
Citation: Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen. A variant of Jensen-type inequality and related results for harmonic convex functions[J]. AIMS Mathematics, 2020, 5(6): 6404-6418. doi: 10.3934/math.2020412
[1] | Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch . Refined estimates and generalization of some recent results with applications. AIMS Mathematics, 2021, 6(10): 10728-10741. doi: 10.3934/math.2021623 |
[2] | Waqar Afzal, Waqas Nazeer, Thongchai Botmart, Savin Treanţă . Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation. AIMS Mathematics, 2023, 8(1): 1696-1712. doi: 10.3934/math.2023087 |
[3] | Waqar Afzal, Khurram Shabbir, Savin Treanţă, Kamsing Nonlaopon . Jensen and Hermite-Hadamard type inclusions for harmonical $ h $-Godunova-Levin functions. AIMS Mathematics, 2023, 8(2): 3303-3321. doi: 10.3934/math.2023170 |
[4] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[5] | Jorge E. Macías-Díaz, Muhammad Bilal Khan, Muhammad Aslam Noor, Abd Allah A. Mousa, Safar M Alghamdi . Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Mathematics, 2022, 7(3): 4266-4292. doi: 10.3934/math.2022236 |
[6] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241 |
[7] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[8] | Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao . Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446 |
[9] | Waqar Afzal, Sayed M. Eldin, Waqas Nazeer, Ahmed M. Galal . Some integral inequalities for harmonical $ cr $-$ h $-Godunova-Levin stochastic processes. AIMS Mathematics, 2023, 8(6): 13473-13491. doi: 10.3934/math.2023683 |
[10] | Wei Gao, Artion Kashuri, Saad Ihsan Butt, Muhammad Tariq, Adnan Aslam, Muhammad Nadeem . New inequalities via n-polynomial harmonically exponential type convex functions. AIMS Mathematics, 2020, 5(6): 6856-6873. doi: 10.3934/math.2020440 |
A real-valued function f:I⊆R→R is said to be convex (concave) on I if the inequality
f(tx+(1−t)y)≤(≥)tf(x)+(1−t)f(y) |
holds for all x,y∈I and t∈[0,1].
Recently, the generalizations, variants and extensions for the convexity have attracted the attention of many researchers, for example, the harmonic-convexity [1,2,3], harmonic (s, m)-convexity [4,5], harmonic (p, (s, m))-convexity [6], harmonic (s, m)-preinvexity [7], harmonic log-convexity [8], harmonic (p, h, m)-preinvexity [9], exponential-convexity [10,11], s-convexity [12,13], Hp,q-convexity [14], generalized convexity [15], GG-and GA-convexities [16] and quasi-convexity [17,18]. In particular, many remarkable inequalities can be found in the literature [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] via the convexity theory.
Jensen [37] provided a characterization for the convex functions as follows.
Theorem 1.1. Let f be a convex function defined on the interval I⊆R. Then the inequality
f(n∑i=1λixi)≤n∑i=1λif(xi) | (1.1) |
holds for all x1,x2,⋯,xn∈I and λ1,λ2,⋯,λn≥0 with ∑ni=1λi=1.
If f is a concave function, then the inequality (1.1) is reversed. The inequality (1.1) for convex functions plays a pivotal role in the theory of inequalities due to many other inequalities, for instance, the Hölder inequality, Minkowski inequality and arithmetic mean-geometric mean inequality can be obtained as a particular case of inequality (1.1). Furthermore, it is also important to observe that the inequality (1.1) has a close relation with numerous other prime inequalities like the reverse Minkowski inequality [38], Ostrowski inequality [39,40], Petroviˊc inequality [41], Hermite-Hadamard inequality [42], Bessel function inequality [43] and Pólya-Szegö inequality [44].
Next, we recall the definition of harmonic convex functions [2,3,45].
Definition 1.2. A real-valued function f:I⊆R∖{0}→R is said to be harmonic convex on I if the inequality
f(xytx+(1−t)y)≤tf(y)+(1−t)f(x) | (1.2) |
holds for all x,y∈I and t∈[0,1]. If inequality (1.2) is reversed, then f is said to be harmonic concave.
Now, we provide several examples of harmonic convex functions. The function f(x)=lnx is a harmonic convex function on the interval (0,∞), but it is not a convex function (See Figure 1).
