In this paper we consider fractional-order mathematical model describing the spread of the smoking model in the sense of Caputo operator with tobacco in the form of snuffing. The threshold quantity $ \mathcal{R}_0 $ and equilibria of the model are determined. We prove the existence of the solution via fixed-point theory and further examine the uniqueness of of the solution of the considered model. The new version of numerical approximation's framework for the approximation of Caputo operator is used. Finally, the numerical results are presented to justify the significance of the arbitrary fractional order derivative. The analysis shows fractional-order model of tobacco smoking in Caputo sense gives useful information as compared to the classical integer order tobacco smoking model.
Citation: Peijiang Liu, Taj Munir, Ting Cui, Anwarud Din, Peng Wu. Mathematical assessment of the dynamics of the tobacco smoking model: An application of fractional theory[J]. AIMS Mathematics, 2022, 7(4): 7143-7165. doi: 10.3934/math.2022398
In this paper we consider fractional-order mathematical model describing the spread of the smoking model in the sense of Caputo operator with tobacco in the form of snuffing. The threshold quantity $ \mathcal{R}_0 $ and equilibria of the model are determined. We prove the existence of the solution via fixed-point theory and further examine the uniqueness of of the solution of the considered model. The new version of numerical approximation's framework for the approximation of Caputo operator is used. Finally, the numerical results are presented to justify the significance of the arbitrary fractional order derivative. The analysis shows fractional-order model of tobacco smoking in Caputo sense gives useful information as compared to the classical integer order tobacco smoking model.
[1] | J. Brownlee, Certain considerations on the causation and course of epidemics, P. Roy. Soc. Med., 2 (1909), 243–258. http://dx.doi.org/10.1177/003591570900201307 doi: 10.1177/003591570900201307 |
[2] | J. Brownlee, The mathematical theory of random migration and epidemic distribution, P. Roy. Soc. Edinb., 31 (1912), 262–289. http://dx.doi.org/10.1017/S0370164600025116 doi: 10.1017/S0370164600025116 |
[3] | W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics–I, P. Roy. Soc. Edinb. A, 115 (1927), 700–721. http://dx.doi.org/10.1007/BF02464423 doi: 10.1007/BF02464423 |
[4] | Y. Zhang, X. Ma, A. Din, Stationary distribution and extinction of a stochastic SEIQ epidemic model with a general incidence function and temporary immunity, AIMS Math., 6 (2021), 12359–12378. http://dx.doi.org/10.3934/math.2021715 doi: 10.3934/math.2021715 |
[5] | A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos Soliton. Fract., 141 (2020), 110286. http://dx.doi:10.1016/j.chaos.2020.110286 doi: 10.1016/j.chaos.2020.110286 |
[6] | H. F. Huo, Z. P. Ma, Dynamics of a delayed epidemic model with non-monotonic incidence rate, Commun. Nonlinear Sci., 15 (2010), 459–468. http://dx.doi.org/10.1016/j.cnsns.2009.04.018 doi: 10.1016/j.cnsns.2009.04.018 |
[7] | N. Özdemir, E. Uçar, Investigating of an immune system-cancer mathematical model with Mittag-Leffler kernel, AIMS Math., 5 (2020), 1519–1531. https://doi.org/10.3934/math.2020104 doi: 10.3934/math.2020104 |
[8] | R. Xu, Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal.-Real, 10 (2009), 3175–3189. https://doi.org/10.1016/j.nonrwa.2008.10.013 doi: 10.1016/j.nonrwa.2008.10.013 |
[9] | A. Din, Y. Li, Stochastic analysis of a delayed hepatitis B epidemic model, Chaos Soliton. Fract., 2021. https://doi.org/10.1016/j.rinp.2021.104775 |
[10] | X. Song, S. Cheng, A delay-differential equation model of HIV infection of CD4 $^{+}$ T-cells, J. Korean Math. Soc., 42 (2005), 1071–1086. https://doi.org/10.4134/JKMS.2005.42.5.1071 doi: 10.4134/JKMS.2005.42.5.1071 |
[11] | Y. Takeuchi, W. Ma, E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal.-Theor., 42 (2010), 931–947. https://doi.org/10.1007/s11071-009-9644-3 doi: 10.1007/s11071-009-9644-3 |
[12] | P. V. Driessche, J. Watmough, Mathematical epidemio further notes on the basic reproductilogy, Lecture Notes in Mathematics, Springer, Berlin, 1945 (2008), 159–178. https://doi.org/10.1007/978-3-540-78911-6-6 |
[13] | A. d'Onofrio, P. Manfredi, E. Salinelli, Bifurcation thresholds in an SIR model with information-dependent vaccination, Math. Model. Nat. Pheno., 2 (2007), 26–43. https://doi.org/10.1051/mmnp:2008009 doi: 10.1051/mmnp:2008009 |
[14] | J. M. Shen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, Certain novel estimates within fractional calculus theory on time scales, AIMS Math., 5 (2020), 6073–6086. https://doi.org/10.3934/math.202039 doi: 10.3934/math.202039 |
[15] | A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scr., 96 (2021), 074005, https://doi.org/ 10.1088/1402-4896/abfacc doi: 10.1088/1402-4896/abfacc |
[16] | Z. Alkhudhari, S. Al-Sheikh, S. Al-Tuwairqi, Global dynamics of a mathematical model on smoking, Int. Scholarly Res. Not., 2014 (2014). https://doi.org/10.1155/2014/847075 |
