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1. Introduction

We consider the initial boundary value problem of the following porous elastic system with nonlinear
or linear weak damping terms and nonlinear source terms

utt − µuxx − bϕx + g1(ut) = f1(u, ϕ), x ∈ (0, L), t ∈ [0,T ),
ϕtt − δϕxx + bux + ξϕ + g2(ϕt) = f2(u, ϕ), x ∈ (0, L), t ∈ [0,T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, L),
u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0, t ∈ [0,T ),

(1.1)

where u(x, t) and ϕ(x, t) are the displacement of the solid elastic material and the volume fraction,
respectively, µ, b, δ and ξ are coefficients with physical meaning satisfying

µ > 0, b , 0, δ > 0, ξ > 0 and µξ > b2,
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u0, u1, ϕ0 and ϕ1 are given initial data, and the assumptions of weak damping terms g1, g2 and nonlinear
source terms f1, f2 will be given in Section 2 by Assumption 2.1 and Assumption 2.2, respectively .

In the physical view, elastic solid with voids is an important extension of the classical elasticity theory.
It allows the processing of porous solids in which the matrix material is elastic and the interstices are void
of material (see [8, 20] and references therein). Porous media reflects the properties of many materials
in the real world, including rocks, soil, wood, ceramics, pressed powder, bones, natural gas hydrates and
so on. Due to the diversity of porous media and its special physical properties, such models were widely
applied in the past few decades in the petroleum industry, engineering, etc (see [1, 12, 13, 16, 17, 19]).

As mathematical efforts, Goodman and Cowin [2, 8] established the continuum theory and the
variational principle of granular materials. Then Nunziato and Cowin [3, 18] developed the linear and
nonlinear theories of porous elastic materials. In recent years, the study of the porous elastic system
also attracted a lot of attention [5–7,21,22]. We particularly mention that Freitas et.al. in [5] studied the
problem (1.1) and proved the global existence and finite time blowup of solutions. Especially, they built
up the continuous dependence on initial data of the local solution in the following version

Ê(t) ≤ eC0tÊ(0), C0 > 0, (1.2)

which can also be extended to the global solution with the same form. By denoting z = (u, ϕ) and
z̃ = (ũ, ϕ̃) the global solutions to problem (1.1) corresponding to the initial data z0, z1 and z̃0, z̃1,
respectively, Ê(0) is the distance of two sets of different initial data

z0, z̃0 ∈ V := H1
0(0, L) × H1

0(0, L),

and
z1, z̃1 ∈ L2(0, L) × L2(0, L),

that is

Ê(0) :=
1
2
∥z1 − z̃1∥

2
2 +

1
2
∥z0 − z̃0∥

2
V ,

and Ê(t) is the distance of solutions induced by these two sets of different initial data

Ê(t) :=
1
2
∥zt − z̃t∥

2
2 +

1
2
∥z − z̃∥2V .

The growth estimate (1.2) indicates that the growth of the distance of solutions Ê(t) is bounded by
an exponential growth bound with time t. In other words, as the time t goes to infinity, the distance
of solutions Ê(t) of the system is bounded by a very large bound, by which it is hard to explain the
solutions z and z̃ of such a dissipative system with the initial data z0, z1 and z̃0, z̃1, respectively, as both
of them are expected to decay to zero as the time t goes to infinity. Hence, the estimate on the growth
of the distance of solutions Ê(t) is proposed to be improved to reflect the decay properties with time t
to be consistent with the dissipative behavior of the system. To achieve this, the efforts in the present
paper are illustrated by two new continuous dependence results on the initial data for the global-in-time
solution. Especially, it is found that the system with the linear damping term behaves differently from
that with the nonlinear damping term. Hence in the present paper, we adopt two different estimate
strategies to deal with the problem and derive two different conclusions:
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(i) For the linear damping case, i.e., g1(ut) and g2(ϕt) take the linear form and satisfy Assumption 2.1,
we have

Ê(t) ≤ C1

(
Ê(0) +C2

(
Ê(0)

) a
2
)ρ

e−C3t, (1.3)

where the positive constants C1,C2,C3, a, ρ are independent of initial data.
(ii) For the nonlinear damping case, i.e., g1(ut) and g2(ϕt) take the nonlinear form and satisfy Assump-

tion 2.1, we have

Ê(t) ≤ C5

(
Ê(0) +C6

(
Ê(0)

) b0
2

)κ
e−C7t, (1.4)

where 0 < κ < 1, and the positive constants C5,C6,C7, b0 are dependent of initial data.

By observing (1.3) and (1.4), we find that these two continuous dependence results can reasonably
reflect the decay property of the dissipative system (1.1). The difference between (1.3) and (1.4) is
that the parameters in (1.3) do not depend on the initial data, while the parameters in (1.4) depend on
the initial data. Hence although (1.3) and (1.4) are in the similar form, we present and prove them
separately.

Additionally, to develop the finite time blowup of the solution to problem (1.1) at the arbitrary
positive initial energy level derived in [22], we estimate the lower bound of the blowup time in the
present paper for the nonlinear weak damping case by noticing that the linear weak damping case was
discussed in [22]. For more relative works on the blowup of solutions to the hyperbolic equations at
high initial energy, please refer to [10, 11, 14, 15, 25]. We can also refer to [9, 23, 24] for the works about
the blowup of solutions to parabolic equations.

The rest of the present paper is organized as follows. In Section 2, we give some notations,
assumptions about damping terms and source terms, and functionals and manifolds for the potential
well theory. In Section 3, we deal with the continuous dependence on initial data of the global solution
for the linear weak damping case. In Section 4, we establish the continuous dependence on initial data
of the global solution for the nonlinear weak damping case. In Section 5, we estimate the lower bound
of blowup time at the arbitrarily positive initial energy level for the nonlinear weak damping case.

2. Preliminaries

2.1. Notations and assumptions

We denote the L2-inner product by

(u, v) :=
∫ L

0
uvdx,

and the norm of Lp(0, L) by

∥u∥p :=
(∫ L

0
|u|pdx

) 1
p

.

As we are dealing with the system of two equations, for z = (u, ϕ) and ẑ = (û, ϕ̂), we introduce

(z, ẑ) := (u, û) + (ϕ, ϕ̂)
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and
∥z∥p := (∥u∥pp + ∥ϕ∥

p
p)

1
p . (2.1)

Further, we consider the Hilbert space

V = H1
0(0, L) × H1

0(0, L)

with inner products given by

(z, ẑ)V :=
∫ L

0

(
µuxûx + δϕxϕ̂x + ξϕϕ̂ + b

(
uxϕ̂ + ϕûx

))
dx (2.2)

for z = (u, ϕ), ẑ = (û, ϕ̂), where µ, δ, ξ, b are the coefficients of the terms in the equations in problem
(1.1). Therefore, we have

∥z∥2V :=
∫ L

0

(
µu2

x + δϕ
2
x + ξϕ

2 + 2buxϕ
)

dx. (2.3)

The norm ∥z∥V is equivalent to the corresponding usual norm on V , i.e., H1
0(0, L) × H1

0(0, L), introduced
in [20]. For 1 < q < +∞, we define

Rq := sup
z∈V\{0}

∥z∥qq
∥z∥qV
, (2.4)

which means

∥z∥qq ≤ Rq∥z∥
q
V (2.5)

for z ∈ V . Here, due to H1
0(0, L) ↪→ Lq(0, L) for 1 < q < +∞, we see 0 < Rq < +∞. And we denote

F (z) := ( f1(u, ϕ), f2(u, ϕ))

and
G(zt) := (g1(ut), g2(ϕt)),

where f j(u, ϕ), j = 1, 2, are the source terms, and g1(ut) and g2(ϕt) are the damping terms in the equations
in problem (1.1).

We give the following assumptions about damping terms, i.e., g1(ut) and g2(ϕt), and source terms,
i.e., f j(u, ϕ), j = 1, 2, in the equations in problem (1.1).
Assumption 2.1. (Damping terms) Let g1, g2 : R → R be continuous, monotone increasing functions
with g1(0) = g2(0) = 0. In addition, there exist positive constants α > 0 and β > 0 such that
(i) for |s| ≥ 1

α|s|m+1 ≤ g1(s)s ≤ β|s|m+1, m ≥ 1; (2.6)

and

α|s|r+1 ≤ g2(s)s ≤ β|s|r+1, r ≥ 1; (2.7)

(ii) for |s| < 1

α|s|m̂ ≤ |g1(s)| ≤ β|s|m̂, m̂ ≥ 1; (2.8)

and

α|s|r̂ ≤ |g2(s)| ≤ β|s|r̂, r̂ ≥ 1. (2.9)
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Assumption 2.2. (Source terms) For the functions f j ∈ C1(R2), j = 1, 2, there exists a positive constant
C such that

|∇ f j(η)| ≤ C
(
|η1|

p−1 + |η2|
p−1 + 1

)
, p > 1. (2.10)

where η = (η1, η2) ∈ R2, f j(η) = f j(η1, η2), j = 1, 2, and

∇ f j :=
(
∂ f j

∂η1
,
∂ f j

∂η2

)
.

There exists a nonnegative function F ∈ C2(R2) satisfying

∇F = F (2.11)

and

F(λη) = λp+1F(η) (2.12)

for all λ > 0, where F(η) = F(η1, η2) and

∇F :=
(
∂F
∂η1
,
∂F
∂η2

)
. (2.13)

According to [5], Assumption 2.2 implies that there exists a constant M > 0 such that

F(z) ≤ M
(
|u|p+1 + |ϕ|p+1

)
. (2.14)

2.2. Potential well

Next, we recall some functionals and manifolds for the potential well theory. We recall the potential
energy functional

J(z) :=
1
2
∥z∥2V −

∫ L

0
F(z)dx (2.15)

and the Nehari functional

I(z) := ∥z∥2V − (p + 1)
∫ L

0
F(z)dx.

The energy functional is defined as

E(z(t), zt(t)) :=
1
2
∥zt∥

2
2 + J(z). (2.16)

And the Nehari manifold is defined as

N := {z ∈ V\{0}| I(z) = 0}.
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Then we can define the depth of the potential well

d := inf
z∈N

J(z).

By above, we introduce the stable manifold

W :={z ∈ V | J(z) < d, I(z) > 0} ∪ {0}.

Next, since we need to apply the decay rate of the energy in investigating continuous dependence on the
initial data of the solution, we recall the following notations used in the investigation of the decay rate
of the energy in [5]

d̂ := sup
s∈[0,+∞)

M(s) =M(s0) =
p − 1

2(p + 1)

(
(p + 1) MRp+1

)− 2
p−1
, (2.17)

where

M(s) :=
1
2

s2 − MRp+1sp+1, (2.18)

andM(s) attains the maximum value at

s0 :=
(
(p + 1) MRp+1

)− 1
p−1
. (2.19)

Here, Proposition 2.11 in [5] shows the fact d̂ ≤ d.

3. Continuous dependence on initial data of the global solution for linear weak damping case

In this section, we consider the model equations in (1.1) with the linear weak damping terms, i.e.,
r = m = r̂ = m̂ = 1. First, we need the following decay result of the energy.

Lemma 3.1. (Decay of the energy) Let Assumption 2.1 and Assumption 2.2 hold with r = m = r̂ = m̂ = 1.
For any 0 < σ < 1, if E(z0, z1) < σd̂ and z0 ∈ W, then one has

E(z(t), zt(t)) <K0e−λ0t (3.1)

for t > 0, where λ0 and K0 will be defined in the proof.

Proof. We define

H(t) := E(z(t), zt(t)) + ε(z, zt),

where ε > 0. Here, according to Cauchy-Schwartz inequality, Young inequality, and (2.5), we have

H(t) ≤E(z(t), zt(t)) + ε∥z∥2∥zt∥2

≤E(z(t), zt(t)) +
ε

2
∥z∥22 +

ε

2
∥zt∥

2
2

≤E(z(t), zt(t)) +
ε

2
R2∥z∥2V +

ε

2
∥zt∥

2
2
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≤E(z(t), zt(t)) + εmax{R2, 1}
(
1
2
∥z∥2V +

1
2
∥zt∥

2
2

)
(3.2)

and

H(t) ≥E(z(t), zt(t)) − ε∥z∥2∥zt∥2

≥E(z(t), zt(t)) − εmax{R2, 1}
(
1
2
∥z∥2V +

1
2
∥zt∥

2
2

)
. (3.3)

According to Theorem 2.12(iv) in [5], we know

1
2
∥z∥2V +

1
2
∥zt∥

2
2 ≤

p + 1
p − 1

E(z(t), zt(t)), (3.4)

which means that (3.2) and (3.3) turn to

H(t) ≤E(z(t), zt(t)) +
εmax{R2, 1}(p + 1)

p − 1
E(z(t), zt(t)) (3.5)

and

H(t) ≥E(z(t), zt(t)) −
εmax{R2, 1}(p + 1)

p − 1
E(z(t), zt(t)). (3.6)

According to (3.5) and (3.6), we know

α1E(z(t), zt(t)) ≤ H(t) ≤α2E(z(t), zt(t)), (3.7)

where
α1 := 1 −

εmax{R2, 1}(p + 1)
p − 1

and
α2 := 1 +

εmax{R2, 1}(p + 1)
p − 1

.

We calculate the derivative of the auxiliary functional H(t) with respect to time t as

H′(t) =
d
dt
E(z(t), zt(t)) + ε∥zt∥

2
2 + ε (ztt, z) . (3.8)

In (3.8), we have

d
dt
E(z(t), zt(t)) =

1
2

d
dt
∥zt∥

2
2 +

1
2

d
dt
∥z∥2V +

∫ L

0

d
dt

F(z)dx

=
1
2

d
dt

(
∥ut∥

2
2 + ∥ϕt∥

2
2

)
+

1
2

∫ L

0

d
dt

(
µu2

x + δϕ
2
x + ξϕ

2

+ 2buxϕ
)
dx +

∫ L

0

d
dt

F(z)dx

=

∫ L

0
(ututt + ϕtϕtt) dx +

∫ L

0
(µuxuxt + δϕxϕxt + ξϕϕt
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+buxtϕ + buxϕt) dx +
∫ L

0
∇F(z) · ztdx. (3.9)

Here, the notation ∇F is defined by (2.13). Thus, according to (2.11), we know ∇F(z) = F (z), which
means (3.9) turns to

d
dt
E(z(t), zt(t))

=

∫ L

0
(ututt + ϕtϕtt) dx +

∫ L

0
(µuxuxt + δϕxϕxt + ξϕϕt + buxtϕ + buxϕt) dx

+

∫ L

0
F (z) · ztdx

=

∫ L

0
(ututt + ϕtϕtt) dx +

∫ L

0
(µuxuxt + δϕxϕxt + ξϕϕt + buxtϕ + buxϕt) dx

+

∫ L

0
( f1(u, ϕ)ut + f2(u, ϕ)ϕt) dx

=

∫ L

0
(ututt + ϕtϕtt) dx +

∫ L

0
(µuxuxt + δϕxϕxt + ξϕϕt + buxϕt) dx

−

∫ L

0
butϕxdx +

∫ L

0
( f1(u, ϕ)ut + f2(u, ϕ)ϕt) dx

=

∫ L

0
(ututt + µuxuxt − butϕx − f1(u, ϕ)ut) dx +

∫ L

0
(ϕtϕtt + δϕxϕxt + buxϕt

+ξϕϕt − f2(u, ϕ)ϕt) dx. (3.10)

Testing the both sides of the first equation in (1.1) by ut and integrating both sides over [0, L], we have∫ L

0
(ututt + µuxuxt − butϕx − f1(u, ϕ)ut) dx = −

∫ L

0
g1(ut)utdx. (3.11)

And testing the both sides of the second equation in (1.1) by ϕt and integrating both sides over [0, L],
we have ∫ L

0
(ϕtϕtt + δϕxϕxt + buxϕt + ξϕϕt − f2(u, ϕ)ϕt) dx = −

∫ L

0
g2(ϕt)ϕtdx. (3.12)