The following three functions are harmonic convex on the interval (0,∞) (See Figure 2).
Very recently, Dragomir [46] established a Jensen-type inequality for harmonic convex function as follows.
Theorem 1.3. Let I⊆(0,∞) be an interval and f:I→R be a harmonic convex function. Then the Jensen-type inequality
f(1∑ni=1tixi)≤n∑i=1tif(xi) | (1.3) |
holds for all x1,⋯,xn∈I and t1,⋯,tn≥0 with ∑ni=1ti=1.
In [47], Varošanec introduced the concept of h-convex function which is the generalizations of many generalized convex functions, like s-convex function, Godunova-Levin function, s-Godunova-Levin function, P-convex function and so on. In the similar manner, the harmonic h-convexity was introduced to unify various types of harmonic convexities.
Definition 1.4. (See [48]) Let h:[0,1]→R+ be a non-negative function. Then the real-valued function f:I⊆R∖{0}→(0,∞) is said to be harmonic h-convex on I if the inequality
f(xytx+(1−t)y)≤h(t)f(y)+h(1−t)f(x) | (1.4) |
holds for all x,y∈I and t∈[0,1]. If inequality (1.4) is reversed, then f is said to be harmonic concave.
Remark 1.5. We provide several examples of harmonic h-convex (concave) functions as follows:
● We clearly see that if h(t)=t, then the class of non-negative harmonic convex (concave) functions on I is contained in the class of harmonic h-convex (concave) functions on I.
● Let t∈(0,1) and h(t)=t2. Then the function f:[−1,0)∪(0,1]→R defined by f(x)=1 is neither non-increasing nor non-decreasing h-convex function. Therefore, we know that f is a harmonic h-convex function by the Proposition 2.1 given in [49].
● Let t∈(0,1) and h:(0,1)→(0,∞) be a real-valued function such that h(t)≥t on (0,1). Then the following four functions: h1(t)=t, h2(t)=ts(s∈(0,1)), h3(t)=1t and h4(t)=1 satisfy the conditions of the function h mentioned above. Therefore, f is a harmonic hk-convex function for k=1,2,3,4 if f:I⊆(0,∞)→(0,∞) is a a non-decreasing convex function, or harmonic s-convex function, or harmonic Godunova-Levin function or harmonic P-function.
● Let f:(0,∞)→(0,∞) be a non-decreasing continuous function and h:[0,1]→(0,∞) be a continuous self-concave function such that f(tx+(1−t)y)≤h(t)f(x)+(1−t)f(y) for some t∈(0,1) and all x,y∈(0,∞). Then f is a h-convex function by Lemma 1 of [50] and hence f is a harmonic h-convex function by proposition 2.1 of [49].
Definition 1.6. A real-valued function h:I⊆R→R is said to be a submultiplicative function if the inequality
h(xy)≤h(x)h(y) | (1.5) |
for all x,y∈I. If inequality (1.5) is reversed, then h is said to be a supermultiplicative function. If just equality holds in the relation (1.5), then h is said to be a multiplicative function.
Definition 1.7. Let n≥2, a=(a1,⋯,an) and b=(b1,⋯,bn) be two n-tuples of real numbers, and [a]=(a[1],⋯,a[n]) and [b]=(b[1],⋯,b[n]) be the descending rearrangements of a and b, namely
a[1]≥a[2]≥⋯≥a[n],b[1]≥b[2]≥⋯≥b[n]. |
Then we say a majorizes b (in symbols a≻b) if
● ∑ki=1a[i]≥∑ki=1b[i] for k=1,2,⋯,n−1.
● ∑ni=1a[i]=∑ni=1b[i].
The well-known memorization type theorem can be stated as follows.
Theorem 1.8. (See [2]) Let a=(a1,...,an), b=(b1,...,bn) be finite sequences from I⊆R∖{0} and if a majorizes b (in symbols a≻b). Now, if f:I→R is harmonic convex, then following inequality
n∑i=1aif(ai)≥n∑i=1bif(bi) | (1.6) |
holds.
In this section, we will establish a variant of the Jensen-type inequality presented in Theorem 1.3, provide a Jensen-type inequality and its variant for the harmonic h-convex functions. In order to prove our main results, we need a lemma which we present in this section.
