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Abstract: In this paper, we are concerned with the existence of subharmonic solutions for the
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the variation of the predator and prey populations may vanish on a time interval, which imitates
the (real) possibility that the predation is seasonally absent. Our proof is based on the Poincaré-
Birkhoff theorem. By using phase plane analysis, we can find the large gap in the rotation numbers
between the “small” solutions and the “large” solutions, which guarantees a suitable twist property. By
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main theorem extends the associated results by J. López-Gómez et al.
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1. Introduction

In this paper, we consider the periodic systems of Lotka-Volterra type with impulsive effects
x′ = −α(t) f (y),
y′ = β(t)g(x),
△x(t j) = I j(x(t−j ), y(t−j )),
△y(t j) = J j(x(t−j ), y(t−j )), j = ±1,±2, · · · ,

(1.1)
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where α, β are nonnegative T -periodic continuous functions, △x(t j) = x(t+j ) − x(t−j ), △y(t j) = y(t+j ) −
y(t−j ), the impulses I j, J j : R × R→ R are continuous and area-preserving for j = ±1,±2, · · · .

In addition, we assume that the impulsive time is T -periodic and there exists an integer l > 0 such
that

0 ≤ t1 < t2 < · · · < tl < T, t j+l = t j + T and I j+l = I j, J j+l = J j, j = ±1,±2, · · · . (1.2)

Throughout this paper, we write

A :=
∫ T

0
α(t)dt and B :=

∫ T

0
β(t)dt.

Extensive and interesting research has been conducted on the existence and multiplicity of periodic
solutions for second order differential equations without impulsive effects, see [1–4] by using critical
point theory, [5–9] by using Poincaré-Birkhoff theorem, and other references. At the same time, many
researchers are also interested in periodic solutions for impulsive systems, see [10–13]. For the Lotka-
Volterra type systems, one can refer to [14–18].

In above previous researches, there has often been some requirements for the preservation of the
sign of equations. For example, in (1.1), one of the two coefficients α(t) and β(t) is required to be
strictly positive. From the point of view of using the Poincaré-Birkhoff theorem and phase plane
analysis, these strictly positive conditions are used to obtain suitable twist properties. Otherwise, if
both coefficient functions change sign or vanish on a subinterval, the associated phase plane analysis
is considerably more difficult.

Recently, many researchers have been paying attention to the system where coefficient functions
are degenerate, that is, α(t) and β(t) could both be zero. These degenerate conditions imitate the (real)
possibility that the predation is seasonally absent.

In [19], López-Gómez et al. considered a Hamiltonian system{
x′ = −λα(t) f (y),
y′ = λβ(t)g(x),

(1.3)

where parameter λ > 0. By the Poincaré-Birkhoff theorem, the authors obtained the existence of
subharmonic solutions for sufficiently large λ, under the following assumptions:

(A1) Let α ⪈ 0 and β ⪈ 0 be T -periodic continuous functions such that

α (t0) β (t0) > 0 for some t0 ∈ [0,T ]. (1.4)

(A2) Let f , g ∈ C(R) be locally Lipschitz functions such that f , g ∈ C1 on a neighborhood of the
origin and 

f (0) = 0, f (y)y > 0 for all y , 0,
g(0) = 0, g(x)x > 0 for all x , 0,
f ′(0) > 0, g′(0) > 0.

(A3) Either f , or g, satisfies, at least, one of the following conditions:

( f−) f is bounded in R−, ( f+) f is bounded in R+,
(g−) g is bounded in R−, (g+) g is bounded in R+.
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Meanwhile, a predator-prey model of Lotka-Volterra type has been considered in [20], in which the
coefficients satisfy αβ = 0, that is, {

u′ = α(t)u(1 − v),
v′ = β(t)v(−1 + u),

(1.5)

where α(t) and β(t) are real continuous T -periodic functions such that

α(t) > 0, ∀t ∈
(
0,

T
2

)
, α(t) = 0, ∀t ∈

[T
2
,T

]
;

β(t) = 0, ∀t ∈
[
0,

T
2

]
, β(t) > 0, ∀t ∈

(T
2
,T

)
.

By constructing the iterates of the monodromy operator of the system, it was shown in [20] that the
system (1.5) possesses exactly two 2T -periodic solutions if AB > 4.

Further, López-Gómez et al. [21] considered the degenerate model (1.3) with (A1) and (A2).
Here “degenerate” means that the set

Z := supp(α) ∩ supp(β)

has Lebesgue measure zero, that is |Z| = 0. According to some geometric configurations of α and β,
for large λ > 0, the existence of a large number of subharmonic solutions is obtained in [21].

The strategy used in [19, 21] is to expand the parameter λ > 0 such that the rotational motions
of “large” solutions and “small” solutions produce enough angular gap in mT time in phase plane,
which implies a twist property. Then the Poincaré-Birkhoff theorem can be applied. Thus, a natural
and interesting problem is whether we can apply Poincaré-Birkhoff theorem to degenerate impulsive
systems (1.1) without expanding parameter λ. This is one of the motivations for the research presented
in this paper.

