,;,y + ||9(t)||i,2,y} < Cllw®llgsr + CIOWIlr + CZ (AN 1G] A (3.40)
=0 :
+ C(15 2 U@y + 10572 O@) | (my + 1),
Then it follows from the comparison principle of ordinary differential equations that
f
”w”z;y + ”é”i];v < {HWOHIZLI;V + ”éOHi,]sly + ‘ﬁ Y(T)dT}
t 52 2
S 2 72
: {1 -C (5 - 1) (nwoan,y + 1ol + f Y(r)dr) t} :
8 h 0
provided
‘ 5
§ 2 72
1-c(3-1) (nwon,,;y +10E + fo Y(r)dr) r >0,
which truly holds if # > 0 is chosen small enough. This completes the proof of Theorem 3.6. O
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3.4. Uniform existence of the regularized system

In this subsection, we are going to prove the uniform existence of the solutions to the regularized
system. To this end, we need to derive the uniform upper bound and lower bound of the solutions.
For |a| < 2, applying the operator D* = 6:?8;" to the equation (3.3), and multiplying (y)**™, we have

at<y>#+mDaw — Z (Z_)<y>,u+mD0'uaxDa—a'w _ Z (Z-)<y>,u+mD0'vayDa—0'w

0<o<a 0<o<a

(3.41)
+ &Y OD W + (YYD w — (y)"9,DF.

From Lemma 2.6, when |o| < 2 with o = (07, 05, ), we have

Clllwllgz + 185 Ullzery) =0,
1,

N
v

oy D . < {

Cllwllys
[ DMV, < Cliwllgr + 1 Ullzery + 1D, YDl < ClBllgrs 19)™ ' ,D76ll > < ClIBll g2
Then, by direct calculation and using the above inequalities, we get

10" D wllp~ < C IIwIIi,;y +C ||9||§,;,y + C(107>Ull> + 1)° < CG(1) + CY (). (3.42)

Integrating (3.41) with respect to #, we have

f
Y lorrptol,. < X forpral,. + 3 [ Joornra],
0

lr|<2 lal<2 lr|<2

< Z ||<y>ll+mDawo||LD0 " Z sup ||3z<y>"+’”D“w||Lw ‘ (3.43)

<Tt<
<2 laj<2 057t

< > oy mprw|,.. + cgr+ct,

la|<2
where (3.42) is used. Specifically, when a = (0, 0,0) and m = 0, we have
!
W'w = (wy - f 10:yY Wl dT = (yY'wo — sup 10y) Wl t = (y)V'wy — CGt — CYt.  (3.44)
0 0<r<t
Applying the operator D* = 6)66;" to the equation (3.3), and multiplying (y)**", we have
~ a ~ a ~
a u+mD09 — ,u+mDU 8xDa—O'0 _ /l+mD0' 8 D(I—G’g
) > (U)<y> u D (0)<y> v

O<o<a 0<o<a

+ E YYD + (Y IED0 + (YYD W’

_ Z (a’)<y>ﬂ+mD(raDa—0'ax®.
(o

0<o<a

Similar to (3.42), we get from the above equation that

8.y " DOl < Cllwlli,;,y + Clléllf,;-.y + (I U@ + 105700l + 1)* < CG() + CY (1),
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which further gives

t
zﬁmwm%ms}]WWWﬁwmaZjn@wwmmmm
0

lal<2 lal<2 lr|<2

< YD Bl + . sup 19,V " D Bllt (3.45)

<t<
lal<2 laj<2 057t

< YD Byl + CGr + CY1.

le|<2
Now the uniform existence of the regularized system (3.3) can be stated as follows.

Theorem 3.7. Let s > 6 be an even integer, vy > 1,u >y + %, §€(0,1)and e € (0,1). If (wo, 0y) € HZZZ(S
and |Y(t)| < M for any t > 0, then there exists a positive T independent of &, such that the regularized
system (3.3) has solutions

(w,0) € C ([0, T H”) NnC! ([0, T HH”) .

