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1. Introduction and Preliminaries

Suppose thatA is the category of functions of the form

f (z) = z +

∞∑
n=2

anzn (1.1)

that are analytic in the open unit disk U := {z ∈ C : |z| < 1} and assume that S is the subset of A
consisting of all univalent functions in U.

It is known that the image of U under every function f ∈ S contains a disk of radius 1/4. Therefore,
every function f ∈ S has an inverse f −1, which is defined by f −1 ( f (z)) = z (z ∈ U) and f

(
f −1 (w)

)
=

w (|w| < r0( f ); r0( f ) ≥ 1/4) where

f −1(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . . =: w +

∞∑
n=2

cnwn. (1.2)
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A function f ∈ A is said to be bi-univalent in U if both f and f −1 are univalent in U. Let Σ denote
the family of bi-univalent functions in U. Lewin [20] studied the bi-univalent function family Σ and
obtained the bound for the second Taylor-Maclaurin coefficient |a2|. A brief summery of functions in
the family Σ can be found in the study of Srivastava et al. [30], which is a basic research on the bi-
univalent function family Σ and in the references cited therein. In a number of sequels to [30], bounds
for the first two coefficients |a2| and |a3| of different subclasses of bi-univalent functions were given, for
example, see [6,15,24,28,35]. However, determination of extremal functions for bi-univalent functions
remains a challenge. In fact, the study of analytic and bi-univalent functions was successfully revived
by the pioneering research of Srivastava et al. [30] in recent years regarding the numerous papers on
the subject. There are also several papers dealing with bi univalent functions defined by subordination,
for example, see [3, 10, 36].

In addition, in a survey-cum-expository article [23] by Srivastava, it was indicated that the recent
and future applications and importance of the classical q-calculus and the fractional q-calculus in
geometric function theory of complex analysis motivate researchers to study many of these and other
related subjects in this filed. It is notable, the fact that the so-called (p, q)-results are no more general
than the corresponding q-results because the additional parameter p is obviously redundant (see [23]).
For example, in [19] researchers defined a generalized subclass of analytic and bi-univalent functions
associated with a certain q-integral operator in the open unit disk U and estimated bounds on the initial
Taylor-Maclaurin coefficients |a2| and |a3| for the functions belonging to this subclass.

Obtaining the upper bound for coefficients have been one of the main research areas in geometric
function theory as it renders several meaningful features of functions. Individually, bound for the
second coefficient renders growth and distortion theorems for functions in the family S. According
to [30], many authors put effort to review and study various subclasses of the class Σ of bi-univalent
functions in recent years, for example, see [15, 24, 27, 28, 32, 35]. In the literature, several researchers
applied the Faber polynomial expansions to determine the general coefficient bounds of |an| for the
analytic bi-univalent functions [4, 7, 9, 16, 17, 26, 29, 31–34, 38, 39]. It is remarkable that Faber
polynomials play an important role in geometric function theory, introduced by Faber [14].

In this paper, let ϑ is an analytic function, which is characterized by positive real part in U and
ϑ(U) is symmetric with respect to the real axis, satisfying ϑ(0) = 1, ϑ′(0) > 0 such that it has series
expansion of the form

ϑ(z) = 1 + G1z + G2z2 + G3z3 + . . . (G1 > 0). (1.3)

A functionω : U→ C is said Schwarz function ifω is a analytic function inUwith conditionsω(0) = 0
and |ω(z)| < 1 for all z ∈ U. The family of all Schwarz functions on U is denoted by Ω. Clearly, a
Schwarz function ω has the form

ω(z) = w1z + w2z2 + . . . .

Recently, Srivastava and Bansal [25] (see, also [11]) introduced a subclass of analytic bi-univalent
functions and obtained non-sharp estimates of the first two coefficients of functions in this class as
follows:

Definition 1. Let 0 ≤ ρ ≤ 1 and ς ∈ C\ {0} . A function f ∈ Σ is said to be in the subclass Σ(ς, ρ, ϑ) if
each of the next conditions holds true:

1 +
1
ς

[ f ′(z) + ρz f ′′(z) − 1] ≺ ϑ(z) (z ∈ U)
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and
1 +

1
ς

[g′(w) + ρwg′′(w) − 1] ≺ ϑ(w) (w ∈ U),

where g = f −1 is given by (1.2).