Due to the presence of pulses, even the simplest pulse function can potentially give rise to complex
dynamical phenomena, posing challenges for subsequent research. There are only a few results on
the existence of periodic solutions to impulsive equations of Lotka-Volterra type. In [22], Tang and
Chen investigated a classical periodic Lotka-Volterra predator-prey system with impulsive effect. By
using the method of coincidence degree, the authors proved the existence of strictly positive periodic
solution.

In the following, we consider the impulsive periodic systems of Lotka-Volterra type (1.1). We
preserve (A2)–(A3) and assume that

(H1) Let α ⪈ 0, β ⪈ 0 be T -periodic continuous functions such that A > 0 and B > 0.
By (A2), there exists a constant η > 0 such that

min{ f ′(0), g′(0)} > η. (1.6)

Then by the limit definition, we find ε0 > 0 such that,

f (ζ)ζ ≥ ηζ2, g(ζ)ζ ≥ ηζ2, for |ζ | ≤ ε0.

Moreover, we give the following assumptions about the impulse functions.
(H2) For some η satisfying (1.6), there exists a constant δ1 , such that

|I j (x, y) | < µr, |J j (x, y) | < µr, for r < δ1,

AIMS Mathematics Volume 8, Issue 9, 20080–20096.



20083

where r =
√

x2 + y2 and the constant µ satisfies

l arcsin(
√

2µ) < µ∗ := min
{
π

6(l + 1)
,
π

12
, ηA sin2 π

12
, ηB sin2 π

12

}
,

where l as defined in (1.2).
(H3) There exists M0 > 0 such that

|I j(x, y)| < M0, |J j(x, y)| < M0, j = ±1,±2, · · · .

The main result of this paper is the following:

Theorem 1.1. Assume that (A2)–(A3), (H1)–(H3) hold. Then for every positive integer k ≥ 1, there
exists a positive integer m∗(k) such that, for every integer m ≥ m∗(k), the system (1.1) has at least two
mT-periodic solutions having k as a rotation number.

Remark 1.1. Theorem 1.1 generalizes the relevant results [19, 21] of López-Gómez et al.
(1) In contrast to the non-degenerate condition (A1), condition (H1) allows the coefficient functions

α and β to vanish on a subinterval. This implies that the solutions near the origin may enter the origin
in the phase plane which leads to a bad evaluation of the rotations. By careful phase plane analysis,
we can overcome this problem.

(2) Our model does not have a parameter λ. In [19,21], as the parameter λ increases, the gap in the
rotation number between the small and the large solutions increases. But this approach is not directly
applicable to our case. For our system (1.1) without parameter, it is difficult to obtain enough gap
between the rotation numbers of small and large solutions. In Section 3, we overcome all difficulties
by phase plane analysis.

The rest of the paper is organized as follows. In Section 2, we consider the degenerate systems
without impulses and give some preliminary results. In Section 3, we provide the proof of Theorem 1.1.
Firstly, we prove that the solutions of (1.1) near the origin can complete many turns around the origin
via phase plane analysis. Next, we show that the solutions of (1.1) far from the origin cannot complete
one turn. Finally, we obtain the existence of subharmonic solutions by Poincaré-Birkhoff theorem.

2. Preliminary

For the sake of convenience, we introduce some basic lemmas and tools that will be used in the next
section. First, we consider the Hamiltonian system without impulsive terms x′ = −α(t) f (y),

y′ = β(t)g(x),
(2.1)

where α, β, f and g satisfy (A2)–(A3) and (H1).
Apparently, (0, 0) is a solution of (2.1). By the uniqueness of the solution, if the initial

value (x(0), y(0)) , (0, 0), then the solution (x(t), y(t)) , (0, 0) of (2.1), for t ∈ R. Introducing polar
coordinates

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t).

AIMS Mathematics Volume 8, Issue 9, 20080–20096.
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Let
D1 = {(x, y) : x > 0, y ≥ 0}, D2 = {(x, y) : x ≤ 0, y > 0},

D3 = {(x, y) : x < 0, y ≤ 0}, D4 = {(x, y) : x ≥ 0, y < 0}.

Similar to the discussion in [19, Remark 1], by (A2) and (H1), all solutions of (2.1) exists globally.
Further, we have the following spiral property.

Lemma 2.1. Assume that (A2)–(A3) and (H1) hold. For any fixed positive integer m, there are a
sufficiently large R∗ > 0 and two strictly monotonically increasing functions ξ±m : [R∗,+∞) → R such
that

ξ±m(s)→ +∞ ⇐⇒ s→ +∞.

Moreover, let z(t) = (x(t), y(t)) be the solution of (2.1) with R0 = |z(0)| ≥ R∗. Then we have either

ξ−m(R0) ≤ |z(t)| ≤ ξ+m(R0), t ∈ [0,mT ],

or there exists t∗ ∈ (0,mT ) such that
θ(t∗) − θ(t0) = 2π,

and
ξ−m(R0) ≤ |z(t)| ≤ ξ+m(R0), t ∈ [0, t∗].

