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Abstract: In this paper, we establish some sufficient conditions for analytic functions associated with
lemniscate of Bernoulli. In particular, we determine conditions on « such that

Z2+p(j—1) g/ (Z)

1+« -
pg’ (2)

, foreach j=0,1,2,3,

are subordinated by Janowski function, then % < V1 +7z (z€ D). By choosing particular values
of functions g, we obtain some sufficient conditions for multivalent starlike functions associated with

lemniscate of Bernoulli.
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1. Introduction and definitions

To understand in a clear way the notions used in our main results, we need to add here some basic
literature of Geometric function theory. For this we start first with the notation ‘A which denotes
the class of holomorphic or analytic functions in the region © = {z € C: |z] < 1} and if a function
g € A, then the relations g (0) = g’ (0) — 1 = 0 must hold. Also, all univalent functions will be in a
subfamily S of A. Next we consider to define the idea of subordinations between analytic functions
g1 and g,, indicated by g; (z) < g2 (2), as; the functions g, g, € A are connected by the relation of
subordination, if there exists an analytic function w with the restrictions w (0) = 0 and [w (z)| < 1 such
that g,(z) = g2(w(z)). Moreover, if the function g, € S in D, then we obtain:

81(2) < £2(2) & [£1(0) = £2(0) & £1(D) € g1(D)].
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In 1992, Ma and Minda [16] considered a holomorphic function ¢ normalized by the conditions
©(0) = 1 and ¢’(0) > 0 with Rep > 0 in ©. The function ¢ maps the disc D onto region which is
star-shaped about 1 and symmetric along the real axis. In particular, the function ¢(z) = (1 + Az)/(1 +
Bz), (-1 £ B < A < 1) maps D onto the disc on the right-half plane with centre on the real axis and
diameter end points % and %. This interesting familiar function is named as Janowski function [10].
The image of the function ¢(z) = V1 + z shows that the image domain is bounded by the right-half of
the Bernoulli lemniscate given by [w? — 1| < 1, [25]. The function ¢(z) = 1 + %Z + %zz maps D into the
image set bounded by the cardioid given by (9x* + 9y? — 18x + 5)> — 16(9x> + 9y? — 6x + 1) = 0, [21]
and further studied in [23]. The function ¢(z) = 1 + sinz was examined by Cho and his coauthors
in [3] while ¢(z) = €* is recently studied in [17] and [24]. Further, by choosing particular ¢, several
subclasses of starlike functions have been studied. See the details in [2,4,5,11,12,14,19].

Recently, Ali et al. [1] have obtained sufficient conditions on @ such that

1+28@2)/g"@) < Vi+z = g@) < V1+z forn=0,1,2.

Similar implications have been studied by various authors, for example see the works of Halim and
Omar [6], Haq et al [7], Kumar et al [13, 15], Paprocki and Sokdl [18], Raza et al [20] and Sharma et
al [22].

In 1994, Hayman [8] studied multivalent (p-valent) functions which is a generalization of univalent
functions and is defined as: an analytic function g in an arbitrary domain D c C is said to be p-valent,
if for every complex number w, the equation g(z) = w has maximum p roots in O and for a complex
number w, the equation g(z) = w, has exactly p roots in D. Let A, (p € N ={1,2,...}) denote the
class of functions, say g € A, that are multivalent holomorphic in the unit disc © and which have the
following series expansion:

) =2"+ Z a, (z€D). (1.1)

k=p+1
Using the idea of multivalent functions, we now introduce the class SL; of multivalent starlike
functions associated with lemniscate of Bernoulli and as given below:

SL;:{g(z)Eﬂp:%< V1+z, (zeiD)}.

In this article, we determine conditions on « such that for each

2+p(j-1) o7 .

are subordinated to Janowski functions implies % < V1 +z, (z € D). These results are then utilized
to show that g are in the class SL;.

1.1. Lemma
Let w be analytic non-constant function in © with w (0) = 0. If
W (20)l = max{jw ()|, Iz <lzol}, z€D,
then there exists a real number m (m > 1) such that zow’ (z9) = mw (o) .

This Lemma is known as Jack’s Lemma and it has been proved in [9].
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2. Main results

2.1. Theorem
Let g € A, and satisfying

vy 1+A
L g(z)< Z

1 )
p 1+ Bz
with the restriction on « is \
o> ——PA-B) @.1)
1 —|Bl—4p (1 +|B)
Then
% <Vl+z
Proof
Let us define a function
1ﬂd=1+gizggl (2.2)

where the function p is analytic in © with p(0) = 1. Also consider

89 _ 5w, 2.3)

zP

Now to prove our result we will only require to prove that |w (z)| < 1. Logarithmically differentiating
(2.3) and then using (2.2), we get

azw’ (2)
=14+ — V1
p(2) +2p 1+W(Z)+a +w(2),

and so

azw'(2)
'—p(z)—l B v T VW)
A—-B B _ azw'(2)
p(2) A B(1+2pf/l+zm+a/\/1+w(z))

azw’ (2) + 2pa (1 + w(2))

2p0§—B)Vl+wv&)—BQnm/Q)+2pa(1+WW©»y

Now, we suppose that a point z; € D occurs such that

max [w (2)] = [w (z0)l = 1.

