Research article

On analytic multivalent functions associated with lemniscate of Bernoulli

  • Received: 25 October 2019 Accepted: 07 February 2020 Published: 02 March 2020
  • MSC : 30C45, 30C50

  • In this paper, we establish some sufficient conditions for analytic functions associated with lemniscate of Bernoulli. In particular, we determine conditions on $\alpha $ such that $ \begin{equation*} 1+\alpha \frac{z^{2+p\left( j-1\right) }g^{\prime }\left( z\right) }{ pg^{j}\left( z\right) },\text{ for each }j = 0,1,2,3, \end{equation*} $ are subordinated by Janowski function, then $\frac{g\left(z\right) }{z^{p}} \prec \sqrt{1+z}, \ \left(z\in \mathfrak{D}\right) $. By choosing particular values of functions $g, $ we obtain some sufficient conditions for multivalent starlike functions associated with lemniscate of Bernoulli.

    Citation: Qaiser Khan, Muhammad Arif, Bakhtiar Ahmad, Huo Tang. On analytic multivalent functions associated with lemniscate of Bernoulli[J]. AIMS Mathematics, 2020, 5(3): 2261-2271. doi: 10.3934/math.2020149

    Related Papers:

  • In this paper, we establish some sufficient conditions for analytic functions associated with lemniscate of Bernoulli. In particular, we determine conditions on $\alpha $ such that $ \begin{equation*} 1+\alpha \frac{z^{2+p\left( j-1\right) }g^{\prime }\left( z\right) }{ pg^{j}\left( z\right) },\text{ for each }j = 0,1,2,3, \end{equation*} $ are subordinated by Janowski function, then $\frac{g\left(z\right) }{z^{p}} \prec \sqrt{1+z}, \ \left(z\in \mathfrak{D}\right) $. By choosing particular values of functions $g, $ we obtain some sufficient conditions for multivalent starlike functions associated with lemniscate of Bernoulli.


    加载中


    [1] R. M. Ali, N. E. Cho, V. Ravichandran, et al. Differential subordination for functions associated with the lemniscate of Bernoulli's, Taiwan. J. Math., 16 (2012), 1017-1026. doi: 10.11650/twjm/1500406676
    [2] M. Arif, K. Ahmad, J.-L. Liu, et al. A new class of analytic functions associated with Salagean operator, Journal of Function Spaces, 2019.
    [3] N. E. Cho, V. Kumar, S. S. Kumar, Ravichandran. Radius problems for starlike functions associated with the sine function, B. Iran. Math. Soc., 45 (2019), 213-232. doi: 10.1007/s41980-018-0127-5
    [4] N. E. Cho, S. Kumar, V. Kumar, et al. Starlike functions related to the Bell numbers, Symmetry, 11 (2019), 219.
    [5] J. Dziok, R. K. Raina, J. Sokół, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Model., 57 (2013), 1203-1211. doi: 10.1016/j.mcm.2012.10.023
    [6] S. A. Halim, R. Omar, Applications of certain functions associated with lemniscate Bernoulli, Journal of the Indonesian Mathematical Society, 18 (2012), 93-99.
    [7] M. Haq, M. Raza, M. Arif, et al. q-analogue of differential subordinations, Mathematics, 7 ( 2019), 724.
    [8] W. H. Hayman, Multivalent Functions, Second Edition, Cambridge Uni. Press, 1994.
    [9] I. S. Jack, Functions starlike and convex of order alpha, J. Lond. Math. Soc., 2 (1971), 469-474.
    [10] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., 23 (1970), 159-177. doi: 10.4064/ap-23-2-159-177
    [11] S. Kanas, D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196.
    [12] R. Kargar, A. Ebadian, J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys., 9 (2019), 143-154. doi: 10.1007/s13324-017-0187-3
    [13] S. S. Kumar, V. Kumar, V. Ravichandran, et al. Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), 176.
    [14] S. Kumar, V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bulletin of Mathematics, 40 (2016), 199-212.
    [15] S. Kumar, V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Th., 12 (2018), 1179-1191. doi: 10.1007/s11785-017-0690-4
    [16] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press, 1994.
    [17] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, B. Malays. Math. Sci. So., 38 (2015), 365-386. doi: 10.1007/s40840-014-0026-8
    [18] E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996), 89-94.
    [19] R. K. Raina, J. Sokół, On coefficient estimates for a certain class of starlike functions, Hacettepe

    Journal of Mathematics and Statistics, 44 (2015), 1427-1433.

    [20] M. Raza, J. Sokół, M. Mushtaq, Differential Subordinations for Analytic Functions, Iranian Journal of Science and Technology, Transactions A: Science, 43 (2019), 883-890. doi: 10.1007/s40995-017-0430-7
    [21] K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afrika Matematika, 27 (2016), 923-939. doi: 10.1007/s13370-015-0387-7
    [22] K. Sharma, V. Ravichandran, Applications of subordination theory to starlike functions, B. Iran. Math. Soc., 42 (2016), 761-777.
    [23] L. Shi, I. Ali, M. Arif, et al. A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7 (2019), 418.
    [24] L. Shi, H. M. Srivastava, M. Arif, et al. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), 598.
    [25] J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk, Politech. Rzeszowskiej Mat., 19 (1996), 101-105.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3599) PDF downloads(379) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog