Citation: Faiz Muhammad Khan, Weiwei Zhang, Hidayat Ullah Khan. Double-framed soft h-semisimple hemirings[J]. AIMS Mathematics, 2020, 5(6): 6817-6840. doi: 10.3934/math.2020438
[1] | D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19-31. |
[2] | P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083. doi: 10.1016/S0898-1221(02)00216-X |
[3] | N. Çagman, S. Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl., 59 (2010), 3308-3314. doi: 10.1016/j.camwa.2010.03.015 |
[4] | A. S. Sezer, A new approach to LA-semigroup theory via the soft sets, J. Intell. Fuzzy Syst., 26 (2014), 2483-2495. doi: 10.3233/IFS-130918 |
[5] | D. Molodtsov, V. Yu. Leonov, D. V. Kovkov, Soft set technique and its applications, Nechetkie Sistemy i Myagkie Vychisleniya, 1 (2006), 8-39. |
[6] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562. doi: 10.1016/S0898-1221(03)00016-6 |
[7] | M. I. Ali, F. Feng, W. K. Min, et al., On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547-1553. doi: 10.1016/j.camwa.2008.11.009 |
[8] | M. I. Ali, M. Shabir, M. Naz, Algebraic structure of soft sets associated with new operations, Comput. Math. Appl., 61 (2011), 2647-2654. doi: 10.1016/j.camwa.2011.03.011 |
[9] | H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Am. Math. Soc., 40 (1934), 914-920. |
[10] | D. G. Benson, Bialgebra: some foundations for distributed and concurrent computation, Fundam. Inf., 12 (1989), 427-486. |
[11] | J. S. Golan, Semirings and their application, Kluwer Academic Publication, Dodrecht, 1999. |
[12] | U. Hebisch, H. J. Weinert, Semirings: algebraic theory and applications in the computer science, World Scientific, Singapore, 1998. |
[13] | D. R. La Torre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen., 12 (1965), 219-226. |
[14] | Y. Yin, H. Li, The characterizations of h-hemiregular hemirings and h-intra hemiregular hemirings, Inform. Sciences, 178 (2008), 3451-3464. doi: 10.1016/j.ins.2008.04.002 |
[15] | M. Droste and W. Kuich, Weighte definite automata over hemirings, Theor. Comput. Sci., 485 (2013), 38-48. doi: 10.1016/j.tcs.2013.02.028 |
[16] | X. Ma and J. Zhan, Characterizations of hemiregular hemirings via a kind of new soft union sets, J. Intell. Fuzzy Syst., 27 (2014), 2883-2895. doi: 10.3233/IFS-141249 |
[17] | A. Khan, M Ali, Y. B. Jun, et al., The cubic h-semisimple hemirings, Appl. Math. Inf. Sci., 7 (2013), 1-10. |
[18] | Y. B. Jun, S. S. Ahn, Double-framed soft sets with applications in BCK/BCI-algebras, J. Appl. Math., 2012 (2012), 1-15. |
[19] | Y. B. Jun, G. Muhiuddin and A. M. Al-roqi, Ideal theory of BCK/BCI-algebras based on Doubleframed soft sets, Appl. Math. Inf. Sci., 7 (2013), 1879-1887. |
[20] | A. Khan, M. Izhar and A. Sezgin, Characterizations of Abel Grassmann's groupoids by the properties of double-framed soft ideals, International Journal of Analysis and Applications, 15 (2017), 62-74. |
[21] | A. Khan, M. Izhar, M. M. Khalaf, Double-framed soft LA-semigroups, J. Intell. Fuzzy Syst., 33 (2017), 3339-3353. doi: 10.3233/JIFS-162058 |
[22] | T. Asif, F. Yousafzai, A. Khan, et al., Ideal theory in ordered AG-groupoid based on double-framed soft sets, Journal of Mutliple-valued logic and Soft Computing, 33 (2019), 27-49. |
[23] | T. Asif, A. Khan and J. Tang, Fully prime double-framed soft ordered semigroups, Open Journal of Science and Technology, 2 (2019), 17-25. |
[24] | M. Iftikhar and T. Mahmood, Some results on lattice ordered double-framed soft semirings, International Journals of Algebra and Statistics, 7 (2018), 123-140. doi: 10.20454/ijas.2018.1491 |
[25] | H. Bordar et al. Double-framed soft set theory applied to hyper BCK-algebras, New Mathematics and Natural Computation, 2020. |
[26] | P. Jayaraman, K. Sampath and R. Jahir Hussain, Double-framed soft version of chain over distributive lattice, International Journal of Computational Engineering Research, 8 (2018), 1-7. |
[27] | M. B. Khan and T. Mahmood, Applications of double framed T-soft fuzzy sets in BCK/BCIAlgebras, preprint. |
[28] | C. H. Park, Double-framed soft deductive system of subtraction algebras, International Journal of Fuzzy Logic and Intelligent Systems, 18 (2018), 214-219. doi: 10.5391/IJFIS.2018.18.3.214 |
[29] | R. J. Hussain, Applications of double - framed soft ideal structures over gamma near-rings, Global Journal of Pure and Applied Mathematics, 13 (2017), 5101-51113. |
[30] | R. J. Hussain, K. Sampath and P. Jayaraman, Lattice structures of double-framed fuzzy soft lattices, Specialty Journal of Engineering and Applied Science, 3 (2017), 10-21. |
[31] | M. B. Khan, G. Sana and M. Iftikhar, On double framed B(T) soft Fuzzy ideals and doubt double framed soft Fuzzy algebras of BF-algebras, NTMSCI, 7 (2019), 159-170. |
[32] | M. B., Khan, T. Mahmood and M. Iftikhar, Some results on lattice (anti-lattice) ordered double framed soft sets, Journal of New Theory, 29 (2019), 58-70. |
[33] | G. Muhiuddin and A. M. Al-Roqi, Double-framed soft hyper vector spaces, The Scientific World Journal, 2014 (2014), 1-5. |
[34] | F. M. Khan, N. Yufeng, H. Khan, et al., A New Classification of Hemirings through Double-Framed Soft h-Ideals, Sains Malaysiana, 48 (2019), 2817-2830. doi: 10.17576/jsm-2019-4812-23 |
[35] | J. Zhan, W. A. Dudek, Fuzzy h-ideals of hemirings, Inform. Sciences, 177 (2007), 878-886. |
[36] | Y. Yin, X. Huang, D. Xu, et al., The characterization of h-semisimple hemirings, Int. J. Fuzzy Syst., 11 (2009), 116-122. |