[zI<lzol

Also by Lemma 1.1, a number m > 1 exists with zow’ (z9) = mw (). In addition, we also suppose that
w(zo) = € for @ € [-m, ] . Then we have

' p(zo)— 1 ‘ amw (o) — 2pa (1 + w (z9))
A - Bp (z0) 2p(A = B) VT + w(z0) — B(amw (z0) + 2pa (1 + w (z) |
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ol m —2plal (|1 +€?))

> )
2p (A - B) Il + €| + Bl (lalm + 2pa |1 + e])
- la|m —4pal
"~ 23p(A-B)+|Bllal(m+4p)
Now if | (m — 4p)
a|l(m —
¢(m) = 3 L ’
22p(A - B) + |B|la| (m + 4p)
then 3 2
2ip(A-B 8 B
o= _2PA-Blal+8lfpIBl

2
(23p(A - B) +Bllal (m + 4p))
which illustrates that the function ¢ (m) is increasing and hence ¢ (m) > ¢ (1) for m > 1, so

| p(z0)— 1 lal (1 —4p)
A-Bp )|~ 25p(A-B)+|B|lal(1 +4p)

Now, by using (2.1), we have
p(z0) — 1

A - Bp (20)

which contradicts the fact that p (z) < iigi
p+1 ¢r ]
3 > f{f in the last result, we obtain the following Corollary:

Thus |w (z)| < 1 and so we get the desired result.

Taking g (z) =

2.2. Corollary
Let f € A, and satisfying

azf’ (z) +1+zf”(z)_zf’(z) . 1 +Az

1+ , (2.4)
rf \P f @  f@) 1+B
with the condition on « is \
22p(A - B)
|| > .
1 —|B|-4p(1+|B)
Then f € SL,.
2.3. Theorem
If g € A, such that
g 1+A
R AP (2.5)
p g 1+Bz
with 8p(4 - B)
p p—
lar| > , (2.6)
1 —|Bl—4p(1+|B|)
then @
AN < V1 +z

zP
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Proof

Let us choose a function p by
728 (z
p (Z) =1+ a,g—()’
g (2)

in such a way that p is analytic in © with p(0) = 1. Also consider

& =1 +w(2).

zP

Using some simple calculations, we obtain

azw’ (2)
D=1+—""  +a,
P 201 +w @)
and so
azw'(2)
' p@-1 T T
A-B _ azw' (2)
P (2) A B(l + 2Dy a/)

3 ‘ azw’ () + 2pa (1 + w(z))
~ 12p(A-B)(1 +w(2)) - Blazw’' (2) + 2pa (1 + w (@)

Let a point zp € D exists in such a way

max |w(z)] = [w(z) = 1.
|zI<lzol

Then, by virtue of Lemma 1.1, a number m > 1 occurs such that zow’ (z9) = mw (zo). In addition, we
set w(zp) = €, so we have

' p(z0)— 1
A - Bp (20)

amw (o) + 2pa (1 + w(z0))
‘21? (A= B) (1 +w(20)) — B(amw (z0) + 2pa (1 + w (zo))|”
lalm = 2plal |1 + €|
2(A=B)|l + ¢ +|Bl|lalm + 2p|Bllal |l + €’
lolm —2plal V2 + 2cos 6

2(2(A - B) +|Bllal) p V2 + 2cos 6 + |Bllalm’
|a| (m — 4p)
4p(2(A - B) +|Blla)) +|Bllafm’

Now let
o) = ol (m — 4p)
4p(2(A - B) + |Bllal) + |Bllalm’
it implies
& (m) = || 8p (A — B) + || |Bl)

(4p (2(A - B) + |Bl|al) + |B|lal m)®
which illustrates that the function ¢ (m) is increasing and so ¢ (m) > ¢ (1) for m > 1, hence

‘ p)—1 ]| || (1 —4p)
A-Bp(z)| ~ 4p(2(A-B)+|Blla)) + |Bllel
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Now, by using (2.6) , we have

’ p(z0) — 1
A - Bp(20)

which contradicts (2.5) . Thus |w (z)| < 1 and so the desired proof is completed.

@) .

Putting g (z) = i In last Theorem, we get the following Corollary:

2.4. Corollary
If f € A, and satisfying

1+g(p+l+zf @ zf (z))< 1+Az,
p @ f©@ 1+ Bz
with
8p(A—B)
|lar| > ,
1 —|B|-4p(1+|B])

then f € SL.
2.5. Theorem

If g € A, and satisfy the subordination relation

ZPg(z) 1+Az
@ - < ,
p(g)” 1+Bz

with the condition on «

23p(A - B)
lar| >
1 —|Bl—4p(1+|B|)
18 true, then
8@ vivz
ZP
Proof
Let us define a function
2'77g (2)
p@=1l+a——.
p(g(2)

Then p is analytic in © with p(0) = 1. Also let us consider

&pz) = 1+ w().