Deniz et al. [12], by a class of functions defined in [11], introduced the next comprehensive family
of analytic functions

S (ν, ρ;ϑ) =

{
f ∈ A : 1 +

1
ρ

(
z f ′(z) + νz2 f ′′(z)

(1 − ν) f (z) + νz f ′(z)
− 1

)
≺ ϑ(z); z ∈ U, 0 ≤ ν ≤ 1, ρ ∈ C\ {0}

}
.

As particular cases of the family S (ν, ρ;ϑ) we have S (0, 1;ϑ) = S∗(ϑ) and S (1, 1;ϑ) = C(ϑ) that
these categories are called Ma-Minda starlike and convex, respectively [21]. A function f ∈ A is said
to be generalized bi-subordinate of complex order ρ and type ν if both f and g = f −1 are in S (ν, ρ;ϑ).

Theorem 1. [5] For 0 ≤ ρ ≤ 1 and ς ∈ C\ {0}, let the function f ∈ Σ(ς, ρ, ϑ) be given by (1.1). If
ak = 0 for 2 ≤ k ≤ n − 1, then

|an| ≤
|ς|G1

n
[
1 + ρ(n − 1)

] (n ≥ 3) . (1.4)

Theorem 2. [12] Let 0 ≤ ν ≤ 1 and ρ ∈ C\ {0}. If both functions f and g = f −1 are given by (1.1) and
(1.2), respectively, be in S (ν, ρ;ϑ) and ak = 0 for 2 ≤ k ≤ n − 1, then

|an| ≤
|ρ|G1

(n − 1) [1 + ν(n − 1)]
(n ≥ 3) . (1.5)

The present paper is motivated essentially by the recent works [5,8,12] and the aim of this paper is
to study the coefficient estimates of two subclasses Σ(ς, ρ, ϑ) and S (ν, ρ;ϑ) of bi-univalent functions.
We apply the Faber polynomial expansions to get bounds for the coefficients |an| for the functions of
the general classes that our results improve some of the previously ones.

2. Coefficient bounds

In this section, we obtain a smaller upper bound with precise estimation of coefficients |an| of
analytic bi-univalent functions in the subclasses Σ(ς, ρ, ϑ) and S (ν, ρ;ϑ). To establish the outcomes,
we need the following lemmas:

Lemma 1. [1, 2] Let f ∈ S be given by (1.1). Then the coefficients of its inverse map g = f −1 are
given in terms of the Faber polynomials of f with

g(w) = f −1(w) = w +

∞∑
n=2

1
n

K−n
n−1(a2, a3, . . . , an)wn, (2.1)

where

K−n
n−1 =

(−n)!
(−2n + 1)!(n − 1)!

an−1
2 +

(−n)!
(2(−n + 1))!(n − 3)!

an−3
2 a3
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+
(−n)!

(−2n + 3)!(n − 4)!
an−4

2 a4 +
(−n)!

(2(−n + 2))!(n − 5)!
an−5

2

[
a5 + (−n + 2)a2

3

]
+

(−n)!
(−2n + 5)!(n − 6)!

an−6
2 [a6 + (−2n + 5)a3a4] +

∑
j≥7

an− j
2 V j

such that V j (7 ≤ j ≤ n) is a homogeneous polynomial in the variables a2, a3, . . . , an, and the
expressions such as (for example) (−m)! are to be interpreted symbolically by

(−m)! ≡ Γ(1 − m) := (−m)(−m − 1)(−m − 2) . . . , with m ∈ N0 := N ∪ {0}, N := {1, 2, 3, . . .}.

We note that the first three terms of K−n
n−1 are given by

K−2
1 = −2a2, K−3

2 = 3
(
2a2

2 − a3

)
and K−4

3 = −4
(
5a3

2 − 5a2a3 + a4

)
.

Generally, for every integer number p the expansion of K p
n is given below (see for details, [1]; see

also [2, p. 349])

K p
n = pan+1 +

p(p − 1)
2

D2
n +

p!
(p − 3)!3!

D3
n + . . . +

p!
(p − n)!n!

Dn
n, (2.2)

where Dp
n = Dp

n(a2, a3, . . . , an+1) (see for details [37]). We also have

Dm
n (a2, a3, . . . , an+1) =

∞∑
n=1

m!(a2)µ1 · . . . · (an+1)µn

µ1! · . . . · µn!
, (2.3)

where the sum is taken over all nonnegative integers µ1, . . . , µn holding the conditions{
µ1 + µ2 + . . . + µn = m
µ1 + 2µ2 + . . . + nµn = n.

Obviously, Dn
n(a2, a3, . . . , an+1) = an

2.