By substituting (3.11) and (3.12) into (3.10), we have

d
dt
E(z(t), zt(t)) = −

∫ L

0
g1(ut)utdx −

∫ L

0
g2(ϕt)ϕtdx. (3.13)

Next, we use Assumption 2.1 to deal with (3.13). In Assumption 2.1, for |s| ≥ 1, according to (2.6) with
m = 1 and (2.7) with r = 1, we know that

α|s|2 ≤ g j(s)s ≤ β|s|2, j = 1, 2. (3.14)

Then taking the absolute value of (3.14) gives

α|s| ≤
∣∣∣g j(s)

∣∣∣ ≤ β|s|, j = 1, 2. (3.15)
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For |s| < 1, according to (2.8) with m̂ = 1 and (2.9) with r̂ = 1, we know that (3.15) also holds.
Meanwhile, since g1(0) = g2(0) = 0 and g j(s), j = 1, 2, are assumed to be the increasing functions, for
j = 1, 2, we know g j(s) > 0 for s > 0 and g j(s) < 0 for s < 0, which gives g j(s)s ≥ 0, j = 1, 2, for
s ∈ R. Thus, we have ∫ L

0
g1(ut)utdx +

∫ L

0
g2(ϕt)ϕtdx

=

∫ L

0
|g1(ut)ut| dx +

∫ L

0
|g2(ϕt)ϕt| dx

≥α∥ut∥
2
2 + α∥ϕt∥

2
2

=α∥zt∥
2
2,

which makes (3.13) turn to

d
dt
E(z(t), zt(t)) ≤ −α∥zt∥

2
2. (3.16)

We deal with the term ε (ztt, z) in (3.8). Testing the both sides of the first equation in problem (1.1) by u
and integrating both sides over [0, L], we have

(utt, u) = −µ∥ux∥
2
2 − b (ux, ϕ) − (g1(ut), u) + ( f1(u, ϕ), u) . (3.17)

And testing the both sides of the second equation in problem (1.1) by ϕ and integrating both sides over
[0, L], we have

(ϕtt, ϕ) = −δ∥ϕx∥
2
2 − b (ux, ϕ) − ξ∥ϕ∥22 − (g2(ϕt), ϕ) + ( f2(u, ϕ), ϕ) . (3.18)

By (3.17) plus (3.18), we have

(ztt, z) = −
∫ L

0

(
µu2

x + δϕ
2
x + ξϕ

2 + 2buxϕ
)

dx − (g1(ut), u) − (g2(ϕt), ϕ)

+ ( f1(u, ϕ), u) + ( f2(u, ϕ), ϕ)

= − ∥ϕ∥2V − (G(zt), z) + (F (z), z)

≤ − ∥ϕ∥2V + |(G(zt), z)| + (F (z), z) . (3.19)

According to (3.16) and (3.19), we know that (3.8) turns to

H′(t) ≤ − α∥zt∥
2
2 + ε∥zt∥

2
2 − ε∥z∥

2
V + ε |(G(zt), z)| + ε (F (z), z) . (3.20)

Next, we deal with the term ε |(G(zt), z)| in (3.20). By using (3.15) and Hölder inequality, we know

|(G(zt), z)| = |(g1(ut), u) + (g2(ϕt), ϕ)|
≤ |(g1(ut), u)| + |(g2(ϕt), ϕ)|

≤

∫ L

0
|g1(ut)||u|dx +

∫ L

0
|g2(ϕt)||ϕ|dx
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≤β

∫ L

0
|ut||u|dx + β

∫ L

0
|ϕt||ϕ|dx

≤β∥ut∥2∥u∥2 + β∥ϕt∥2∥ϕ∥2

≤2β∥zt∥2∥z∥2. (3.21)

Then, We deal with ε (F (z), z) in (3.20). Here, we first need to give

F (z) · z = (p + 1)F(z). (3.22)

For all λ > 0, taking the derivative of both sides of (2.12) with respect to λ, we know

d
dλ

F(λz) = ∇F(λz) · z =
d

dλ
λp+1F(z) = (p + 1)λpF(z), (3.23)

where ∇F is defined by (2.13). By taking λ = 1 in (3.23) and using (2.11), we obtain (3.22). According
to (3.22) and (2.14), we have

(F (z), z) =
∫ L

0
F (z) · zdx

=(p + 1)
∫ L

0
F(z)dx

≤(p + 1)M∥z∥p+1
p+1. (3.24)

By using (2.5), (3.24) turns to

(F (z), z) ≤ (p + 1)MRp+1∥z∥
p+1
V = (p + 1)MRp+1∥z∥

p−1
V ∥z∥

2
V . (3.25)

Then, we estimate the term ∥z∥p−1
V in (3.25). According to Theorem 2.12 (ii) in [5], we know z(t) ∈ W

for t > 0. By using I(z(t)) > 0, i.e., z(t) ∈ W, we have

(p + 1)
∫ L

0
F(z(t))dx < ∥z(t)∥2V ,

which means

J(z(t)) =
1
2
∥z(t)∥2V −

∫ L

0
F(z(t))dx

>
1
2
∥z(t)∥2V −

1
p + 1

∥z(t)∥2V

=
p − 1

2(p + 1)
∥z(t)∥2V . (3.26)

Meanwhile, according to (3.16), i.e.,

d
dt
E(z(t), zt(t)) ≤ 0,
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we have E(z(t), zt(t)) ≤ E(z0, z1). Thus, we know

p − 1
2(p + 1)

∥z(t)∥2V ≤ J(z(t)) ≤ E(z(t), zt(t)) ≤ E(z0, z1), (3.27)

i.e.,

∥z(t)∥p−1
V ≤

(
2(p + 1)

p − 1
E(z0, z1)

) p−1
2

,

for t > 0, which implies that (3.25) turns to

(F (z), z) ≤(p + 1)MRp+1

(
2(p + 1)

p − 1
E(z0, z1)

) p−1
2

∥z∥2V . (3.28)

Due to E(z0, z1) < σd̂ being assumed, we know that (3.28) turns to

(F (z), z) ≤σ
p−1

2 ∥z∥2V , (3.29)

where d̂ is defined by (2.17). Substituting (3.21) and (3.29) into (3.20), we have

H′(t) ≤ − α∥zt∥
2
2 + ε∥zt∥

2
2 + εσ

p−1
2 ∥z∥2V − ε∥z∥

2
V + 2εβ∥zt∥2∥z∥2. (3.30)

By using Young inequality for δ0 > 0 and inequality (2.5) for q = 2, we know that (3.30) turns to

H′(t) ≤ − α∥zt∥
2
2 + ε∥zt∥

2
2 + εσ

p−1
2 ∥z∥2V − ε∥z∥

2
V +
εβ

δ0
∥zt∥

2
2 + εβδ0R2∥z∥2V

= −

(
α − ε −

εβ

δ0

)
∥zt∥

2
2 − ε

(
1 − σ

p−1
2 − βδ0R2

)
∥z∥2V . (3.31)

In (3.31), we choose δ0 > 0 to make 1 − σ
p−1

2 − βδ0R2 > 0 hold, where 1 − σ
p−1

2 > 0 due to σ ∈ (0, 1).
Then, we select ε > 0 such that α − ε − εβ

δ0
> 0 and

α1 = 1 −
εmax{R2, 1}(p + 1)

p − 1
> 0.

To deal with (3.31), we first have(
α − ε −

εβ

δ0

)
∥zt∥

2
2 + ε

(
1 − σ

p−1
2 − βδ0R2

)
∥z∥2V

=2
(
α − ε −

εβ

δ0

)
1
2
∥zt∥

2
2 + 2ε

(
1 − σ

p−1
2 − βδ0R2

) 1
2
∥z∥2V

≥min
{

2
(
α − ε −

εβ

δ0

)
, 2ε

(
1 − σ

p−1
2 − βδ0R2

)} (
1
2
∥zt∥

2
2 +

1
2
∥z∥2V

)
. (3.32)

According to Theorem 2.12 (iv) in [5], (3.32) turns to(
α − ε −

εβ

δ0

)
∥zt∥

2
2 + ε

(
1 − σ

p−1
2 − βδ0R2

)
∥z∥2V

Communications in Analysis and Mechanics Volume 15, Issue 2, 214–244.