Z

Using some simplification, we obtain

azw’ (2) 1o

+ :
2p1+w@): VI+wQ)

p@)=1+

2.7)

(2.8)
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and so
azw’(2) + 3
' p@-1| _ 2piew)i  VIHWE)
A-Bp()| ~ ( a2 () )
A-B[1+ ' + ==
w(law) VI

azw’ (2) + 2pa (1 + w(2))
2p(A-B)(1+w (z))% — Bazw’ (z) — 2paB (1 + w(2))

Let us choose a point z; € D such a way that

max |w (z)] = [w(z)| = 1.
[zI<lzol

Then, by the consequences of Lemma 1.1, a number m > 1 occurs such that zow’ (zg) = mw (zp) and
also put w (zo) = e for 6 € [—rx, 1], we have

amw (z9) + 2pa (1 + w (29))

2p(A - B)(1 +w(20))? — Bamw (z0) — 2paB (1 +w(z))|
i0|

' p(z0)— 1
A - Bp(20)

lalm —2plal|1 +e

>
a 2p(A-B)|1 + ei9|% + |B||lalm + 2plal|B||1 + e"9|’
3 lalm —4p|al
~ 2ip(A—B) +|Blldlm+4plel Bl

o] (m — 4p)

\%

5 = ¢ (m) (say).
22p(A - B) +|B||la|lm +4p|a||B|

Then ]
2:p(A-B)+8laf’|Blp

(28p(A-B)+ Blalm + 4p ol B)

¢ (m) = >0,

which demonstrates that the function ¢ (m) is increasing and thus ¢ (m) > ¢ (1) for m > 1, hence

‘ p(z0) -1 || (1 —4p)
A=Bp(z0)l ~ 23p(A—-B)+|B|lal + 4plal|B|
Now, using (2.8), we have

‘ p(z0) =1

A-Bp()l ~

which contradicts (2.7). Thus [w (z)| < 1 and so we get the required proof.

+1 £7
If weset g(z) = it

e in last theorem, we easily have the following Corollary:

2.6. Corollary

Assume that S
22p(A - B)
|Bl—4p(1+|Bl)’

>
ol > —
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and if f € A, satisfy

af () S @) 1+Az

+ +1+ ,
2ro\"T T e T fo ) T+E
then f € SL,.
2.7. Theorem
If g € A, satisfy the subordination
1=2p g 1+A
L4021 8®@ Z

@@y T+B

with restriction on « is
8p(A-B)

. 29
1 —|B|—4p (1 +1B]) 29

|ar| >

then

8@ vivz

7P

Proof. Let us define a function
Zl—Zpg/ (Z)

=1 s
pR=lre oy

where p is analytic in © with p(0) — 1 = 0. Also let

& = 1 +w(2).

zP

Using some simple calculations, we obtain

azw’ (2) a
(Z) =1+ + ,
: A w@)  T+wE
and so
azw’(z) a

‘M _ @) | T
A-B p (Z) - _ azw’(z) a

A-Bl+ 2p(1+w(2))? 1+w(2)

azw’ (2) + 2pa (1 + w(z))
2p (A - B)(1 +w(2))* — Bazw' (2) — 2paB (1 + w ()|’

Let us pick a point z; € D in such a way that

max |w (2)] = [w (z0) = 1.

Izl<lzol

Then, by using Lemma 1.1, a number m > 1 exists such that zow’ (z9) = mw (zo) and put w (zo) = €,
for 6 € [—n, 7], we have

' p(z0)— 1
A - Bp (20)

‘ amw (20) + 2pa (1 + w(z))
2p (A= B)(1 +w(z0))* — Bamw (z0) — 2paB (1 + w(z0))
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lalm = 2plal|l + €|

>
2p(A - B)|1 + €9 +|B|lalm + 2pal |B||1 + ¥
B lalm —2plal V2 + 2cosé
2p(A-B)(V2+ 2cos9)2 +|B|lalm + 2plal|B| V2 + 2cos 0
la| (m — 4p)
8p (A —B) +|Bllalm +4pla||B|’
Now let
B la| (m —4p)
¢(m) - )
8p(A—B) +|B|lalm+4p|a||B|
then X
PN 8plal(A—B)+8lal”|Blp
¢ (m) =

(8p (A~ B) + |Bllalm + 4plal |B))®

which shows that ¢ (/) is an increasing function and hence it will have its minimum value at m = 1, so

‘ p(z0) -1 lal (1 —4p)
A - Bp(z)| ~ 8p(A - B)+|Bl|lal +4plal Bl
Using (2.9), we easily obtain
‘M
A-Bp(o)l
which is a contradiction to the fact that p(z) < }:’;ﬁ, and so |w(z)] < 1. Hence we get the desired

result. O

If we put g (2) = % in last Theorem, we achieve the following result:

2)
2.8. Corollary
If f € A, and satisfy the condition

8p(A—B)
|| > ,
1-|Bl-4p(1+|B|)
n (f (2))* (@ zf (2
p(f(z 2”@ zf' (z 1+ Az
Yo P T e T ) ST
then f € SL,.
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