Letter Special Issues

A note on spanning Kr-cycles in random graphs

  • Received: 28 May 2020 Accepted: 02 June 2020 Published: 03 June 2020
  • MSC : 05C80, 05C38

  • We find a threshold for the existence of a collection of edge disjoint copies of Kr that form a cyclic structure and span all vertices of Gn, p. We use a recent result of Riordan to give a two line proof of the main result.

    Citation: Alan Frieze. A note on spanning Kr-cycles in random graphs[J]. AIMS Mathematics, 2020, 5(5): 4849-4852. doi: 10.3934/math.2020309

    Related Papers:

  • We find a threshold for the existence of a collection of edge disjoint copies of Kr that form a cyclic structure and span all vertices of Gn, p. We use a recent result of Riordan to give a two line proof of the main result.


    加载中


    [1] A. Dudek and A. M. Frieze, Loose Hamilton Cycles in Random k-Uniform Hypergraphs, Electronic J. Comb., 18 (2011), 48.
    [2] A. Dudek, A. M. Frieze, P. Loh, et al. Optimal divisibility conditions for loose Hamilton cycles in random hypergraphs, Electronic J. Comb., 19 (2012), 44.
    [3] K. Frankston, J. Kahn, B. Narayanan, et al. Thresholds versus fractional expectation thresholds, 2019. Available from: https://arxiv.org/pdf/1910.13433.pdf.
    [4] A. M. Frieze, Loose Hamilton Cycles in Random 3-Uniform Hypergraphs, Electronic J. Comb., 17 (2010).
    [5] A. Heckel, Random triangles in random graphs, 2018. Available from: https://arxiv.org/pdf/1802.08472.pdf.
    [6] A. Johansson, J. Kahn and V. Vu, Factors in random graphs, Random Structures and Algorithms, 33 (2008), 1-28. doi: 10.1002/rsa.20224
    [7] O. Riordan, Random cliques in random graphs, 2018. Available from: https://arxiv.org/pdf/1802.01948.pdf.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3559) PDF downloads(253) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog