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1. Introduction

In a seminal paper, Johansson, Kahn and Vu [6] solved the long standing open question of
determining the threshold for the existence of H-factors in random graphs and hypergraphs. For some
questions, the proof for hypergraphs turns out to be somewhat simpler than that of the related question
in graphs. More precisely, the proof of the existence of a perfect matching in a random r-uniform
hypergraph is simpler than the proof of the existence of a Kr-factor in Gn,p. Recently Riordan [7]
showed that one can avoid the more complicated proofs. He does this by proving a coupling between
graphs and hypergraphs that enables one to infer graph factor thresholds from hypergraph matching
thresholds. The aim of this short note is to show how to use this coupling to prove thresholds for some
other spanning subgraphs.

We are given a graph G with n vertices and an integer r ≥ 3 where n = (r − 1)m, m integer. A
Kr-cycle is a sequence H1,H2, . . . ,Hm of copies of Kr where (i) V(Hi) ∩ V(Hi+1) = {vi} , i = 1, 2 . . . ,m
(vm+1 = v1 here) and (ii) Hi and H j are vertex disjoint for i , j.
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A K4-cycle

We will prove the following theorem:

Theorem 1. p = n−2/r log1/(r
2) n is a threshold for Gn,p to contain a spanning Kr-cycle.

2. Proof of Theorem 1

For the proof, we need two results: the first will be Theorem 1 of Riordan [7] combined with
Theorem 2 of Heckel [5].

Theorem 2. Let r ≥ 3 be given. There is a positive constant ε such that if p ≤ n−2/r+ε then, for some
π ≈ p(r

2), we may couple G = Gn,p and the random r-uniform hypergraph H = Hn,π;r such that w.h.p.
to every edge e of H there is a corresponding copy of Kr in G with V(Kr) = e.

We will also need the following theorem from Dudek, Frieze, Loh and Speiss [2], which removed
some divisibility constraints from [1, 4]. A loose Hamilton cycle C in an r-uniform hypergraph H =

(V,E) of order n is a collection of edges of H such that for some cyclic ordering of V , every edge
consists of r consecutive vertices, and for every pair of consecutive edges Ei−1, Ei in C (in the natural
ordering of the edges), we have |Ei−1 ∩ Ei| = 1.

Theorem 3. Suppose k ≥ 3. If π = ωn1−r log n for ω = ω(n)→ ∞, then

lim
n→∞

(r−1)|n

Pr
(
Hn,π;r contains a loose Hamilton cycle

)
= 1.

Proof of Theorem 1
First suppose that p = ωn−2/r log1/(r

2) n. We couple Gn,p with the hypergraph Hn,π;r as promised by
Theorem 2. Because p(r

2) = (ωn−2/r log1/(r
2) n)(

r
2) = ω(r

2)n1−r log n we see from Theorem 3 that w.h.p.
Hn,π;r contains a loose Hamilton cycle. When lifted back to Gn,p via Theorem 2 we get the promised
Kr-cycle.

If p = ω−1n−2/r log1/(r
2) n then Lemma 1.4 of [6] implies that w.h.p. there will be vertices that are

not in a copy of Kr. �
This completes the proof of Theorem 1.

3. Discussion and open problems

We first note that we can replace Kr by any strictly 1-balanced graph F and then apply Theorem
15 of [7] and obtain a spanning subgraph made up of a sequence of edge disjoint copies of F, where
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adjacent copies in the sequence share exactly one common vertex. More precisely, for a graph F we let
d1(F) =

|E(F)|
|V(F)|−1 . A graph is strictly 1-balanced if d1(F) > d1(F′) for all subgraphs F′ ⊆ F with at least

two vertices. Theorem 15 amends Theorem 2 by having the requirement that p ≤ n−1/d1+ε and letting
π = ap|E(F)| for some constant a > 0. Note that |E(F)| =

(
r
2

)
d1(Kr) = r/2 and so Theorem 1 is just

a special case, other than the knowledge that we can take a = 1. We call the constructions that arise
F-cycles.

There is a weakness in the result. Consider the diagram below:

C4-cycle

We cannot use the above argument to show that the threshold for an n-vertex copy of the above example
has a threshold at p = n−3/4+o(1). The reason being that we have no control over the positioning of the
connecting vertices i.e. we cannot prevent something like the following being part of the F-cycle:

It is therefore an open question as to the threshold for the existence of a spanning C4-cycle.

The proof also breaks if our adjacent copies share two or more vertices, as in the diagrams below:

C4-cycle, overlap 2 (K4 − e)-cycle, overlap 2

One can check that the probability an edge occurs in H is not sufficient to imply the existence of a
Hamilton cycle of the requisite type as in [2]. For the first example, the expected number of copies of
a spanning C4-cycle in Gn,p is given by n!p3n/2 and so we should take p ≈ n−2/3. But then π will be
chosen as ≈ n−8/3 and this is below the threshold of ωn−2 for a Hamilton cycle of the required type,
see Theorem 3(iii) of [1]. We have a similar experience with the second example, with p ≈ n−1/2 and
π ≈ n−5/2.

On the other hand, a recent result of Frankston, Kahn, Narayanan and Park [3] enables us to argue
that the suggested thresholds are no worse than log n from the correct values.
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