Lemma 2. [39] Let f ∈ Σ(ς, ρ, ϑ). Then we have the following expansion:

1 +
1
ς

[ f ′(z) + ρz f ′′(z) − 1] = 1 +

∞∑
n=2

1
ς

[1 + ρ(n − 1)]nanzn−1

and

1 +
1
ς

[g′(w) + ρwg′′(w) − 1] = 1 +

∞∑
n=2

1
ς

[1 + ρ(n − 1)]ncnwn−1,

where cn = 1
n K−n

n−1(a2, a3, . . . , an) and K−n
n−1 is given by Lemma 1.

Lemma 3. [39] Let f ∈ Σ(ς, ρ, ϑ). Then

1
ς

[1 + ρ(n − 1)]nan =

n−1∑
k=1

GkDk
n−1(p1, p2, . . . , pn−1) (n ≥ 2)
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and

1
ς

[1 + ρ(n − 1)]K−n
n−1(a2, a3, . . . , an) =

n−1∑
k=1

GkDk
n−1(q1, q2, . . . , qn−1) (n ≥ 2) ,

where K−n
n−1 and Dk

n−1 are given by Lemma 1 and u(z) =
∞∑

n=1
pnzn, v(z) =

∞∑
n=1

qnzn ∈ Ω.

Lemma 4. [8] Let f (z) = z +
∞∑

k=n
akzk; (n ≥ 2) be a univalent function in U and

f −1(w) = w +

∞∑
k=n

ckwk (|w| < r0( f ); r0( f ) ≥ 1/4).

Then
c2n−1 = na2

n − a2n−1 and ck = −ak for (n ≤ k ≤ 2n − 2).

Lemma 5. [8] Let f (z) = z +
∞∑

k=n
akzk; (n ≥ 2) be a univalent function in U and

f −1(w) = w +

∞∑
k=n

ckwk (|w| < r0( f ); r0( f ) ≥ 1/4).

Then

|an| ≤

√
|a2n−1| + |c2n−1|

n
.

Theorem 3. Let f (z) = z +
∞∑

k=n
akzk ∈ Σ(ς, ρ, ϑ); (n ≥ 2) with |G2| ≤ G1, then

(i)

|an| ≤ min

 |ς|G1

n
[
1 + ρ(n − 1)

] , √ 2 |ς|G1

n(2n − 1)[1 + ρ(2n − 2)]

 , (2.4)

(ii)

|na2
n − a2n−1| ≤

|ς|G1

(2n − 1)
[
1 + ρ(2n − 2)

] .
Proof. Let f (z) = z +

∞∑
k=n

akzk ∈ Σ(ς, ρ, ϑ); (n ≥ 2). Then by the definition of subordination there are

two functions u, v ∈ Ω with u(z) =
∞∑

k=1
pkzk and v(z) =

∞∑
k=1

qkzk, respectively, such that

1 +
1
ς

[ f ′(z) + ρz f ′′(z) − 1] = ϑ(u(z))

and

1 +
1
ς

[g′(w) + ρwg′′(w) − 1] = ϑ(v(w)).
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Applying the relations (1.3) and (2.3) we have

ϑ(u(z)) = 1 + G1 p1z + (G1 p2 + G2 p2
1)z2 + . . . = 1 +

∞∑
k=1

k∑
i=1

GiDi
k(p1, p2, . . . , pk)zk

and

ϑ(v(w)) = 1 +

∞∑
k=1

k∑
i=1

GiDi
k(q1, q2, . . . , qk)wk.

Since ak = 0 for 2 ≤ k ≤ n − 1 and G1 > 0 from Lemma 3, we obtain

p1 = . . . = pn−2 = 0, q1 = . . . = qn−2 = 0.

Therefore, from Lemmas 2 and 3 we have

[1 + ρ(n − 1)]nan = ςG1 pn−1

and

[1 + ρ(n − 1)]ncn = ςG1qn−1.

Now, from Lemma 4 taking the absolute values of the above relations with |pn−1| ≤ 1 and |qn−1| ≤ 1,
(see [22, page 172]), it follows

|an| = |cn| ≤
|ς|G1

n
[
1 + ρ(n − 1)

] (2.5)

Further from Lemma 3, it results in[
1 + ρ(2n − 2)

]
(2n − 1)a2n−1 = G1 p2n−2 + G2 p2

n−1.