Lemma 2.1. Let I⊆R∖{0} be an interval, {xk}nk=1∈I be a finite positive increasing sequence and f be a harmonic convex function on the interval I. Then the inequality
f(11x1+1xn−1xk)≤f(x1)+f(xn)−f(xk) | (2.1) |
holds for all 1≤k≤n.
Proof. Let 1yk=1x1+1xn−1xk. Then 1yk+1xk=1x1+1xn, so that the pairs x1,xn and xk,yk possess the same harmonic mean. Therefore, we can find μ,λ∈[0,1] with μ+λ=1 such that
xk=x1xnμx1+λxn |
and
yk=x1xnλx1+μxn. |
It follows from the harmonic convexity of f that
f(yk)=f(x1xnλx1+μxn) |
≤μf(x1)+λf(xn) |
=(1−λ)f(x1)+(1−μ)f(xn) |
=f(x1)+f(xn)−[λf(x1)+μf(xn)] |
≤f(x1)+f(xn)−f(x1xnμx1+λxn) |
=f(x1)+f(xn)−f(xk). |
Therefore, inequality (2.1) follows from 1yk=1x1+1xn−1xk.
Remark 2.2. Lemma 2.1 lead to the conclusion that
1. Since f(x)=lnx is harmonic convex on (0,∞), so using (2.1) we get 2aba+b≤a+b2 for all a,b∈(0,∞).
2. Since f(x)=1x2 is harmonic convex on (0,∞), so using (2.1) we get (2aba+b)2≤a2+b22 for all a,b∈(0,∞).
3. Since f(x)=√x is harmonic convex on (0,∞), so using (2.1) we get √2aba+b≤√a+√b2 for all a,b∈(0,∞).
4. It was proved in [49] that (a+b2)2≤13(a2+ab+b2)≤a2+b22 for all a,b∈(0,∞). Therefore, in the light of previous remarks, we get its improvement as
(2aba+b)2≤(a+b2)2≤13(a2+ab+b2)≤a2+b22. | (2.2) |
5. Since f(x)=ex is harmonic convex on (0,∞), so using (2.1) we get e2aba+b≤ea+eb2.
Remark 2.3. (Discrete form of Hölder's inequality) Let xi,yi>0 and p,q>1 with 1p+1q=1. Then one has
n∑i=1xiyi≤(n∑i=1xpi)1p(n∑i=1yqi)1q. | (2.3) |
Proof. Since f(x)=1xp is harmonic convex on the interval (0,∞), hence by use of the substitutions ti=yi∑ni=1yqi and si=x−1iyqpi we get
(1∑ni=1|yi|qn∑i=1|yi|q|xi||yi|−qp)p≤1∑ni=1|yi|qn∑i=1|yi|q(|xi||yi|−qp)p, |
which gives the desired inequality (2.3).
Theorem 2.4. Let I⊆R∖{0} be an interval and f:I→R be a harmonic convex function. Then the inequality
f(11x1+1xn−∑nk=1tkxk)≤f(x1)+f(xn)−n∑k=1tkf(xk). | (2.4) |
holds for any finite positive sequence {xk}nk=1∈I and t1,⋯,tn≥0 with ∑ni=1ti=1.
Proof. It follows from Theorem 1.3 and Lemma 2.1 together with the harmonic convexity of f on the interval I that
f(11x1+1xn−∑nk=1tkxk)=f(1∑nk=1tk(1x1+1xn−1xk))≤n∑k=1tkf(11x1+1xn−1xk)≤n∑k=1tk(f(x1)+f(xn)−f(xk))=f(x1)+f(xn)−n∑k=1tkf(xk), |
which completes the proof of Theorem 2.4.
Theorem 2.5. Let n≥2, J⊆(0,1) be an interval, {xk}nk=1∈I⊆R∖{0}, p1,p2,⋯,pn>0, Pn=∑ni=1pi, h:J→R be a non-negative supermultiplicative function and f be a non-negative harmonic h-convex function on I. Then one has
f(11Pn∑ni=1pixi)≤n∑i=1h(piPn)f(xi). | (2.5) |
Proof. We use mathematical induction to prove Theorem 2.5. If n=2, then inequality (2.5) is equivalent to inequality (1.4) with t=p1P2 and 1−t=p2P2.
