In this paper, we are concerned with the existence of subharmonic solutions for the degenerate periodic systems of Lotka-Volterra type with impulsive effects. In our degenerate model, the variation of the predator and prey populations may vanish on a time interval, which imitates the (real) possibility that the predation is seasonally absent. Our proof is based on the Poincaré-Birkhoff theorem. By using phase plane analysis, we can find the large gap in the rotation numbers between the "small" solutions and the "large" solutions, which guarantees a suitable twist property. By applying the Poincaré-Birkhoff theorem, we then obtain the existence of subharmonic solutions. Our main theorem extends the associated results by J. López-Gómez et al.
Citation: Yinyin Wu, Fanfan Chen, Qingchi Ma, Dingbian Qian. Subharmonic solutions for degenerate periodic systems of Lotka-Volterra type with impulsive effects[J]. AIMS Mathematics, 2023, 8(9): 20080-20096. doi: 10.3934/math.20231023
In this paper, we are concerned with the existence of subharmonic solutions for the degenerate periodic systems of Lotka-Volterra type with impulsive effects. In our degenerate model, the variation of the predator and prey populations may vanish on a time interval, which imitates the (real) possibility that the predation is seasonally absent. Our proof is based on the Poincaré-Birkhoff theorem. By using phase plane analysis, we can find the large gap in the rotation numbers between the "small" solutions and the "large" solutions, which guarantees a suitable twist property. By applying the Poincaré-Birkhoff theorem, we then obtain the existence of subharmonic solutions. Our main theorem extends the associated results by J. López-Gómez et al.
[1] | P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, In: CBMS Regional Conference Series in Mathematics, 1986. https://dx.doi.org/10.1090/cbms/065 |
[2] | J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, New York: Springer, 1989. https://dx.doi.org/10.1007/978-1-4757-2061-7 |
[3] | Y. Long, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. Amer. Math. Soc., 311 (1989), 749–780. https://dx.doi.org/10.2307/2001151 doi: 10.2307/2001151 |
[4] | A. Fonda, Playing around resonance: An invitation to the search of periodic solutions for second order ordinary differential equations, Cham: Springer, 2016. https://dx.doi.org/10.1007/978-3-319-47090-0 |
[5] | H. Jacobowitz, Periodic solutions of $x''+f(x, t) = 0$ via the Poincaré-Birkhoff theorem, J. Differ. Equations, 20 (1976), 37–52. https://dx.doi.org/10.1016/0022-0396(76)90094-2 doi: 10.1016/0022-0396(76)90094-2 |
[6] | A. Margheri, C. Rebelo, F. Zanolin, Maslov index, Poincaré-Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, J. Differ. Equations, 183 (2002), 342–367. http://dx.doi.org/10.1006/jdeq.2001.4122 doi: 10.1006/jdeq.2001.4122 |
[7] | A. Fonda, Positively homogeneous Hamiltonian systems in the plane, J. Differ. Equations, 200 (2004), 162–184. http://dx.doi.org/10.1016/j.jde.2004.02.001 doi: 10.1016/j.jde.2004.02.001 |
[8] | D. Qian, P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707–1725. http://dx.doi.org/10.1137/S003614100343771X doi: 10.1137/S003614100343771X |
[9] | D. Qian, P. J. Torres, P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differ. Equations, 266 (2019), 4746–4768. http://dx.doi.org/10.1016/j.jde.2018.10.010 doi: 10.1016/j.jde.2018.10.010 |
[10] | F. Jiang, J. Shen, Y. Zeng, Applications of the Poincaré-Birkhoff theorem to impulsive Duffing equations at resonance, Nonlinear Anal. Real, 13 (2012), 1292–1305. http://dx.doi.org/10.1016/j.nonrwa.2011.10.006 doi: 10.1016/j.nonrwa.2011.10.006 |