225

≥min
{

2
(
α − ε −

εβ

δ0

)
, 2ε

(
1 − σ

p−1
2 − βδ0R2

)}
E(z(t), zt(t)). (3.33)

Due to (3.7), i.e., H(t) ≤ α2E(z(t), zt(t)), (3.33) turns to(
α − ε −

εβ

δ0

)
∥zt∥

2
2 + ε

(
1 − σ

p−1
2 − βδ0R2

)
∥z∥2V

≥
min

{
2
(
α − ε − εβ

δ0

)
, 2ε

(
1 − σ

p−1
2 − βδ0R2

)}
α2

H(t). (3.34)

Thus, we know that (3.31) implies

H′(t) ≤ −λ0H(t), (3.35)

where

λ0 :=
min

{
2
(
α − ε − εβ

δ0

)
, 2ε

(
1 − σ

p−1
2 − βδ0R2

)}
α2

. (3.36)

By using Gronwall’s inequality, (3.35) gives

H(t) ≤ e−λ0tH(0). (3.37)

According to (3.7), (3.37), and the assumptions E(z0, z1) < σd̂ and 0 < σ < 1, we have

E(z(t), zt(t)) ≤
α2E(z0, z1)
α1

e−λ0t <
α2σd̂
α1

e−λ0t < K0e−λ0t, (3.38)

where

K0 :=
α2d̂
α1
. (3.39)

Theorem 3.2. (Continuous dependence on initial data for linear weak damping case) Let Assumption
2.1 and Assumption 2.2 hold with r = m = r̂ = m̂ = 1. For any 0 < σ < 1, suppose E(z0, z1) < σd̂,
z0 ∈ W, E(z̃0, z̃1) < σd̂ and z̃0 ∈ W. Let z = (u, ϕ) and z̃ = (ũ, ϕ̃) be the global solutions to problem (1.1)
with the initial data z0, z1, and z̃0, z̃1, respectively. Then one has

Ê(t) ≤C1

(
Ê(0) +C2

(
Ê(0)

) a
2
)ρ

e−C3t, (3.40)

where

C1 :=

1 + C4e
C4

λ0(p−1)

λ0(p − 1)


ρ (

4(p + 1)K0

p − 1

)1−ρ

,

C2 := 2
a
2

N
λ1
,
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C3 := λ0(1 − ρ),

C4 := 43CR
1
2
4 R

1
2
4(p−1)

(
2(p + 1)K0

p − 1

)p−1

, (3.41)

0 < a < min
{

2λ0

M̄C + λ0
, 1

}
,

0 < ρ < 1,

λ0 and K0 are defined by (3.36) and (3.39), respectively, R4(p−1) is the best embedding constant defined
in (2.4) taking q = 4(p − 1),

λ1 :=
λ0(2 − a) − aM̄C

2
,

N := 21−aC (2K0)
2−a

2 + 23−aCR
1
2
2

(
2(p + 1)K0

p − 1

) 1
2

(2K0)
1−a

2 ,

and

M̄ := max

2
3
2 52R

1
2
4

2R4(p−1)

(
2(p + 1)σd̂

p − 1

)2(p−1)

+ L


1
2

, 1

 . (3.42)

Proof. We denote w := z − z̃. According to the proof of Theorem 2.5 in [5], we notice that

Ê(t) ≤ Ê(0) +
∫ t

0

∫ L

0
(F (z(τ)) − F (z̃(τ)))wt(τ)dxdτ (3.43)

holds by Assumption 2.1 and Assumption 2.2. In the following, we shall finish this proof by considering
the following two steps. In Step I, we shall derive a similar estimate of the growth of Ê(t) to (135) in [5].
As we build this estimate for the global solution instead of the local solution treated in [5], we have to
rebuild all the necessary estimates based on the conditions for global existence theory.
Step I: Global estimate of Ê(t) for global solution.

We estimate the term
∫ t

0

∫ L

0
(F (z(τ)) − F (z̃(τ))) wt(τ)dxdτ in (3.43) as follows∫ L

0
(F (z(t)) − F (z̃(t))) · wtdx

=

∫ L

0
( f1(z) − f1(z̃)) (ut − ũt)dx

+

∫ L

0
( f2(z) − f2(z̃)) (ϕt − ϕ̃t)dx

≤

∫ L

0
| f1(z) − f1(z̃)||ut − ũt|dx
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+

∫ L

0
| f2(z) − f2(z̃)||ϕt − ϕ̃t|dx. (3.44)

Here, according to the proof of Lemma 3.2 in [5], we notice that (2.10) in Assumption 2.2 gives

| f j(z) − f j(z̃)| ≤ C|z − z̃|(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1), j = 1, 2, (3.45)

which means (3.44) turns to∫ L

0
(F (z(t)) − F (z̃(t))) · wtdx

≤

∫ L

0
C|z − z̃|(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1)|ut − ũt|dx︸                                                                      ︷︷                                                                      ︸

:=A1

+

∫ L

0
C|z − z̃|(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1)|ϕt − ϕ̃t|dx︸                                                                      ︷︷                                                                      ︸

:=A2

. (3.46)

Next, we deal with A1 and A2 separately. For A1, by Hölder inequality and Young inequality, we have

A1 ≤C
(∫ L

0
|z − z̃|2(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1)2dx

) 1
2

(∫ L

0
|ut − ũt|

2dx
) 1

2

≤
C
2

∫ L

0
|z − z̃|2(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1)2dx

+
C
2

∫ L

0
|ut − ũt|

2dx. (3.47)

By the similar process, we can deal with A2 as

A2 ≤
C
2

∫ L

0
|z − z̃|2(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1)2dx

+
C
2

∫ L

0
|ϕt − ϕ̃t|

2dx. (3.48)

According to (3.47), (3.48) and Hölder inequality, we know that (3.46) turns to∫ L

0
(F (z(t)) − F (z̃(t))) · wtdx

≤C
∫ L

0
|z − z̃|2(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1)2dx +

C
2
∥wt∥

2
2

≤C
(∫ L

0
|z − z̃|4dx

) 1
2
(∫ L

0
(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1)4dx

) 1
2
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+
C
2
∥wt∥

2
2. (3.49)

In (3.49), by noticing z = (u, ϕ), z̃ = (ũ, ϕ̃), we see that(∫ L

0
|z − z̃|4dx

) 1
2

=

(∫ L

0

((
|u − ũ|2 + |ϕ − ϕ̃|2

) 1
2
)4

dx
) 1

2

=

(∫ L

0

(
|u − ũ|4 + |ϕ − ϕ̃|4 + 2|u − ũ|2|ϕ − ϕ̃|2

)
dx

) 1
2

=

(∫ L

0

(
|u − ũ|4 + |ϕ − ϕ̃|4

)
dx +

∫ L

0
2|u − ũ|2|ϕ − ϕ̃|2dx

) 1
2

. (3.50)

By using Hölder inequality and Young inequality, we know (3.50) turns to(∫ L

0
|z − z̃|4dx

) 1
2

≤

(∫ L

0

(
|u − ũ|4 + |ϕ − ϕ̃|4

)
dx + 2∥u − ũ∥24∥ϕ − ϕ̃∥

2
4

) 1
2

≤
(
2∥u − ũ∥44 + 2∥ϕ − ϕ̃∥44

) 1
2

=2
1
2 ∥z − z̃∥24. (3.51)

Next, we deal with
∫ L

0
(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1)4dx in (3.49). For k1, k2, k3, k4, k5 ≥ 0, we have

(k1 + k2 + k3 + k4 + k5)4

≤ (5 max {k1, k2, k3, k4, k5})4

=54 max
{
k4

1, k
4
2, k

4
3, k

4
4, k

4
5

}
≤54

(
k4

1 + k4
2 + k4

3 + k4
4 + k4

5

)
.