Mo

Moreover, for any t € [0, T], the solutions satisfy the following uniform estimates.
i) Uniform weighted H® estimates

IR, + 18O, < 4 (w0l + ol ). (3.46)

ii) Uniform weighted L™ upper bound

- 1
2 1Y D @, OOl < .
lal<2
iii) Uniform weighted L™ lower bound
OGWw = 6.
Proof. Since Y(t) < M, if we take
3ol + 1ol ) R

T; = min

M b . S_2 b
C25‘2(a) 2+ 116 25)
| o||Hg7 Il OHHh”

then by inequality (3.38), we have
@l + 01 < G0 < Alwnlls + W0l

for t € [0, T,]. This gives (3.46). Note that (wy, 8y) € H,7,, we have

m (04 1
> oy pran),. < .

la|<2
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Choosing T, as

5! 6!

T, =mins T},

16C (ol + 18, ) M
g h
then from (3.43), we have for all 1 € [0, T,],
u+m rya 1

2 oyl < .

la|<2
Next, due to (y)*wy > 26, if T; is chosen as

0 0

T3 = min T], ; - R CM ,
C (ol + .

then from (3.44), we have for all ¢ € [0, T3], (y)*w > . Similarly, if we choose

5—1 5—1

T4 = min T],

= T4CM |
16C (ool + 1017, ) €
then we can get from (3.45) that for all ¢ € [0, T}],
u+m e 1
2 Y DBl < .
la|<2
Finally, letting T := min {7, T,, T3, T4}, we complete the proof of the theorem. O

4. Local-in-time existence

In this section, we will establish the local existence of solution to the original system (1.1) by
compactness argument. Using the almost equivalence relation (2.3)-(2.4) and the uniform weighted H*
estimate (3.46), we have

2 2 Ze 2
sup (lw®lligsy + lu® = Ullpyr + 16°N5)

0<t<T

2 Ze112 2
< C sup (0°IF, + 16°12,5, + 165 UIL)
0<t<T & h

2 nEN2 2
< AC(IWHIr + GG + I UIR).

Furthermore, we also know that d,(w?, %) and ,i® are uniformly bounded in L*([0, T]; H*"%?) and
L>([0, T]; H=>771), respectively. By Aubin-Lions Lemma 2.5 and compact embedding of H*” in

H lso'c(s’ < §), we can find limit function

w=due L0, T H) n (| C (10,71 Hy,), 4.1)

s'<s

AIMS Mathematics Volume 8, Issue 4, 9933-9964.



9956

ie L°([0,T1; H ) n () C (10, T); Hy,), (4.2)

s’'<s

§e L™ ([0, T H) N () C(10, T Hy,,), (4.3)

§’'<s

such that, after taking a subsequence, as g, — 0*:

W = w in L ([0, T1; H>),
W — in C (10, T1; Hy,).
WU u-U in L= ([0, T1; H7"),
' , (4.4)
U = u in C ([0, T1: Hy,).
-0 —0-0 in L ([0, T]; H*),
6 = 0 in C([0. T1: Hy,).

Using the local uniform convergence of d,u®, we also have the pointwise convergence of v*, as g, —
0+

Y Y
Ve = —f axuskdy -V = —f (9xudy (45)
0 0

Combining (4.4)-(4.5), one may justify the pointwise convergence of all terms in the regularized equa-
tion (3.1). Passing to the limit &, — 0 in (3.1), we know that the limit function (u, v, 6) solves the
problem in the classical sense. Thus the local existence of solutions is obtained and we complete the
proof of our main Theorem 1.2.

5. Uniqueness

The purpose of this section is to prove the uniqueness of H;g solutions constructed in Section 4.
Assume (u1, vy, 6;) and (uy,v,,6,) are two solutions to the initial-boundary value problem (1.1) and
w; = Oyu;(i = 1,2). Setting it = u; — up, vV = vy — V2,0 = 6 — 6, = w; — w>, we obtain the following
equations

(O + w105 + V18, — 0@ + WOyw; + VOyw, = —0,0,

(@ + w10 + v18y — 07)0 + 10,0, + v0,0, = (w1 + w2),
(O + w10 + v18y — 87 + 10 + vy, = =0,

Ot +0,v =0,

@li=o = wio — wa0,  Blizo = 10 — B0, iili=o = 10 — U0,
(it, v, 0y, 0y0)|y=0 = 0.