Using [18, page 10] and [22, page 172] we get

|a2n−1| = |c2n−1| ≤
|ς|G1

(2n − 1)
[
1 + ρ(2n − 2)

] . (2.6)

Now, in view of Lemma 5, utilizing the relation (2.6) we conclude that

|an| ≤

√
|a2n−1| + |c2n−1|

n
≤

√
2 |ς|G1

n(2n − 1)[1 + ρ(2n − 2)]
. (2.7)

From (2.5) and (2.7), we see that the relation (2.4) holds. Further, by (2.6) and applying Lemma 4, we
get

|na2
n − a2n−1| = |c2n−1| ≤

|ς|G1

(2n − 1)
[
1 + ρ(2n − 2)

] .
This completes the proof. �

In special cases, we get the next corollaries.
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Corollary 1. Let f (z) = z +
∞∑

k=n
akzk ∈ Σ (ς, ρ, (1 + (1 − 2β)z)/(1 − z)) ; (n ≥ 2). Then

|an| ≤ min

 2 |ς| (1 − β)
n
[
1 + ρ(n − 1)

] , √ 4 |ς| (1 − β)
n(2n − 1)[1 + ρ(2n − 2)]


and

|na2
n − a2n−1| ≤

2 |ς| (1 − β)
(2n − 1)

[
1 + ρ(2n − 2)

] .
Proof. For

ϑ(z) =
1 + (1 − 2β)z

1 − z
= 1 + 2(1 − β)z + 2(1 − β)z2 + . . . (0 ≤ β < 1, z ∈ U),

where G1 = G2 = 2(1 − β) in Theorem 3, it gives the result mentioned in the corollary. �

Corollary 2. Let f (z) = z +
∞∑

k=n
akzk ∈ Σ (ς, ρ, ((1 + z)/(1 − z))α) ; (n ≥ 2). Then

|an| ≤ min

 2 |ς|α
n
[
1 + ρ(n − 1)

] , √ 4 |ς|α
n(2n − 1)[1 + ρ(2n − 2)]


and

|na2
n − a2n−1| ≤

2 |ς|α
(2n − 1)

[
1 + ρ(2n − 2)

] .
Proof. For

ϑ(z) =

(
1 + z
1 − z

)α
= 1 + 2αz + 2α2z2 + . . . (0 < α ≤ 1; z ∈ U),

where G1 = 2α and G2 = 2α2 in Theorem 3, it gives the required result. �

Remark 1. (i) The bound for |an| in Theorem 3(i) is an improvement of the estimation given in
Theorem 1.

(ii) From Corollaries 2 and 1, the bound for |an| is smaller than the estimates obtained in [5, Corollary
1] and [5, Corollary 2], respectively.

(iii) Letting ς = 1 in Corollary 1, we get an improvement of the estimate obtained by Srivastava et
al. [33, Theorem 1] for all 0 ≤ ρ ≤ 1.

Theorem 4. Let f (z) = z+
∞∑

k=n
akzk; (n ≥ 2) and its inverse map g = f −1 be in S (ν, ρ;ϑ) with |G2| ≤ G1.

Then

(i)

|an| ≤ min

 |ρ|G1

(n − 1) [1 + ν(n − 1)]
,

√
2 |ρ|G1

n(2n − 2)[1 + ν(2n − 2)]

 , (2.8)
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(ii)

|na2
n − a2n−1| ≤

|ρ|G1

(2n − 2) [1 + ν(2n − 2)]
.

Proof. According to the relations (2.6) and (2.8) in [12], we have

[1 + ν(n − 1)](n − 1)an = ρG1 pn−1

and

[1 + ν(n − 1)](n − 1)cn = −[1 + ν(n − 1)](n − 1)an = ρG1qn−1.

Now, taking the absolute values of the above equalities with |pn−1| ≤ 1, |qn−1| ≤ 1, we have

|an| ≤
|ρ|G1

(n − 1) [1 + ν(n − 1)]
(2.9)

and

|cn| ≤
|ρ|G1

(n − 1) [1 + ν(n − 1)]
. (2.10)

By a similar argument in Theorem 1

|a2n−1| = |c2n−1| ≤
|ρ|G1

(2n − 2) [1 + ν(2n − 2)]
(2.11)

Also, in view of Lemma 5 and using the inequality (2.11), we obtain

|an| ≤

√
|a2n−1| + |c2n−1|

n
≤

√
2 |ρ|G1

n(2n − 2)[1 + ν(2n − 2)]
. (2.12)

From (2.9) and (2.12), we conclude that the inequality (2.8) holds. In addition, by (2.11) and applying
Lemma 4, we get

|na2
n − a2n−1| = |c2n−1| ≤

|ρ|G1

(2n − 2) [1 + ν(2n − 2)]
.