From above observation, we have∫ L

0

(
|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1 + 1

)4
dx

≤54
∫ L

0

(
|u|4(p−1) + |ũ|4(p−1) + |ϕ|4(p−1) + |ϕ̃|4(p−1) + 1

)
dx. (3.52)

According to (3.51) and (3.52), (3.49) turns to∫ L

0
(F (z) − F (z̃)) · wtdx
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≤C2
1
2 ∥z − z̃∥24

(
54

∫ L

0

(
|u|4(p−1) + |ũ|4(p−1) + |ϕ|4(p−1) + |ϕ̃|4(p−1) + 1

)
dx

) 1
2

+
C
2
∥wt∥

2
2

=C2
1
2 52∥z − z̃∥24

(∫ L

0

(
|u|4(p−1) + |ϕ|4(p−1)

)
dx

+

∫ L

0

(
|ũ|4(p−1) + |φ̃|4(p−1)

)
dx + L

) 1
2

+
C
2
∥wt∥

2
2

=C2
1
2 52∥z − z̃∥24

(
∥z∥4(p−1)

4(p−1) + ∥z̃∥
4(p−1)
4(p−1) + L

) 1
2
+

C
2
∥wt∥

2
2. (3.53)

By using (2.5), we know that (3.53) turns to∫ L

0
(F (z) − F (z̃)) · wtdx

≤C2
1
2 52R

1
2
4 ∥z − z̃∥2V

(
R4(p−1)∥z∥

4(p−1)
V + R4(p−1)∥z̃∥

4(p−1)
V + L

) 1
2
+

C
2
∥wt∥

2
2. (3.54)

According to (3.27) and the assumptions E(z0, z1) < σd̂ and E(z̃0, z̃1) < σd̂, we have

∥z∥2V <
2(p + 1)σd̂

p − 1
(3.55)

and

∥z̃∥2V <
2(p + 1)σd̂

p − 1
. (3.56)

Substituting (3.55) and (3.56) into (3.54), we have∫ L

0
(F (z) − F (z̃)) · wtdx

≤C2
1
2 52R

1
2
4

2R4(p−1)

(
2(p + 1)σd̂

p − 1

)2(p−1)

+ L


1
2

∥w∥2V +
C
2
∥wt∥

2
2

≤M̄C
(
1
2
∥wt∥

2
2 +

1
2
∥w∥2V

)
=M̄CÊ(t). (3.57)

Due to (3.57), we know∫ t

0

∫ L

0
(F (z(τ)) − F (z̃(τ))) · wtdxdτ ≤ M̄C

∫ t

0
Ê(τ)dτ. (3.58)

Substituting (3.58) into (3.43), we have

Ê(t) ≤ Ê(0) + M̄C
∫ t

0
Ê(τ)dτ. (3.59)

Communications in Analysis and Mechanics Volume 15, Issue 2, 214–244.



230

Then, by a variation of Gronwall’s inequality (see Appendix), we have

Ê(t) ≤ Ê(0)eM̄Ct. (3.60)

As the growth estimate (3.60) we derived in Step I does not reflect the decay of the solution, we shall
deal with the decay terms and the non-decay terms separately in Step II to upgrade the results obtained
in Step I, i.e., (3.60), by giving an improved estimate to reflect the dissipative property of the system
(1.1).
Step II: Decay estimate of Ê(t).

According to (3.46), we have∫ L

0
(F (z(t)) − F (z̃(t))) · wtdx

≤

∫ L

0
C|z − z̃|(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1)|ut − ũt|dx︸                                                                ︷︷                                                                ︸

:=A3

+

∫ L

0
C|z − z̃|(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1)|ϕt − ϕ̃t|dx︸                                                                ︷︷                                                                ︸

:=A4

+

∫ L

0
C|z − z̃||ut − ũt|dx +

∫ L

0
C|z − z̃||ϕt − ϕ̃t|dx. (3.61)

By the similar process dealing with A1 and A2, we can treat A3 and A4 as

A3 ≤
C
2

∫ L

0
|z − z̃|2(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1)2dx

+
C
2

∫ L

0
|ut − ũt|

2dx (3.62)

and

A4 ≤
C
2

∫ L

0
|z − z̃|2(|u|p−1 + |ũ|p−1 + |ϕ|p−1 + |ϕ̃|p−1)2dx

+
C
2

∫ L

0
|ϕt − ϕ̃t|

2dx. (3.63)

By the similar process of obtaining (3.54), i.e.,

A1 + A2 ≤C2
1
2 52R

1
2
4 ∥z − z̃∥2V

(
R4(p−1)∥z∥

4(p−1)
V + R4(p−1)∥z̃∥

4(p−1)
V + L

) 1
2

+
C
2
∥wt∥

2
2,

we can use (3.62) and (3.63) to give

A3 + A4 ≤ C2
1
2 42R

1
2
4 R

1
2
4(p−1)∥z − z̃∥2V

(
∥z∥4(p−1)

V + ∥z̃∥4(p−1)
V

) 1
2
+

C
2
∥wt∥

2
2. (3.64)
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Due to (3.26), (2.16) and Lemma 3.1, we know

1
2
∥zt∥

2
2 +

p − 1
2(p + 1)

∥z∥2V ≤ E(z(t), zt(t)) < K0e−λ0t (3.65)

and

1
2
∥z̃t∥

2
2 +

p − 1
2(p + 1)

∥z̃∥2V ≤ E(z̃(t), z̃t(t)) < K0e−λ0t. (3.66)

According to (3.65) and (3.66), we have

∥z∥4(p−1)
V <

(
2(p + 1)

p − 1
K0

)2(p−1)

e−2λ0(p−1)t

and

∥z̃∥4(p−1)
V <

(
2(p + 1)

p − 1
K0

)2(p−1)

e−2λ0(p−1)t,

which mean (
∥z∥4(p−1)

V + ∥z̃∥4(p−1)
V

) 1
2
< 2

1
2

(
2(p + 1)

p − 1
K0

)p−1

e−λ0(p−1)t. (3.67)

By substituting (3.67) into (3.64), we obtain

A3 + A4 ≤C4e−λ0(p−1)t 1
2
∥z − z̃∥2V +

C
2
∥zt − z̃t∥

2
2

≤C4e−λ0(p−1)t
(
1
2
∥z − z̃∥2V +

1
2
∥zt − z̃t∥

2
2

)
+

C
2
∥zt − z̃t∥

2
2. (3.68)

Substituting (3.68) into (3.61) and using Hölder inequality and (2.5), we have∫ L

0
(F (z(t)) − F (z̃(t))) · wtdx

≤C4e−λ0(p−1)tÊ(t) +
C
2
∥zt − z̃t∥

2
2 +

∫ L

0
C|z − z̃||ut − ũt|dx

+

∫ L

0
C|z − z̃||ϕt − ϕ̃t|dx

≤C4e−λ0(p−1)tÊ(t) +
C
2
∥zt − z̃t∥

2
2 +C∥z − z̃∥2∥ut − ũt∥2

+C∥z − z̃∥2∥ϕt − ϕ̃t∥2

≤C4e−λ0(p−1)tÊ(t) +
C
2
∥zt − z̃t∥

2
2 + 2C∥z − z̃∥2∥zt − z̃t∥2

≤C4e−λ0(p−1)tÊ(t) +
C
2
∥zt − z̃t∥

2
2 + 2CR

1
2
2 ∥z − z̃∥V∥zt − z̃t∥2. (3.69)
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According to (3.60), we know

∥zt − z̃t∥2 ≤
(
2Ê(0)eM̄Ct

) 1
2
,

i.e.,

∥zt − z̃t∥
a
2 ≤

(
2Ê(0)

) a
2 e

aM̄Ct
2 (3.70)

for 0 < a < 1. Meanwhile, combining (3.65) and (3.66), we also have

∥zt − z̃t∥2 ≤ ∥zt∥2 + ∥z̃t∥2 ≤ 2 (2K0)
1
2 e−

λ0
2 t, (3.71)

i.e.,

∥zt − z̃t∥
1−a
2 ≤ 21−a (2K0)

1−a
2 e−

λ0(1−a)
2 t, (3.72)

and

∥z − z̃∥V ≤ ∥z∥V + ∥z̃∥V ≤ 2
(
2(p + 1)K0

p − 1

) 1
2

e−
λ0
2 t. (3.73)

Combining (3.70), (3.71) and (3.72), we have

∥zt − z̃t∥
2
2 =∥zt − z̃t∥2∥zt − z̃t∥

a
2∥zt − z̃t∥

1−a
2

≤22−a (2K0)
2−a

2
(
2Ê(0)