Suppose that inequality (2.5) holds for n−1. Then for the n-tuples (x1,⋯,xn) and (p1,⋯,pn), we have
f(11Pn∑ni=1pixi)=f(1pnPnxn+∑n−1i=1piPnxi)=f(1pnPnxn+Pn−1Pn∑n−1i=1piPn−1xi)≤h(pnPn)f(xn)+h(Pn−1Pn)f(1∑n−1i=1piPn−1.xi)≤h(pnPn)f(xn)+h(Pn−1Pn)n−1∑i=1h(piPn−1)f(xi)≤h(pnPn)f(xn)+n−1∑i=1h(piPn)f(xi)=n∑i=1h(piPn)f(xi), |
which completes the proof of Theorem 2.5.
Remark 2.6. Let h(α)=α. Then inequality (2.5) becomes the Jensen-type inequality (1.3) for harmonic convex function.
In order to prove our next result, we need the following Lemma 2.7 which is a generalization of Lemma 2.1.
Lemma 2.7. Let h:J⊇(0,1)→R be a non-negative supermutiplicative function on J, μ,λ∈[0,1] such that μ+λ=1 and h(μ)+h(λ)≤1. If f:I⊆R∖{0}→R is a non-negative harmonic h-convex function, then for finite positive increasing sequence {xk}nk=1∈I, we again have the inequality (2.1).
Proof. Similarly to proof of Lemma 2.1, suppose that 1yk=1x1+1xn−1xk. Then 1yk+1xk=1x1+1xn, so that the pairs x1,xn and xk,yk possess the same harmonic mean. Therefore, we can find μ,λ∈[0,1] such that
xk=x1xnμx1+λxn |
and
yk=x1xnλx1+μxn, |
where μ+λ=1 and 1≤k≤n. Now, by taking into account that f is harmonic h-convex, we get
f(yk)=f(x1xnλx1+μxn)≤h(μ)f(x1)+h(λ)f(xn)≤(1−h(λ))f(x1)+(1−h(μ))f(xn)=f(x1)+f(xn)−[h(λ)f(x1)+h(μ)f(xn)]≤f(x1)+f(xn)−f(x1xnμx1+λxn)=f(x1)+f(xn)−f(xk), |
which completes the proof of Lemma 2.7.
Theorem 2.8. Let h:J⊇(0,1)→R be a non-negative supermutiplicative function, p1,⋯,pn be positive real numbers (n≥2) such that Pn=∑nk=1pi and ∑nk=1h(pkPn)≤1. If f is non-negative harmonic h-convex on I⊆R∖{0}, then for any finite positive increasing sequence {xk}nk=1∈I, we have
f(11x1+1xn−1Pnn∑k=1pixi)≤f(x1)+f(xn)−n∑k=1h(pkPn)f(xk). | (2.6) |
If h is submultiplicative function, ∑nk=1h(pkPn)≥1 and f is harmonic h-concave, then the inequality (2.6) is reversed.
Proof. Since ∑nk=1pkPn=1 and f is harmonic h-convex on I, so by taking into account Theorem 2.5 and Lemma 2.7 we have
f(11x1+1xn−1Pn∑nk=1pkxk)=f(1∑nk=1pkPn(1x1+1xn−1xk))≤n∑k=1h(pkPn)f(11x1+1xn−1xk)≤n∑k=1h(pkPn)(f(x1)+f(xn)−f(xk))=[f(x1)+f(xn)]n∑k=1h(pkPn)−n∑k=1h(pkPn)f(xk)≤f(x1)+f(xn)−n∑k=1h(pkPn)f(xk), |
which completes the proof of Theorem 2.8.
In this section, we present an extension of inequality (2.2) and some related results.
Theorem 3.1. Let f:[a,b]→R be a continuous harmonic convex function on [a,b]⊂(0,∞). Suppose that a=(a1,⋯,am) with aj∈[a,b] and X=(xij) is a real n×m matrix such that xij∈[a,b] for all i=1,2,3,⋯,n and j=1,2,3,⋯,m. If a majorizes each row of X, that is
xi=(xi1,xi2,xi3,⋯,xim)≺(a1,⋯,am)=aforeachi=1,2,3⋯,n |
and
m∑j=11aj=m∑j=11xij, | (3.1) |
then we have the inequality
f(1∑mj=11aj−∑m−1j=1∑ni=1wixij)≤m∑j=1ajf(aj)xim−m−1∑j=1n∑i=1wixijf(xij)xim, | (3.2) |
where wi≥0 with ∑ni=1wi=1.