(5.1)
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Oywy

Furthermore, set @ = @ — a,it and ¢ = 0 — byt with a, = and b, = %—H; By direct calculations, we

get

w2

(0, + w10 + 10, — M@
= - {(6, + U0y +vi0, — 03)512} i+ 20,0, + arilup
+arV0yuy + ar6 — 0wy — VOyws — 0,0,
(O +u10; +vi0, — (93)19
= — {0, + w18 + v10y — OD)bo} it + 20,20 + britd,uy (5.2)
+byV0yuy + br6 — 1106, — V0,0, + (w1 + W)@,
@|i=0 = (w10 — wao) — ao(Ut10 — U20),
D=0 = (610 — 020) — bao(u10 — U20),
0y, 0y0)|y=0 = 0.

Since (w,, 6;) € H;g, it follows from the weighted L™ bounds on w,, 8, of Theorem 3.7 that

||<y>a2||Loo < 5_2, ||<y>(9xdz||Lw + ||<y>20ya2||Lm < 5_2 +5_4,

and
Ibally <672 IKNBiballe + [0 Bybal|,. < 677+ 67

Multiplying the equations (5.2); and (5.2), by 2w and 24, respectively, then integrating the resulting
equations over €, and using Lemma 2.6 we obtain

d
= (Il + 19117 < C(nwniz + 19112, + ||<y>“u||i2). (5.3)

Since § < (YWw, < 671, itly-o = 0 and @ = w,d, (wiz) we can use the Hardy inequality of Lemma 2.2
to obtain

1o 1 o _ 7]
o el < 5o 2| < CH<y> “ay(—) < Clial:. (5.4)
Wy g2 w2 /|2
Substituting (5.4) into (5.3), we get
d 2 2 2 2
- (Il +1917:) < € (Il + 1911 (5.5)

Applying Gronwall’s inequality to (5.5), we obtain
Iz, + [H@7. < (IIW(O)IIEZ + IIﬁ(O)Iliz)eCﬁ

which further gives
2 2 _
l@llz. + 1191, =0,

provided that u;|,-o = us|,=o and 0;|,=p = 0>|,=0. As a result, we have @w = 0 and ¥} = 0. Note that & can
be expressed by i1 = w, foy ody, we get it = 0. It is easy to see 6, = 6, due to 6 = 9 + b,ii = 0. Finally
we get v = v, from (1.1); and # = 0. This completes the proof of the uniqueness.
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6. Conclusions

In this paper, we study the local well-posedness of the thermal boundary layer equations for the
two-dimensional incompressible heat conducting flow by using a new weighted energy method. Our
results show that we only need the monotonic assumption on the tangential velocity u in the normal
variable but have no restrictions on the absolute temperature 6. Furthermore, this analytical approach
can be applied to the boundary layer problems involving more complex fluids.

Appendix A: Some inequalities

In this appendix, we will prove the inequalities given in Lemma 2.6. Here we give a proof for the
reader’s convenience.

Proof. Only need to prove 5, = 0. In other words, we only prove when it’s all derivatives with respect
to ¢, other cases can be found in [16].

()1t follows from the definition of ||u||ys)—1 that [{y)*~'8,(u — U)|| < ||(u — U)||ysr1, S0 it is a direct
consequence of the almost equivalence inequality (2.3).

(if) Using Lemma 2.2 and (2.5), we have

K™ (85 v + 30,100, < 200;7 0. = Dl < Cllwllgyr + 102U12),

which is inequality (2.6).
(iii)Inequality (2.7) and (2.8) follows directly from the defnition of ||w|| HY 11611 Y and inequality (2.3)-
(2.4).

(iv) Since (w, ) € H;:y, so we know that ||<y>%g||Lw < 672, 1) 22~ < 672 Thus

w

[0 8sl,» < Iyl + 6201y Fu - Uil < Cllwllgsr + 105UI2),

|0 Rl < 1KY BNz + 6721 Y™ o — Ul < CUBl g + el + 165 U12),

which is inequality for || < s — 1. When || = s, the better upper bound in (2.9) and (2.10) follows
directly from the definition of ||| HY s 1161l HY
(v)Using Lemma 2.3, (2.5) and (2.7), we have