[17] | V. S. Ertürk, G. Zaman, S. Momani, A numeric-analytic method for approximating a giving up smoking model containing fractional derivatives, Comput. Math. Appl., 64 (2012), 3065–3074. https://doi.org/10.1016/j.camwa.2012.02.002 doi: 10.1016/j.camwa.2012.02.002 |
[18] | S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Soliton. Fract., 139 (2020), 110256. https://doi.org/10.1016/j.chaos.2020.110256 doi: 10.1016/j.chaos.2020.110256 |
[19] | E. Bonyah, A. K. Sagoe, D. Kumar, S. Deniz, Fractional optimal control dynamics of coronavirus model with Mittag-Leffler law, Ecol. Complex., 45 (2021), 100880. https://doi.org/10.1016/j.ecocom.2020.100880 doi: 10.1016/j.ecocom.2020.100880 |
[20] | A. Din, Y. Li, A. Yusuf, A. I. Ali, Caputo type fractional operator applied to hepatitis b system, Fractals, 2021, 2240023. https://doi.org/10.1142/S0218348X22400230 |
[21] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[22] | A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Pheno., 13 (2018). https://doi.org/10.1051/mmnp/2021039 |
[23] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[24] | M. A. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale, et al., Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results Phys., 20 (2021), 103702. https://doi.org/10.1016/j.rinp.2020.103702 doi: 10.1016/j.rinp.2020.103702 |
[25] | S. Ahmad, A. Ullah, M. Arfan, K. Shah, On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative, Chaos Soliton. Fract., 140 (2020), 110233. https://doi.org/10.1016/j.chaos.2020.110233 doi: 10.1016/j.chaos.2020.110233 |
[26] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998. |
[27] | A. Din, Y. Li, F. M. Khan, Z. U. Khan, P. Liu, On analysis of fractional order mathematical model of hepatitis b using atangana-baleanu caputo ABC derivative, Fractals, 30 (2021), 224001. https://doi.org/10.1142/S0218348X22400175 doi: 10.1142/S0218348X22400175 |
[28] | O. J. Peter, A. Yusuf, K. Oshinubi, F. A. Oguntolu, J. O. Lawal, A. I. Abioye, et al., Fractional order of pneumococcal pneumonia infection model with Caputo Fabrizio operator, Results Phys., 29 (2021), 104581. https://doi.org/10.1016/j.rinp.2021.104581 doi: 10.1016/j.rinp.2021.104581 |
[29] | O. J. Peter, A. S. Shaikh, M. O. Ibrahim, K. S. Nisar, D. Baleanu, I. Khan, et al., Analysis and dynamics of fractional order mathematical model of COVID-19 in Nigeria using atangana-baleanu operator, CMC-Comput. Mater. Con., 66 (2021), 1823–1848. https://doi.org/10.32604/cmc.2020.012314 doi: 10.32604/cmc.2020.012314 |
[30] | O. J. Peter, Transmission dynamics of fractional order Brucellosis model using caputo-fabrizio operator, Int. J. Differ. Equat., 2020 (2020). https://doi.org/10.1155/2020/2791380 |
[31] | N. Gul, R. Bilal, E. A. Algehyne, M. G. Alshehri, M. A. Khan, Y. M. Chu, et al., The dynamics of fractional order Hepatitis B virus model with asymptomatic carriers, Alex. Eng. J., 60 (2021), 3945–3955. https://doi.org/10.1016/j.aej.2021.02.057 doi: 10.1016/j.aej.2021.02.057 |
[32] | Y. M. Chu, A. Ali, M. A. Khan, S. Islam, S. Ullah, Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia, Results Phys., 21 (2021), 103787. https://doi.org/10.1016/j.rinp.2020.103787 doi: 10.1016/j.rinp.2020.103787 |
[33] | Y. L. Wang, H. Jahanshahi, S. Bekiros, F. Bezzina, Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence, Chaos Soliton. Fract., 146 (2021), 110881. https://doi.org/10.1016/j.chaos.2021.110881 doi: 10.1016/j.chaos.2021.110881 |
[34] | M. K. Wang, S. Rashid, Y. Karaca, D. Baleanu, Y. M. Chu, New multi functional approach for $k-th$ Order differentiability governed by fractional calculus via approximately generalized convex functions in Hilbert space, Fractals, 29 (2021). https://doi.org/10.1142/S0218348X21400193 |
[35] | S. B. Chen, H. Jahanshahi, O. A. Abba, J. E. Solís-Pérez, S. Bekiros, J. F. Gómez-Aguilar, et al., The effect of market confidence on a financial system from the perspective of fractional calculus: Numerical investigation and circuit realization, Chaos Soliton. Fract., 140 (2020), 110223. https://doi.org/10.1016/j.chaos.2020.110223 doi: 10.1016/j.chaos.2020.110223 |
[36] | S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Math., 5 (2020), 7041–7054. https://doi.org/10.3934/math.2020451 doi: 10.3934/math.2020451 |
[37] | F. Sitas, B. Harris-Roxas, D. Bradshaw, A. D. Lopez, Smoking and epidemics of respiratory infections, B. World Health Organ., 99 (2021), 164–165. https://doi.org/10.2471/BLT.20.273052 doi: 10.2471/BLT.20.273052 |
[38] | E. Alzahrani, A. Zeb, Stability analysis and prevention strategies of tobacco smoking model, Bound. Value Probl., 2020 (2020). https://doi.org/10.1186/s13661-019-01315-1 |
[39] | A. Din, P. Liu, T. Cui, Stochastic stability and optimal control analysis for a tobacco smoking model, Appl. Comput. Math., 10 (2021), 163–185. https://doi.org/10.11648/j.acm.20211006.15 doi: 10.11648/j.acm.20211006.15 |