Proof. Since f is harmonic convex. Therefore, by taking into account the Jensen-type inequality for harmonic convex function, we have
f(1∑mj=11aj−∑m−1j=1∑ni=1wixij)=f(1∑mj=1∑ni=1wi1aj−∑m−1j=1∑ni=1wi1xij)=f(1∑ni=1wi[∑mj=11aj−∑m−1j=11xij])≤n∑i=1wif(1∑mj=11aj−∑m−1j=11xij)=n∑i=1wixim[ximf(1∑mj=11aj−∑m−1j=11xij)]. | (3.3) |
From Eq (3.1) and using majorization-type Theorem 1.8 for f, we have
ximf(1∑mj=11aj−∑m−1j=11xij)=ximf(xim)≤m∑j=1ajf(aj)−m−1∑j=1xijf(xij). | (3.4) |
From (3.3) and (3.4), we get the required result.
Now, we present the alternative form of above theorem as follows.
Theorem 3.2. If all conditions of Theorem 3.1 are satisfied, then we have
f(1∑mj=11aj−∑k−1j=1∑ni=1wixij−∑m−1j=k+1∑ni=1wixij) |
≤m∑j=1ajf(aj)xim−k−1∑j=1n∑i=1wixijf(xij)xim−m−1∑j=k+1n∑i=1wixijf(xij)xim. | (3.5) |
Proof. Using the technique of Theorem 3.1, the proof is quite obvious.
Theorem 3.3. If f:[a,b]⊆(0,∞)→R is an harmonic convex function and x1,⋯,xn∈[a,b], then
n−1nn∑k=1f(xk)+f(x1)+f(xn)−f(11x1+1xn−∑nk=11nxk) | (3.6) |
≥f(2x1x2x1+x2)+...+f(2x1xn−1xn−1+xn)+f(2xnx1xn+xn). |
Proof. Using (1.2) with t=12, we get
f(2x1x2x1+x2)+...+f(2x1xn−1xn−1+xn)+f(2xnx1xn+xn)≤12[f(x1)+f(x2)]+...+12[f(xn−1)+f(xn)]+12[f(xn)+f(x1)]=f(x1)+...+f(xn)=n∑k=1f(xk). | (3.7) |
Note that
n∑k=1f(xk)=n−1nn∑k=1f(xk)+n∑k=11nf(xk)=n−1nn∑k=1f(xk)+f(x1)+f(xn)−[f(x1)+f(xn)−n∑k=11nf(xk)]. | (3.8) |
Therefore, the required result follows from (2.4) and (3.7) and (3.8).
Theorem 3.4. If f:[a,b]⊆(0,∞)→R is a harmonic convex function and x1,⋯,xn∈[a,b], then
n∑k=1f(yk)≤n−1nn∑k=1f(xk)+f(x1)+f(xn)−f(11x1+1xn−∑nk=11nxk), | (3.9) |
where yk=n(n−1)α−1+x−1k and α=nx−11+...+x−1n.
Proof. Using Jensen-type inequality for harmonic convex function, we have
n∑k=1f(yk)=f(y1)+...+f(yn)=f(n(n−1)α−1+x−11)+...+f(n(n−1)α−1+x−1n)≤[1nf(α)+n−1nf(x1)]+...+[1nf(α)+n−1nf(xn)]=f(α)+n−1nn∑k=1f(xk)=f(nx−11+...+x−1n)+n−1nn∑k=1f(xk)≤1nn∑k=1f(xk)+n−1nn∑k=1f(xk). |
Therefore, the required result follows from (2.4) and (3.8).
Theorem 3.5. Let f be a harmonic convex function on [m,M]. Then
f(11m+1M−2xyx+y)≤f(m)+f(M)−∫10f(xytx+(1−t)y)dt≤f(m)+f(M)−f(2xyx+y). | (3.10) |
Proof. It follows from the inequality (2.4) that
f(11m+1M−2aba+b)≤f(m)+f(M)−f(a)+f(b)2 | (3.11) |
for all a,b∈[m,M].