) a
2 e−

λ0(2−a)−aM̄C
2 t. (3.74)

We choose 0 < a < min
{

2λ0
M̄C+λ0

, 1
}

such that

λ0(2 − a) − aM̄C > 0 (3.75)

in (3.74). Meanwhile, according to (3.70), (3.72) and (3.73), we notice that

∥z − z̃∥V∥zt − z̃t∥2 =∥z − z̃∥V∥zt − z̃t∥
a
2∥zt − z̃t∥

1−a
2

≤22−a

(
2(p + 1)K0

p − 1

) 1
2

(2K0)
1−a

2
(
2Ê(0)

) a
2 e−

λ0(2−a)−aM̄C
2 t. (3.76)

Due to (3.74) and (3.76), we see that (3.69) turns to∫ L

0
(F (z(t)) − F (z̃(t))) · wtdx

≤C4e−λ0(p−1)tÊ(t)

+ 21−aC (2K0)
2−a

2
(
2Ê(0)

) a
2 e−

λ0(2−a)−aM̄C
2 t

+ 23−aCR
1
2
2

(
2(p + 1)K0

p − 1

) 1
2

(2K0)
1−a

2
(
2Ê(0)

) a
2 e−

λ0(2−a)−aM̄C
2 t. (3.77)
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By substituting (3.77) into (3.43), we obtain

Ê(t) ≤Ê(0) +C4

∫ t

0
e−λ0(p−1)τÊ(τ)dτ

+
(
2Ê(0)

) a
2 D, (3.78)

where

D := N
∫ t

0
e−λ1τdτ =

N
λ1
−

N
λ1

e−λ1t. (3.79)

Here, according to (3.79), we notice that D ≤ N
λ1

, which means that (3.78) turns to

Ê(t) ≤Ê(0) +
(
2Ê(0)

) a
2 N
λ1
+C4

∫ t

0
e−λ0(p−1)τÊ(τ)dτ, (3.80)

i.e.,

e−λ0(p−1)tÊ(t) ≤e−λ0(p−1)t
(
Ê(0) +

(
2Ê(0)

) a
2 N
λ1

)
+C4e−λ0(p−1)t

∫ t

0
e−λ0(p−1)τÊ(τ)dτ. (3.81)

We define

F(t) :=
∫ t

0
e−λ0(p−1)τÊ(τ)dτ. (3.82)

Thus, we can rewrite (3.81) as

F′(t) ≤e−λ0(p−1)t
(
Ê(0) +

(
2Ê(0)

) a
2 N
λ1

)
+C4e−λ0(p−1)tF(t). (3.83)

By applying Gronwall’s inequality, (3.83) gives

F(t) ≤
(
Ê(0) +

(
2Ê(0)

) a
2 N
λ1

)
eC4

∫ t
0 e−λ0(p−1)τdτ

∫ t

0
e−λ0(p−1)τdτ

=

(
Ê(0) +

(
2Ê(0)

) a
2 N
λ1

)
e

C4
λ0(p−1) (1−e−λ0(p−1)t) 1 − e−λ0(p−1)t

λ0(p − 1)

≤

(
Ê(0) +

(
2Ê(0)

) a
2 N
λ1

)
e

C4
λ0(p−1)

λ0(p − 1)
,

which means (3.80) turns to

Ê(t) ≤
(
Ê(0) +

(
2Ê(0)

) a
2 N
λ1

) 1 + C4e
C4

λ0(p−1)

λ0(p − 1)

 . (3.84)
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For 0 < ρ < 1, according to (3.84), we have

Ê(t) =Ê(t)ρÊ(t)1−ρ

≤

(
Ê(0) +

(
2Ê(0)

) a
2 N
λ1

)ρ 1 + C4e
C4

λ0(p−1)

λ0(p − 1)


ρ

Ê(t)1−ρ. (3.85)

Here, by using Young inequality, we know

Ê(t)1−ρ =

(
1
2
∥zt − z̃t∥

2
2 +

1
2
∥z − z̃∥2V

)1−ρ

≤

(
1
2

(∥zt∥2 + ∥z̃t∥2)2 +
1
2

(∥z∥V + ∥z̃∥V)2
)1−ρ

=

(
1
2
∥zt∥

2
2 + ∥zt∥2∥z̃t∥2 +

1
2
∥z̃t∥

2
2 +

1
2
∥z∥2V + ∥z∥V∥z̃∥V

+
1
2
∥z̃∥2V

)1−ρ

≤
(
∥zt∥

2
2 + ∥z̃t∥

2
2 + ∥z∥

2
V + ∥z̃∥

2
V

)1−ρ
(3.86)

According to (3.65) and (3.66), we know

p − 1
2(p + 1)

(
∥zt∥

2
2 + ∥z∥

2
V

)
< K0e−λ0t (3.87)

and
p − 1

2(p + 1)

(
∥z̃t∥

2
2 + ∥z̃∥

2
V

)
< K0e−λ0t. (3.88)

By substituting (3.87) and (3.88) into (3.86), we have

Ê(t)1−ρ ≤

(
4(p + 1)K0

p − 1

)1−ρ

e−λ0(1−ρ)t,

which means that (3.85) turns to (3.40).

4. Continuous dependence on initial data of the global solution for nonlinear weak damping case

In this section, we consider the continuous dependence of the global solution on the initial data for
the nonlinear weak damping case of the model equations in problem (1.1) by supposing that m ≥ 1,
r ≥ 1, and m̂ = r̂ = 1 in Assumption 2.1, which means that the weak damping terms g j(s), j = 1, 2, take
the nonlinear form for |s| ≥ 1 and linear form for |s| < 1. These conditions are applied to improve the
estimate (1.2) and reflect the decay property of (1.1), which was clearly clarified in Corollary 2.14 in [5],
that is, the condition m̂ = r̂ = 1 is necessary to obtain the exponential decay of the energy, which helps
to get the exponential decay, and the absence of such linear condition can only lead to the polynomial
decay of the energy. Hence although we discuss the nonlinear weak damping case here, we still need to
assume that the terms g j(s), j = 1, 2, take the linear form for |s| < 1.
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Theorem 4.1. (Continuous dependence on initial data for nonlinear weak damping case) Let Assumption
2.1 and Assumption 2.2 hold with r̂ = m̂ = 1, E(z0, z1) <M(s0−ν), E(z̃0, z̃1) <M(s0−ν), ∥z0∥V ≤ s0−ν,
and ∥z̃0∥V ≤ s0 − ν for some ν > 0. Let z = (u, ϕ) and z̃ = (ũ, ϕ̃) are the global solutions to the problem
(1.1) with the initial data z0, z1, and z̃0, z̃1, respectively, whereM and s0 are defined in (2.18) and (2.19),
respectively. Then one has

Ê(t) ≤C5

(
Ê(0) +C6

(
Ê(0)

) b0
2

)κ
e−C7t, (4.1)

where
0 < κ < 1,

C5 :=

1 + C8Te
C8T
θ0(p−1)

θ0(p − 1)


κ (

4(p + 1)eθ+θ̃d̂
p − 1

)1−κ

,

C6 := 2
b0
2

N1

λ2
,

C7 :=
θ0(1 − κ)

T
,

C8 := 43R
1
2
4 R

1
2
4(p−1)C

(
2(p + 1)d̂

p − 1
eθ+θ̃

)p−1

,

θ0 :=
θ + θ̃ − |θ − θ̃|

2
= min

{
θ, θ̃

}
, (4.2)

and θ > 0, θ̃ > 0, and T > 0 satisfy

E(z(t), zt(t)) ≤ eθE(z0, z1)e−
θ
T t (4.3)

and

E(z̃(t), z̃t(t)) ≤ eθ̃E(z̃0, z̃1)e−
θ̃
T t, (4.4)

b0 :=
θ0

θ0 + M̄CT
, (4.5)

M̄ is defined in (3.42),

N1 :=
(
8eθ+θ̃d̂

) 2−b0
2 C

2
+ 2CR

1
2
2

(
8eθ+θ̃d̂

) 1−b0
2

(
8(p + 1)

p − 1
eθ+θ̃d̂

) 1
2

,

and

λ2 :=
θ0(2 − b0)