[11] | D. Qian, L. Chen, X. Sun, Periodic solutions of superlinear impulsive differential equations: A geometric approach, J. Differ. Equations, 258 (2015), 3088–3106. http://dx.doi.org/10.1016/j.jde.2015.01.003 doi: 10.1016/j.jde.2015.01.003 |
[12] | Y. Niu, X. Li, Periodic solutions of semilinear Duffing equations with impulsive effects, J. Math. Anal. Appl., 467 (2018), 349–370. http://dx.doi.org/10.1016/j.jmaa.2018.07.008 doi: 10.1016/j.jmaa.2018.07.008 |
[13] | J. Shen, L. Chen, X. Yuan, Lagrange stability for impulsive Duffing equations, J. Differ. Equations, 266 (2019), 6924–6962. http://dx.doi.org/10.1016/j.jde.2018.11.022 doi: 10.1016/j.jde.2018.11.022 |
[14] | A. Hausrath, R. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra equation using the Poincaré-Birkhoff theorem, J. Math. Anal. Appl., 157 (1991), 1–9. http://dx.doi.org/10.1016/0022-247X(91)90132-J doi: 10.1016/0022-247X(91)90132-J |
[15] | T. Ding, F. Zanolin, Harmonic solutions and subharmonic solutions for periodic Lotka-Volterra systems, In: Dynamical systems: Proceedings Of the special program at Nankai institute of mathematics, World Scientific, 1993. |
[16] | T. Ding, F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, In: World congress of nonlinear analysts'92, Boston: De Gruyter, 1996. http://dx.doi.org/10.1515/9783110883237.395 |
[17] | A. Fonda, R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583–602. http://dx.doi.org/10.1515/anona-2017-0040 doi: 10.1515/anona-2017-0040 |
[18] | T. Dondé, F. Zanolin, Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach, Topol. Methods Nonlinear Anal., 55 (2020), 565–581. http://dx.doi.org/10.12775/TMNA.2019.104 doi: 10.12775/TMNA.2019.104 |
[19] | J. López-Gómez, E. Muñoz-Hernández, F. Zanolin, On the applicability of the poincaré-Birkhoff twist theorem to a class of planar periodic predator-prey models, Discrete Contin. Dyn. Syst., 40 (2020), 2393–2419. http://dx.doi.org/10.3934/dcds.2020119 doi: 10.3934/dcds.2020119 |
[20] | J. López-Gómez, E. Muñoz-Hernández, Global structure of subharmonics in a class of periodic predator-prey models, Nonlinearity, 33 (2020), 34. http://dx.doi.org/10.1088/1361-6544/ab49e1 doi: 10.1088/1361-6544/ab49e1 |
[21] | J. López-Gómez, E. Muñoz-Hernández, F. Zanolin, The Poincaré-Birkhoff theorem for a class of degenerate planar Hamiltonian systems, Adv. Nonlinear Stud., 21 (2021), 489–499. http://dx.doi.org/10.1515/ans-2021-2137 doi: 10.1515/ans-2021-2137 |
[22] | S. Tang, L. Chen, The periodic predator-prey Lotka-Volterra model with impulsive effect, J. Mech. Med. Biol., 2 (2002), 267–296. http://dx.doi.org/10.1142/S021951940200040X doi: 10.1142/S021951940200040X |
[23] | D. Bainov, P. Simenov, Impulsive differential equations: Periodic solutions and applications, CRC Press, 1993. |
[24] | Q. Liu, Q. Chen, Dynamics of stochastic delay Lotka-Volterra systems with impulsive toxicant input and Lévy noise in polluted environments, Appl. Math. Comput., 256 (2015), 52–67. http://dx.doi.org/10.1016/j.amc.2015.01.009 doi: 10.1016/j.amc.2015.01.009 |
[25] | L. Chen, J. Sun, F. Chen, L. Zhao, Extinction in a Lotka-Volterra competitive system with impulse and the effect of toxic substances, Appl. Math. Model., 40 (2016), 2015–2024. http://dx.doi.org/10.1016/j.apm.2015.09.057 doi: 10.1016/j.apm.2015.09.057 |
[26] | R. Tuladhar, F. Santamaria, I. Stamova, Fractional Lotka-Volterra-type cooperation models: Impulsive control on their stability, Entropy, 22 (2020), 970. https://doi.org/10.3390/e22090970 doi: 10.3390/e22090970 |