Let t∈[0,1] and x,y∈[m,M]. Then Replacing a and b respectively by xytx+(1−t)y and xyty+(1−t)x in (3.10), we obtain
f(11m+1M−2xyx+y)≤f(m)+f(M)−f(xytx+(1−t)y)+f(xyty+(1−t)x)2. | (3.12) |
Integrating both sides of (3.12) with respect to t on [0,1], we get
f(11m+1M−2xyx+y)≤f(m)+f(M)−12∫10[f(xytx+(1−t)y)+f(xyty+(1−t)x)]dt. | (3.13) |
Due to
∫10f(xytx+(1−t)y)dt=∫10f(xyty+(1−t)x)]dt=xyy−x∫yxf(t)t2dt, | (3.14) |
the inequality (3.13) give rise to the first inequality of (3.10). The second inequality of (3.10) follows directly from the Hermite-Hadamard type inequality for harmonic convex functions.
We have found a variant of the discrete Jensen-type inequality for harmonic convex functions, and have provided a Jensen-type inequality and it variant for the harmonic h-convex functions. In Addition, we considered here different examples of harmonic convex functions and give a short proof of Hölder's inequality by using Jensen-type inequality. Our obtained results are the improvements and generalization of many previously known results, and our ideas and approach may lead to a lot of follow-up research.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The work was supported by the Higher Education Commission of Pakistan, the Basque Government (Grant no. IT1207-19) and the Natural Science Foundation of China (Grant Nos. 61673169, 11971142, 11701176, 11626101, 11601485).
The authors declare no conflict of interest.
Imran Abbas Baloch provided the main idea and carried out the proof of Lemma 2.1 and Theorems 2.4, 2.5, 3.1, 3.2, 3.3, 3.4, 3.5 and drafted the manuscript. Aqeel Ahmad Mughal carried out the proof of Lemma 2.7 and Theorem 2.8. Absar ul Haq, Y.-M. Chu and Manuel De La Sen reviewed whole mathematics of article, completed the final revision of the article. All authors read and approved the final manuscript.
[1] | İ. İşcan, Hermite-Hadamard type inequaities for harmonically functions, Hacet. J. Math. Stat., 43, (2014), 935-942. |
[2] | I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. |
[3] |
M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
![]() |
[4] | I. A. Baloch, I. Işcan, S. S. Dragomir, Fejer's type inequalities for harmonically (s, m)-convex functions, Int. J. Anal. Appl., 12 (2016), 188-197. |
[5] | I. A. Baloch, I. Işcan, Some Ostrowski type inequalities for harmonically (s, m)-convex functions in Second Sense, Int. J. of Anal., 2015 (2015), 672-675. |
[6] | I. A. Baloch, I. Işcan, Some Hermite-Hadamard type integral inequalities for Harmonically (p, (s, m))-convex functions, J. Inequal. Spec. Funct., 8 (2017), 65-84. |
[7] | I. A. Baloch, I. Işcan, Integral inequalities for differentiable harmonically (s, m)-preinvex functions, Open J. Math. Anal., 1 (2017), 25-33. |
[8] |
I. A. Baloch, S. S. Dragomir, New inequalities based on harmonic log-convex functions, Open J. Math. Anal., 3 (2019), 103-105. doi: 10.30538/psrp-oma2019.0043
![]() |
[9] | S. H. Wu, I. A. Baloch, I. Iscan, On Harmonically (p, h, m)-preinvex functions, J. Funct. Space., 2017 (2017), 1-9. |
[10] |
M. A. Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315
![]() |
[11] |
S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
![]() |
[12] |
M. A. Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[13] |
S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[14] |
M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
![]() |
[15] |
S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
![]() |
[16] |
Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG-and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322
![]() |
[17] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[18] | I. A. Baloch, B. R. Ali, On new inequalities of Hermite-Hadamard type for functions whose fourth derivative absolute values are quasi-convex with applications, J. New Theory, 10 (2016), 76-85. |
[19] |
W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
![]() |
[20] | M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271. |
[21] |
T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512-4528. doi: 10.3934/math.2020290
![]() |
[22] |
T. Abdeljawad, S. Rashid, H. Khan, et al. On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
![]() |
[23] |
S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