2T
−

b0M̄C
2

=
θ0(2 − b0) − b0M̄CT

2T
.
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Proof. Due to Corollary 2.14 in [5], for any T > 0, we know that there exist θ and θ̃ to make (4.3) and
(4.4) hold, where θ is dependent on E(z0, z1) and T , and θ̃ is dependent on E(z̃0, z̃1) and T . According to
Proposition 2.11 in [5], the assumptions E(z0, z1) <M(s0 − ν), ∥z0∥V ≤ s0 − ν, and E(z̃0, z̃1) <M(s0 − ν),
∥z̃0∥V ≤ s0 − ν give z0 ∈ W and z̃0 ∈ W, respectively. HereM(s0 − ν) < d̂ can be observed according to
(2.17). Thus, we know (3.26) also holds. According to these facts and (2.16), we have

1
2
∥zt∥

2
2 +

p − 1
2(p + 1)

∥z∥2V < E(z(t), zt(t)) ≤ eθE(z0, z1)e−
θ
T t < eθd̂e−

θ
T t, (4.6)

and

1
2
∥z̃t∥

2
2 +

p − 1
2(p + 1)

∥z̃∥2V < E(z̃(t), z̃t(t)) ≤ eθ̃E(z̃0, z̃1)e−
θ̃
T t < eθ̃d̂e−

θ̃
T t. (4.7)

Due to (4.2), we know that (4.6) and (4.7) turn to

1
2
∥zt∥

2
2 +

p − 1
2(p + 1)

∥z∥2V < eθd̂e−
θ
T t < eθ+θ̃d̂e−

θ0
T t (4.8)

and

1
2
∥z̃t∥

2
2 +

p − 1
2(p + 1)

∥z̃∥2V < eθ̃d̂e−
θ̃
T t < eθ+θ̃d̂e−

θ0
T t, (4.9)

respectively. According to (4.8) and (4.9), we have

∥z∥4(p−1)
V <

(
2(p + 1)d̂

p − 1
eθ+θ̃

)2(p−1)

e−
2θ0(p−1)

T t

and

∥z̃∥4(p−1)
V <

(
2(p + 1)d̂

p − 1
eθ+θ̃

)2(p−1)

e−
2θ0(p−1)

T t,

which mean (
∥z∥4(p−1)

V + ∥z̃∥4(p−1)
V

) 1
2
<

(
2(p + 1)d̂

p − 1
eθ+θ̃

)p−1

2
1
2 e−

θ0(p−1)
T t. (4.10)

Next, we need to use the estimate (3.64) to continue this proof. More precisely, by substituting (4.10)
into (3.64), we obtain

A3 + A4 ≤C8e−
θ0(p−1)

T t 1
2
∥z − z̃∥2V +

C
2
∥wt∥

2
2

≤C8e−
θ0(p−1)

T t

(
1
2
∥z − z̃∥2V +

1
2
∥zt − z̃t∥

2
2

)
+

C
2
∥wt∥

2
2. (4.11)

By substituting (4.11) into (3.61) and the similar process of obtaining (3.69), we have∫ L

0
(F (z(t)) − F (z̃(t))) · wtdx
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≤C8e−
θ0(p−1)

T tÊ(t) +
C
2
∥wt∥

2
2

+ 2C∥z − z̃∥2∥zt − z̃t∥2

≤C8e−
θ0(p−1)

T tÊ(t) +
C
2
∥wt∥

2
2

+ 2CR
1
2
2 ∥z − z̃∥V∥zt − z̃t∥2. (4.12)

According to (3.60), we know

∥zt − z̃t∥2 ≤
(
2Ê(0)eM̄Ct

) 1
2
,

i.e.,

∥zt − z̃t∥
b0
2 ≤

(
2Ê(0)

) b0
2 e

b0 M̄Ct
2 , (4.13)

where b0 is defined by (4.5). Meanwhile, combining (4.8) and (4.9), we know

∥zt − z̃t∥2 ≤ ∥zt∥2 + ∥z̃t∥2 ≤
(
8eθ+θ̃d̂

) 1
2 e−

θ0
2T t, (4.14)

i.e.,

∥zt − z̃t∥
1−b0
2 ≤

(
8eθ+θ̃d̂

) 1−b0
2 e−

θ0(1−b0)
2T t. (4.15)

and

∥z − z̃∥V ≤ ∥z∥V + ∥z̃∥V ≤
(
8(p + 1)

p − 1
eθ+θ̃d̂

) 1
2

e−
θ0
2T t, (4.16)

where b0 > 0 and 1 − b0 > 0 are ensured by (4.5). According to (4.13), (4.14) and (4.15), we have

∥zt − z̃t∥
2
2 =∥zt − z̃t∥2∥zt − z̃t∥

b0
2 ∥zt − z̃t∥

1−b0
2

≤
(
2Ê(0)

) b0
2
(
8eθ+θ̃d̂

) 2−b0
2 e−

(
θ0(2−b0)

2T −
b0 M̄C

2

)
t
. (4.17)

According to (4.5), we have

0 < b0 <
2θ0

θ0 + M̄CT
, (4.18)

i.e.,

θ0(2 − b0)
2T

−
b0M̄C

2
> 0

in (4.17). Meanwhile, according to (4.13), (4.15) and (4.16), we notice that

∥z − z̃∥V∥zt − z̃t∥2 =∥z − z̃∥V∥zt − z̃t∥
b0
2 ∥zt − z̃t∥

1−b0
2
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≤
(
2Ê(0)

) b0
2
(
8eθ+θ̃d̂

) 1−b0
2

(
8(p + 1)

p − 1
eθ+θ̃d̂

) 1
2

e−
(
θ0(2−b0)

2T −
b0 M̄C

2

)
t
. (4.19)

Due to (4.17) and (4.19), we know that (4.12) turns to∫ L

0
(F (z(t)) − F (z̃(t))) · wtdx

≤C8e−
θ0(p−1)

T tÊ(t) +
(
2Ê(0)

) b0
2
(
8eθ+θ̃d̂

) 2−b0
2 Ce−

(
θ0(2−b0)

2T −
b0 M̄C

2

)
t

2

+ 2CR
1
2
2

(
2Ê(0)

) b0
2
(
8eθ+θ̃d̂

) 1−b0
2

(
8(p + 1)

p − 1
eθ+θ̃d̂

) 1
2

e−
(
θ0(2−b0)

2T −
b0 M̄C

2

)
t
. (4.20)

By substituting (4.20) into (3.43), we obtain

Ê(t) ≤Ê(0) +C8

∫ t

0
e−
θ0(p−1)

T τÊ(τ)dτ +
(
2Ê(0)

) b0
2 D1, (4.21)

where

D1 := N1

∫ t

0
e−λ2τdτ =

N1

λ2
−

N1

λ2
e−λ2t. (4.22)

Here, according to (4.22), we notice that D1 ≤
N1
λ2

, which means that (4.21) turns to

Ê(t) ≤Ê(0) +
(
2Ê(0)

) b0
2 N1

λ2
+C8

∫ t

0
e−
θ0(p−1)

T τÊ(τ)dτ, (4.23)

i.e.,

e−
θ0(p−1)

T tÊ(t) ≤e−
θ0(p−1)

T t

(
Ê(0) +

(
2Ê(0)

) b0
2 N1

λ2

)
+C8e−

θ0(p−1)
T t

∫ t

0
e−
θ0(p−1)

T τÊ(τ)dτ. (4.24)

By similar process of obtaining (3.84), we have

Ê(t) ≤
(
Ê(0) +

(
2Ê(0)

) b0
2 N1

λ2

) 1 + C8Te
C8T
θ0(p−1)

θ0(p − 1)

 . (4.25)

For 0 < κ < 1, according to (4.25), we know

Ê(t) =Ê(t)κÊ(t)1−κ

≤

(
Ê(0) +

(
2Ê(0)

) b0
2 N1

λ2

)κ 1 + C8Te
C8T
θ0(p−1)

θ0(p − 1)


κ

Ê(t)1−κ. (4.26)
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By the similar process of obtaining (3.86), we have

Ê(t)1−κ ≤
(
∥zt∥

2
2 + ∥z̃t∥

2
2 + ∥z∥

2
V + ∥z̃∥

2
V

)1−κ
. (4.27)

According to (4.8) and (4.9), we know

p − 1
2(p + 1)

(
∥zt∥

2
2 + ∥z∥

2
V

)
< eθ+θ̃d̂e−

θ0
T t (4.28)

and

p − 1
2(p + 1)

(
∥z̃t∥

2
2 + ∥z̃∥

2
V

)
< eθ+θ̃d̂e−

θ0
T t. (4.29)

By substituting (4.28) and (4.29) into (4.27), we have

Ê(t)1−κ ≤

(
4(p + 1)eθ+θ̃d̂

p − 1

)1−κ

e−
θ0(1−κ)

T t,

which means that (4.26) turns to (4.1).