This completes the proof. �

For different values of ν and ρ and well-known ϑ, the above theorem yields the following interesting
corollaries.

Corollary 3. Let f (z) = z +
∞∑

k=n
akzk; (n ≥ 2) and its inverse map g = f −1 be in S (1, ρ;ϑ). Then

|an| ≤ min

 |ρ|G1

n(n − 1)
,

√
2 |ρ|G1

n(2n − 1)(2n − 2)


and

|na2
n − a2n−1| ≤

|ρ|G1

(2n − 1)(2n − 2)
.
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Corollary 4. Let f (z) = z +
∞∑

k=n
akzk; (n ≥ 2) and its inverse map g = f −1 be in

S (ν, ρ; (1 + Az)/(1 + Bz)) where −1 ≤ B < A ≤ 1. Then

|an| ≤ min

 |ρ| (A − B)
(n − 1) [1 + ν(n − 1)]

,

√
2 |ρ| (A − B)

n(2n − 2)[1 + ν(2n − 2)]


and

|na2
n − a2n−1| ≤

|ρ| (A − B)
(2n − 2) [1 + ν(2n − 2)]

.

Proof. For

ϑ(z) =
1 + Az
1 + Bz

= 1 + (A − B)z − B(A − B)z2 + . . . (−1 ≤ B < A ≤ 1; z ∈ U),

where G1 = A − B and G2 = −B(A − B) in Theorem 4, it gives the required result. �

Corollary 5. Let f (z) = z +
∞∑

k=n
akzk; (n ≥ 2) and its inverse map g = f −1 be in

S (0, 1; (1 + Az)/(1 + Bz)) where −1 ≤ B < A ≤ 1. Then

|an| ≤ min

 A − B
(n − 1)

,

√
2(A − B)
n(2n − 2)


and

|na2
n − a2n−1| ≤

A − B
2n − 2

.

Corollary 6. Let f (z) = z +
∞∑

k=n
akzk; (n ≥ 2) and its inverse map g = f −1 be in

S (ν, ρ; ((1 + z)/(1 − z))α). Then

|an| ≤ min

 2 |ρ|α
(n − 1) [1 + ν(n − 1)]

,

√
4 |ρ|α

n(2n − 2)[1 + ν(2n − 2)]


and

|na2
n − a2n−1| ≤

2 |ρ|α
(2n − 2) [1 + ν(2n − 2)]

.

Remark 2. (i) The bound for |an| in Theorem 4(i) is an improvement of the estimation given in
Theorem 2.

(ii) From Corollary 5, the bound for |an| is smaller than the estimate obtained by Hamidi and
Jahangiri in [13, Theorem 2.1].

(iii) From Corollary 3, the bound for |an| is smaller than the result obtained in [12, Corolary 2.4].

(iv) Letting ρ = (1 − β)eiδ cos δ (|δ| ≤ π/2; 0 ≤ β < 1), ν = 0, A = 1, B = −1 and ρ = (1 −
β)eiδ cos δ (|δ| ≤ π/2; 0 ≤ β < 1), ν = 1, A = 1, B = −1 in Corollary 4, respectively, we get an
improvement of the estimates obtained in [12, Corolary 2.5].
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3. Conclusions

In our present study, we have applied the Faber polynomial expansion method to estimate the
coefficient bounds of analytic and bi-univalent functions in the certain two subclasses, which are
defined by subordination. Also, we have obtained some corollaries and consequences of the main
results. Moreover, the given bounds improve and generalize some of the pervious results.
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24. H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated
with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 1873–1879.

25. H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent
functions, J. Egyptian Math. Soc., 23 (2015), 242–246.

26. H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-
Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution,
AIMS Math., 5 (2020), 7087–7106.

27. H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of
analytic and bi-univalent functions, Afrika Mat., 28 (2017), 693–706.

28. H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for a general subclass of analytic
and bi-univalent functions of the Ma-Minda type, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A
Mat., 112 (2018), 1157–1168.

AIMS Mathematics Volume 6, Issue 9, 9126–9137.



9137

29. H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion
method and its application to the general coefficient problem for some subclasses of bi-univalent
functions associated with a certain q-integral operator, Stud. Univ. Babeş-Bolyai Math., 63 (2018),
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