![]() |
[24] |
S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859-5883. doi: 10.3934/math.2020375
![]() |
[25] | L. Xu, Y. M. Chu, S. Rashid, et al. On new unified bounds for a family of functions with fractional q-calculus theory, J. Funct. Space., 2020 (2020), 1-9. |
[26] | S. Rashid, A. Khalid, G. Rahman, et al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus, J. Funct. Space., 2020 (2020), 1-12. |
[27] |
J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory on time scales, AIMS Math., 5 (2020), 6073-6086. doi: 10.3934/math.2020390
![]() |
[28] |
H. X. Qi, M. Yussouf, S. Mehmood, et al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., 5 (2020), 6030-6042. doi: 10.3934/math.2020386
![]() |
[29] | H. Kalsoom, M. Idrees, D. Baleanu, et al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 1-13. |
[30] |
H. Ge-JiLe, S. Rashid, M. A. Noor, et al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108-6123. doi: 10.3934/math.2020392
![]() |
[31] |
A. Iqbal, M. A. Khan, N. Mohammad, et al. Revisiting the Hermite-Hadamard integral inequality via a Green function, AIMS Math., 5 (2020), 6087-6107. doi: 10.3934/math.2020391
![]() |
[32] |
M. B. Sun, Y. M. Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
![]() |
[33] | J. M. Shen, Z. H. Yang, W. M. Qian, et al. Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843-853. |
[34] | M. K. Wang, Y. M. Chu, Y. M. Li, et al. Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821-841. |
[35] | T. Abdeljawad, S. Rashid, Z. Hammouch, et al. Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 1-27. |
[36] |
X. Z. Yang, G. Farid, W. Nazeer, et al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325-6340. doi: 10.3934/math.2020407
![]() |
[37] |
J. L. W. V. Jensen, Sur les fonctions convexes et les inégalits entre les valeurs moyennes, Acta Math., 30 (1906), 175-193. doi: 10.1007/BF02418571
![]() |
[38] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12. |
[39] |
S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629-2645. doi: 10.3934/math.2020171
![]() |
[40] | I. A. Baloch, New ostrowski type inequalities for functions whose derivatives are p-preinvex, J. New Theory, 16 (2017), 68-79. |
[41] | I. A. Baloch, M. Bohner, M. D. L. Sen, Petrovic-type inequalities for harmonic convex functions on coordinates, J. Inequal. Spec. Funct., 11 (2020), 16-23. |
[42] |
Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, AIMS Math., 5 (2020), 5106-5120. doi: 10.3934/math.2020328
![]() |
[43] |
T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
![]() |
[44] |
S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
![]() |
[45] | S. Y. Guo, Y. M. Chu, G. Farid, et al. Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s, m)-convex functions, J. Funct. Space., 2020 (2020), 1-10. |
[46] | S. S. Dragomir, Inequalities of Jensen type for HA-convex functions, An. Univ. Oradea Fasc. Mat., 27 (2020), 103-124. |
[47] |
S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. doi: 10.1016/j.jmaa.2006.02.086
![]() |
[48] |
M. U. Awan, M. A. Noor, M. V. Mihai, et al. Some new bounds for Simpson's rule involving special functions via harmonic h-convexity, J. Nonlinear Sci. Appl., 10 (2017), 1755-1766. doi: 10.22436/jnsa.010.04.37
![]() |
[49] | I. A. Baloch, M. D. L. Sen, İ. İşcan, Characterizations of classes of harmonic convex functions and applications, Int. J. Anal. Appl., 17 (2019), 722-733. |
[50] | M. R. Delavar, S. S. Dragomir, M. D. L. Sen, A note on characterization of h-convex functions via Hermite-Hadamard type inequality, Probl. Anal. Issues Anal., 8 (2019), 28-36. |
1. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
2. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5 | |
3. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
4. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
5. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
6. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
7. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
8. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
9. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
10. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
11. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