5. Lower bound estimate of blowup time for positive initial energy and nonlinear weak damping case

The finite time blowup at the positive initial energy level was established for the linear weak damping
case and nonlinear weak damping case in [22], and for the linear weak damping case, the lower and
upper bounds of the blowup time were also estimated there. Hence in this section, we shall estimate the
lower bound of the blowup time at the positive initial energy level for the nonlinear weak damping case.

Theorem 5.1. (Lower bound of blowup time for positive initial energy and nonlinear weak damping
case) Let Assumption 2.1 and Assumption 2.2 hold, and E(z0, z1) ≥ 0. Suppose z(x, t) is the solution to
problem (1.1). If z(x, t) blows up at a finite time T0, then we have the estimate of blowup time

T0 ≥

∫ ∞

G(0)

1
C9yp +C10y +C11

dy,

where

C9 := (p + 1)R2p22p−2Mp,

C10 := (p + 1)M,

C11 := (p + 1)E(z0, z1) + (p + 1)R2p22p−2 (E(z0, z1))p ,

and
G(0) := ∥z0∥

p+1
p+1.

Proof. Let z = (u, ϕ) be a weak solution to problem (1.1). We suppose that such solution blows up at a
finite time T0. Our goal is to obtain an estimate of the lower bound of T0.

For t ∈ [0,T0), we define

G(t) := ∥z(t)∥p+1
p+1 = ∥u(t)∥p+1

p+1 + ∥ϕ(t)∥
p+1
p+1, (5.1)
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then, by Hölder inequality and Young inequality, we have

G
′

(t) =(p + 1)
∫ L

0
|u|p−1uutdx + (p + 1)

∫ L

0
|ϕ|p−1ϕϕtdx

≤(p + 1)
∫ L

0
|u|p|ut|dx + (p + 1)

∫ L

0
|ϕ|p|ϕt|dx

≤(p + 1)∥u∥p2p∥ut∥2 + (p + 1)∥ϕ∥p2p∥ϕt∥2

≤
p + 1

2

(
∥u∥2p

2p + ∥ut∥
2
2 + ∥ϕ∥

2p
2p + ∥ϕt∥

2
2

)
=

p + 1
2

(
∥z∥2p

2p + ∥zt∥
2
2

)
. (5.2)

Next task is to estimate the terms in the last line of (5.2). By (2.14) and (2.16), we obtain

E(z(t), zt(t)) =
1
2
∥zt∥

2
2 +

1
2
∥z∥2V −

∫ L

0
F(z(t))dx

≥
1
2
∥zt∥

2
2 +

1
2
∥z∥2V − M

∫ L

0

(
|u|p+1 + |ϕ|p+1

)
dx

=
1
2
∥zt∥

2
2 +

1
2
∥z∥2V − M∥z∥p+1

p+1. (5.3)

According to (3.16), we know

E(z(t), zt(t)) ≤ E(z0, z1), t ∈ [0,T0), (5.4)

where E(z0, z1) ≥ 0. We notice that (5.3) and (5.4) give

∥zt∥
2
2 + ∥z∥

2
V ≤ 2E(z0, z1) + 2MG(t), (5.5)

which means

∥z∥2V ≤ 2E(z0, z1) + 2MG(t), (5.6)

and

∥zt∥
2
2 ≤ 2E(z0, z1) + 2MG(t). (5.7)

Combining (2.5) and (5.6), we see

∥z∥2p
2p ≤ R2p (2E(z0, z1) + 2MG(t))p . (5.8)

By substituting (5.7) and (5.8) into (5.2), we have

G
′

(t) ≤
(p + 1)R2p

2
(2E(z0, z1) + 2MG(t))p + (p + 1) (E(z0, z1) + MG(t)) . (5.9)

We consider the function h(x) := xp, x > 0, p > 1. Since h
′′

(x) = p(p − 1)xp−2 > 0, h(x) is a convex
function. Thus it gives that

h
(
k̃1 + k̃2

2

)
≤

1
2

h(k̃1) +
1
2

h(k̃2), k̃1, k̃2 ≥ 0,
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that is to say
(k̃1 + k̃2)p ≤ 2p−1(k̃p

1 + k̃p
2 ).

Then, due to E(z0, z1) ≥ 0 and G(t) ≥ 0, we can get

(2E(z0, z1) + 2MG(t))p
≤ 2p−1 ((2E(z0, z1))p + (2MG(t))p) , (5.10)

which means that (5.9) turns to

G
′

(t) ≤(p + 1)R2p22p−2Mp (G(t))p + (p + 1)MG(t) + (p + 1)E(z0, z1)
+ (p + 1)R2p22p−2 (E(z0, z1))p ,

i.e.,

G
′

(t)
C9 (G(t))p +C10G(t) +C11

≤ 1. (5.11)

Recalling the assumption that the solution of problem (1.1) blows up in finite time T0, we have

lim
t→T0

G(t) = lim
t→T0
∥z(t)∥p+1

p+1 = ∞. (5.12)

Then, integrating both sides of (5.11) on (0,T0) and combining (5.12), we get∫ ∞

G(0)

1
C9yp +C10y +C11

dy ≤ T0.

Thus, the proof of Theorem 5.1 is completed.

6. Appendix: a variation of Gronwall’s inequality

In Sept I of the proofs of Theorem 3.2, by the classical form of Gronwall’s inequality (integral form)
shown in Appendix B.2 of [4], we know that (3.59) gives

Ê(t) ≤ Ê(0)(1 + M̄CteM̄Ct). (6.1)

In (6.1), the growth order of the distance of the solutions, i.e., Ê(t), is controlled by the product of an
exponential function and a polynomial function, which is higher than that in (1.2) established for the
local solution. In Sept I of the proofs of Theorem 3.2, in order to build the growth estimate of Ê(t) in
the same form as (1.2) for the global solution, i.e., (3.60), we need the following variation of Gronwall’s
inequality.

Proposition 6.1. For a nonnegative, summable function ζ(t) on [0, T̄ ] with satisfying

ζ(t) ≤ C̄1

∫ t

0
ζ(τ)dτ + C̄2 (6.2)

for the constants C̄1, C̄2 ≥ 0, one has

ζ(t) ≤ C̄2eC̄1t (6.3)

for a.e. 0 ≤ t ≤ T̄ .
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Proof. We use the similar idea of proving the classical form of Gronwall’s inequality shown by Appendix
B in [4] to give the proofs. We first define the auxiliary function

χ(t) := e−C̄1t
∫ t

0
ζ(τ)dτ. (6.4)

By direct calculation, we have

χ′(t) = e−C̄1t

(
ζ(t) − C̄1

∫ t

0
ζ(τ)dτ

)
. (6.5)

Substituting (6.2) into (6.5), we have

χ′(t) ≤ e−C̄1tC̄2,

which means ∫ t

0
χ′(τ)dτ ≤

∫ t

0
e−C̄1τC̄2dτ,

i.e.,

χ(t) ≤
C̄2

C̄1

(
1 − e−C̄1t

)
. (6.6)

According to (6.4) and (6.6), we have∫ t

0
ζ(τ)dτ ≤

C̄2

C̄1

(
eC̄1t − 1

)
. (6.7)

Substituting (6.7) into (6.2), we obtain (6.3).
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