18,7 = U)ll= < CHIB™ (= U)llp2 + 1107710t = D)2 + 165 Dyolli2} < Clllllpgsr + 103U 12),

which implies inequality (2.11).
(vi) Applying triangle inequality, Lemma 2.3 , d,u + d,v = 0 and w = 0,u, we have
I8Vl < I y8 20, Ul + 1) (85 72y + 38,20, U

< Cl18; 20 Ullzz +118; >0V Nz + 110071072 + 38, 20,U)ll2
+ )71 0] 205y + y0; 0 D)2 + 1) (02 + 3820, U2
+ [0 720; 205w = U)llz + 1) 107 Bl 2}
< Clllwllgr + 135Ul + 1),

which implies inequality (2.12), because of (2.5)-(2.8).

(vii) The inequality follows directly from Lemma 2.3 and inequality (2.7)-(2.8).
O
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Appendix B: Proof of Lemma 3.3

Proof. In order to illustrate the idea, let us derive the formula (3.8) for the case k = 2 as follows.
Applying 6; to the vorticity equation (3.3), and evaluating at y = 0, we obtain, by using (3.7), and
uly—g = Vly= = 8,6ly=0 = 0, that

B = (0~ £7) 0P - 0) + (0, - £6%) (D) + (9, — £207) (620)

+ 300,850 +20,00,0,0 — 20,wFw + 36| .

Since the last four terms on the right-hand side are our desired forms, we only need to deal with the
terms (9; — £207)(wAxw)ly—o and (9; — £267)(936)|,=o. Using the evolution equations for w, d,w and 8;6
as well as ul,—o = v|,-9 = 0,0],—o = 0, one may check that

( 8, — & (9)26) (waxw)'y:o = a)é?x@}z,w + 6xa)(9§a) — 28%0,wd*w + 0§0|y:0 ,
(6, — £20%) (826) y=0 = 8360 + 2w + 2(3,w)” — B,wd,Hly-0.

Assuming that the lemma holds for k = n, we will show that it also holds for k = n+ 1. Applying 65"“
to the vorticity equation and evaluating the resulting equation at y = 0 yields

2n+1 (2]’1 + 1
1

0wl = 3, — 2P w + Y

i=1

2+ 1 ™ 2n+1
-y ( ; )8;w0x6§”_i+19 £y ( ; )axa;-zwagn-”zw +207"*%6ly—.
i=1 i=2

)a;—lwaxagn—mw g

Thanks to the induction hypothesis, we have

Flw| = (0, - £282) @:P - 6) + Pulyo.

y=0

This completes the proof of Lemma 3.3. m|
Appendix C: Equations for a, b, gg, and hg

In this appendix, we will derive the evolution equations for a, b, gz, and hgz. The equations satisfied
by (i, w) = (u— U, dyu) is

{ B, + ud,ii + v, i = 2020 + &t — 0 — i, U, ©.1)

— 22 2 i
0w + ud,w + voyw = 0w + dyw — 0,0.

Equation for a:
Differentiating the equation (6.1), with respect to y, we have

(0, + udy + v9,)0,w = £0:0,w + Ow — 020 — WIw + O,udyw,
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which implies

(0 + ud, +vd,)a
B (0; + ud, +voy)oyw  0,w(d; + ud, + voy)w

w w?
=& (ﬁfayw - aaiw) + (ﬁiw - a(’)ia)) - @ - 0,w + adu + ab.
w w w w w
Note that
8§a = 6§6yw - aa’z‘w - 2axw8xa, aia = 63—60 - a@%_a) - 2a0,a.

w w w w w

Substituting (6.3) into (6.2), we have (where g,, = 0w — ad,it):

a, 0,6
(0; + ud, +vo, — 828)2( - 8§)a = 282—w8xa +2ad,a + ab — = 8e, +ad,U.
w w

Equation for gg:
Differentiating the equations (6.1) with éfi respectively, one has

(@, + udy +v0y — £0% - )P + Fvw
== ('g)agf*uaﬁ”za - > (’g)a)fﬁﬂz v - ) (’g)aﬁﬁv@‘iw - 99,
0<B<p 0<B<B 0<B<B

and
(0, + ud, + vd, — 29> — 63)(9)60) + (9)‘év8yw

=— Z (’g)&ﬁ‘ﬁuéimw - Z (’g)&ﬁ_ﬁvafayw - 80,6.