12. | Xuexiao You, Muhammad Aamir Ali, Hüseyin Budak, Jiraporn Reunsumrit, Thanin Sitthiwirattham, Hermite–Hadamard–Mercer-Type Inequalities for Harmonically Convex Mappings, 2021, 9, 2227-7390, 2556, 10.3390/math9202556 | |
13. | Jiraporn Reunsumrit, Miguel J. Vivas-Cortez, Muhammad Aamir Ali, Thanin Sitthiwirattham, On Generalization of Different Integral Inequalities for Harmonically Convex Functions, 2022, 14, 2073-8994, 302, 10.3390/sym14020302 | |
14. | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon, Fractional Ostrowski type inequalities for differentiable harmonically convex functions, 2022, 7, 2473-6988, 3939, 10.3934/math.2022217 | |
15. | Gunaseelan Mani, Arul Joseph Gnanaprakasam, Absar Ul Haq, Imran Abbas Baloch, Choonkil Park, On solution of Fredholm integral equations via fuzzy $ b $-metric spaces using triangular property, 2022, 7, 2473-6988, 11102, 10.3934/math.2022620 | |
16. | Yi Ma, Muhammad Shoaib Saleem, Imran Bashir, Yeliang Xiao, Muhammad Gulzar, Schur, Hermite-Hadamard, and Fejér Type Inequalities for the Class of Higher-Order Generalized Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/8575563 | |
17. | Waqar Afzal, Alina Alb Lupaş, Khurram Shabbir, Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova–Levin Interval-Valued Functions, 2022, 10, 2227-7390, 2970, 10.3390/math10162970 | |
18. | Saad Ihsan Butt, Saba Yousaf, Atifa Asghar, Khuram Ali Khan, Hamid Reza Moradi, Huo Tang, New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function, 2021, 2021, 2314-8888, 1, 10.1155/2021/5868326 | |
19. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Absar Ul Haq, Kamsing Nonlaopon, Some Inequalities Related to Jensen-Type Results with Applications, 2022, 14, 2073-8994, 1585, 10.3390/sym14081585 | |
20. | Saad Ihsan Butt, Praveen Agarwal, Saba Yousaf, Juan L. G. Guirao, Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic convex function with applications, 2022, 2022, 1029-242X, 10.1186/s13660-021-02735-3 | |
21. | Muhammad Aamir Ali, Muhammad Imran Asjad, Hüseyin Budak, Waqas Ali Faridi, On Ostrowski–Mercer inequalities for differentiable harmonically convex functions with applications, 2022, 0170-4214, 10.1002/mma.8998 | |
22. | Saad Ihsan Butt, Saba Yousaf, Khuram Ali Khan, Rostin Matendo Mabela, Abdullah M. Alsharif, Muhammad Shoaib Anwar, Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel, 2022, 2022, 1563-5147, 1, 10.1155/2022/7269033 | |
23. | Waqar Afzal, Khurram Shabbir, Savin Treanţă, Kamsing Nonlaopon, Jensen and Hermite-Hadamard type inclusions for harmonical $ h $-Godunova-Levin functions, 2023, 8, 2473-6988, 3303, 10.3934/math.2023170 | |
24. | Wei Liu, Fangfang Shi, Guoju Ye, Dafang Zhao, The Properties of Harmonically cr-h-Convex Function and Its Applications, 2022, 10, 2227-7390, 2089, 10.3390/math10122089 | |
25. | Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch, Refined estimates and generalization of some recent results with applications, 2021, 6, 2473-6988, 10728, 10.3934/math.2021623 | |
26. | Aqeel Ahmad Mughal, Hassan Almusawa, Absar Ul Haq, Imran Abbas Baloch, Ahmet Ocak Akdemir, Properties and Bounds of Jensen-Type Functionals via Harmonic Convex Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/5561611 | |
27. | Asfand Fahad, Yuanheng Wang, Saad Ihsaan Butt, Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications, 2023, 11, 2227-7390, 278, 10.3390/math11020278 | |
28. | Bandar Bin-Mohsin, Muhammad Zakria Javed, Muhammad Uzair Awan, Marcela V. Mihai, Hüseyin Budak, Awais Gul Khan, Muhammad Aslam Noor, Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications, 2022, 14, 2073-8994, 2187, 10.3390/sym14102187 | |
29. | Yamin Sayyari, Mehdi Dehghanian, A new class of convex functions and applications in entropy and analysis, 2024, 181, 09600779, 114677, 10.1016/j.chaos.2024.114677 | |
30. | MUHAMMAD KASHIF, GHULAM FARID, MUHAMMAD IMRAN, SADIA KOUSAR, RT-CONVEX FUNCTIONS AND THEIR APPLICATIONS, 2023, 24, 2068-3049, 867, 10.46939/J.Sci.Arts-23.4-a05 | |
31. | Saad Ihsan Butt, Miguel Vivas-Cortez, Hira Inam, Harmonic conformable refinements of Hermite-Hadamard Mercer inequalities by support line and related applications, 2024, 30, 1387-3954, 385, 10.1080/13873954.2024.2348156 |