Citation: Arslan Hojat Ansari, Sumit Chandok, Liliana Guran, Shahrokh Farhadabadi, Dong Yun Shin, Choonkil Park. (F, h)-upper class type functions for cyclic admissible contractions in metric spaces[J]. AIMS Mathematics, 2020, 5(5): 4853-4873. doi: 10.3934/math.2020310
[1] | Ö, Acar, A fixed point theorem for multivalued almost F-δ-contraction, Results Math., 72 (2017), 1545-1553. doi: 10.1007/s00025-017-0705-5 |
[2] | S. Alizadeh, F. Moradlou and P. Salimi, Some fixed point results for (α, β)-(ψ, φ)-contractive mappings, Filomat, 28 (2014), 635-647. doi: 10.2298/FIL1403635A |
[3] | A. H. Ansari and S. Shukla, Some fixed point theorems for ordered F-(\mathcal{F}, h)-contraction and subcontractions in 0- f -orbitally complete partial metric spaces, J. Adv. Math. Stud., 9 (2016), 37-53. |
[4] | A. H. Ansari, P. Vetro and S. Radenović, Integration of type pair (H, F) upclass in fixed point result for GP(Γ,Θ)-contractive mappings, Filomat, 31 (2017), 2211-2218. |
[5] | H. Aydi, M. Abbas and C. Vetro, Common fixed points for multivalued generalized contractions on partial metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 108 (2014), 483-501. |
[6] | G. V. R. Babu and P. D. Sailaja, A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces, Thai J. Math., 9 (2011), 1-10. |
[7] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181 |
[8] | T. C. Bhakta and S. Mitra, Some existence theorems for functional equations arising in dynamic programming, J. Math. Anal. Appl., 98 (1984), 348-362. doi: 10.1016/0022-247X(84)90254-3 |
[9] | N. Boonsri and S. Saejung, Fixed point theorems for contractions of Reich type on a metric space with a graph, J. Fixed Point Theory Appl., 20 (2018), 84. |
[10] | S. H. Cho and J. S. Bae, Fixed points of weak α-contraction type maps, Fixed Point Theory Appl., 2014 (2014), 175. |
[11] | D. Gopal, M. Abbas and C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955-967. |
[12] | M. Imdad, S. Chauhan, Z. Kadelburg, et al. Fixed point theorems for non-self mappings in symmetric spaces under φ-weak contractive conditions and an application to functional equations in dynamic programming, Appl. Math. Comput., 227 (2014), 469-479. |
[13] | H. Isik, B. Samet and C. Vetro, Cyclic admissible contraction and applications to functional equations in dynamic programming, Fixed Point Theory Appl., 2015 (2015), 163. |
[14] | G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29 (1998), 227-238. |
[15] | Z. Kadelburg and S. Radenovic, On generalized metric spaces: a survey, TWMS J. Pure Appl. Math., 5 (2014), 3-13. |
[16] | M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1-9. doi: 10.1017/S0004972700001659 |
[17] | W. A. Kirk, P. S. Srinavasan and P. Veeramani, Fixed points for mapping satisfying cylical contractive conditions, Fixed Point Theory, 4 (2003), 79-89. |
[18] | S. Kumar, A short survey of the development of fixed point theory, Surveys Math. Appl., 8 (2013), 91-101. |
[19] | M. Pacurar and I. A. Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72 (2010), 1181-1187. doi: 10.1016/j.na.2009.08.002 |
[20] | A. Padcharoen, D. Gopal, P. Chaipunya, et al. Fixed point and periodic point results for α-type F-contractions in modular metric spaces, Fixed Point Theory Appl., 2016 (2016), 39. |
[21] | S. Radenović and S. Chandok, Simulation type functions and coincidence points, Filomat, 32 (2018), 141-147. doi: 10.2298/FIL1801141R |
[22] | B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683-2693. doi: 10.1016/S0362-546X(01)00388-1 |
[23] | S. Romaguera and P. Tirado, Characterizing complete fuzzy metric spaces via fixed point results, Mathematics, 8 (2020), 273. |
[24] | B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. doi: 10.1016/j.na.2011.10.014 |
[25] | Z. Wu, A fixed point theorem, intermediate value theorem and nested interval property, Anal. Math., 45 (2019), 443-447. |
[26] | C. Zhua, W. Xua, T. Došenović, et al. Common fixed point theorems for cyclic contractive mappings in partial cone b-metric spaces and applications to integral equations, Nonlinear Anal. Model. Control, 21 (2016), 807-827. doi: 10.15388/NA.2016.6.5 |