0<p<B 0<p<B
Subtracting (6.4) Xa from (6.5), we have

(0, + udy +v0, — 0% — A)gg + {8, + ud, + vy — £ — 8})a} i

= 2328)3;62 io.a + 26ya6§a) - Z (’g)ﬁ)‘é_ﬁuggﬂz - 6)68y9 + a&ﬁé

0<B<pB
va (g)ag—ﬁ+ezya§a_ D (g)ag—ﬁv (0,000 - adlw),
0<B<B 0<B<B

and then we get the equation satisfied by gg

(O, + ud, + v, — £°0; — 87)gp

50 N y
= 232(5)‘?”25, - 6;w6‘;ﬁ)8xa +2gg0,a — gezaﬁU + ﬁaﬁa - abé‘ﬁﬁ - 6;?8},0 + aé‘ﬁ@
- Z (?)%‘ﬁug[;wz +a Z (g)&ﬁ_ﬁ”z U@fﬁ — Z (g)&fj_ﬂv (ayﬁfa) - a@fa)).

0<B<B 0<B<B 0<B<pB

(6.2)

(6.3)

(6.4)

(6.5)
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Similarly, we can write down the evolution equation of Az := 6')'?9 — %gai(u — U) as follows.

Equation for b:
The equations satisfied by (i, 0)=w—-U#6-0)is

{ Bt + ud,ii + voyii = 0% + &t — 0 — 0, U, 66)

9,0 + ud .0 + V(?yé = 826‘)%@ + 639 + w? — 010,0.
Differentiating the equation (6.6), with respect to y, we have
(0, + uo, + vf)y)ﬁyé = szaiayé + aﬁé — w00 + axuayé + 2w0yw — w0, O,

and

(0, + ud, +vd,)b = & (aiayé B baﬁw) N [a;w P

~-b-= ) — 0,0+ bou+20,w—0,0+b*. (6.7)

w w w
Since X i
20,0 & 0, R0 0%
Pb="220 pi 2T b b= —— —a—— - d,(ab), (6.8)
w w w w w
we get
(O, + udy + v, — €205 — 02)b
d, 20 QPw
= 262220 b + d,(ab) + b + a—— — b—— — h,, + bd,U + 20,0 — 9,0,
w w w
Equation for h:

Differentiating the equations (6.6) with (9§ respectively, one has
(0; + ud, +vo, — 826)% - 65)6)[?12 + (')fjva)
-y (g)gﬁ-ﬁuafmﬁ = (lﬁf)aﬁ-mez vofa- Y (Z_g)aﬁ—[fva)é(w _ o, 6.9)
0<B<pB 0<B<p 0<B<B

and
(@, + ud, + v, — £°0; — 330 + ¥vo,0

= — Z (é)aﬁ_ﬁua)é+ﬂé_ Z (ﬁ)a}‘é_ﬁvaﬁayé— Z (g)aﬁ—/?ﬁai;ez@_aﬁw% (610)

0<B<B 0<B<B 0<B<p
Subtracting (6.9) xb from (6.10), we have
(0, + ud, + vy — £20% — B +{(9, + ud, +vo, — £0% — F)b} i

= 282000, b + 20fwib — ) (é)aﬁ—ﬁuhﬁ+ez +b Y (g)aﬁ—ﬁ+€2 v

0<B<B 0<p<p
= (g)ag—ﬁv (0,0 - bPw) - P 4 00— Y @)afj—ﬂaagax@,
0<B<B 0<B<pB
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and then we get the equation satisfied by &,
(0, + udy + vo, — £°0; — 0)hg
0

0, 4. . 5 g 339 _ W
é)ﬁ(u) 0.~ 0,(ab) ~ U ~ PO - a = i+ b

w

=2¢’ (ﬁﬁmﬁ -

- 26),(1,)(9)3(17[ + 26)’?w6yb + 6x®6‘)€ﬁ - Z (g)é‘;_ﬁuhﬁ"'ﬁ +b Z (g)&)‘i—,g+e2 Ua)éljl
0<<B<B 0<B<B

-y (g)ag—ﬁv (0,8 - biFow) - #a + 55— Y (g)a;g-ﬁaa;;ax@.

0<B8<B 0<B<B
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