Proof. Without loss of generality we assume that z(t) is the solution of (2.1) with |z(0)| = R0, where R0

is sufficiently large.
Step 1. The estimation of upper bound on the solution z(t).

As a first case, we assume that z(0) ∈ D2. If z(t) ∈ D2 for all t ∈ [0,mT ]. Notice that x′(t) ≤ 0
and y′(t) ≤ 0, we have 0 ≤ y(t) ≤ y(0). Taking

M = max{| f (y)| : 0 ≤ y ≤ y(0)},

then

x(t) =
∫ t

0
x′dt ≥ −

∫ mT

0
α(t)Mdt = −mAM := −R1. (2.2)

Otherwise, there exists a t1 ∈ [0,mT ], such that y(t1) = 0 and z(t) ∈ D2 for t ∈ [0, t1), then (2.2) still
holds.

If z(t) ∈ D3 for all t ∈ [t1,mT ]. Then, we have x′(t) ≥ 0, y′(t) ≤ 0. Therefore, −R1 ≤ x(t) ≤ 0.
Taking

N = max{|g(x)| : −R1 ≤ x ≤ 0},

then we have

y(t) =
∫ t

t1
y′dt ≥ −

∫ mT

0
β(t)Ndt = −mBN := −R2. (2.3)

Otherwise, there exists a t2 ∈ (t1,mT ], such that x(t2) = 0 and z(t) ∈ D3 for t ∈ [t1, t2). Thus,
for t ∈ [t1, t2], (2.3) still holds.

If z(t) ∈ D4 for all t ∈ [t2,mT ], we have x′(t) ≥ 0, y′(t) ≥ 0, which implies that −R2 ≤ y ≤ 0. Taking

M1 = max{| f (y)| : −R2 ≤ y ≤ 0},
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x(t) =
∫ t

t2
x′dt ≤

∫ mT

0
α(t)M1dt = mAM1 := R3. (2.4)

Otherwise, there exists a t3 ∈ (t2,mT ], such that y(t3) = 0 and z(t) ∈ D4 for t ∈ [t2, t3). Then
for t ∈ [t2, t3], (2.4) still holds.

If z(t) ∈ D1 for all t ∈ [t3,mT ], we have x′(t) ≤ 0, y′(t) ≥ 0, which implies that 0 ≤ x(t) ≤ R3.
Taking

N1 = max{|g(x)| : 0 ≤ x ≤ R3}.

It follows that

y(t) =
∫ t

t1
y′dt ≤

∫ mT

0
β(t)N1dt = mBN1 := R4. (2.5)

Otherwise, there exists a t∗ ∈ (t3,mT ], such that x(t∗) = 0 and z(t) ∈ D1 for t ∈ [t3, t∗). Then
for t ∈ [t3, t∗], (2.5) still holds.

Let ξ+m(z(0)) =
√

2 max{R0,R1,R2,R3,R4}. Then

ξ+m(z(0))→ +∞ ⇐⇒ |z(0)| → +∞.

For the other case, that is z(0) ∈ D3, z(0) ∈ D4 and z(0) ∈ D1, similar to the discussion above, we
can find the an upper bound on each quadrant. For briefness, we still denote by Ri, i = 0, · · · , 4 the
associated upper bound on each quadrant. Note that Ri, i = 0, · · · , 4, depends on z(0) ∈ R2, and
therefore, the choice of ξ+m only depends on z(0).
Step 2. The estimation of lower bound on the solution z(t).

To complete our analysis, we need to look at what happens in the every quadrants. At first, we
consider the case of z(t) ∈ D2.

For z(t) ∈ D2, there exists t′1 ∈ [0, t1] such that y(t′1) = −x(t′1). we claim that

|x(t′1)| → +∞ ⇐⇒ |z0| → +∞. (2.6)

For otherwise, we assume that there exists a constant J1 which is independent of |z0|, such that

0 < −x(t) ≤ J1, for t ∈ (0, t′1].

On the other hand,

y(t′1) = y(0) +
∫ t′1

0
y′dt ≥ |z0| −

([
t′1
T

]
+ 1

)
BM′g,

where M′g = max{|g(x)| : 0 < −x ≤ J1}. Then y(t′1) → +∞ as |z0| → +∞. But this is a contradiction
with the fact that y(t′1) ≤ J.

Since x′ ≤ 0 and y′ ≤ 0, we have

|z(t)| ≥ y(t) ≥ y(t′1) for t ∈ [0, t′1] (2.7)

and
|z(t)| ≥ −x(t) ≥ −x(t′1) for t ∈ [t′1, t1]. (2.8)

Combine (2.6)–(2.8), there exists ξ−m,2(z0) such that

ξ−m,2(z(0))→ +∞ ⇐⇒ |z(0)| → +∞ and |z(t)| ≥ ξ−m,2(z(0)) for t ∈ [0, t1].
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In particular, |z(t1)| → +∞ ⇐⇒ |z0| → +∞.
Similarly, we can discuss the cases of z(t) ∈ D3, D4, D1. In conclusion, we can find ξ−m,3(z(t1)),

ξ−m,4(z(t2)) and ξ−m,1(z(t3)) such that

ξ−m,3(z(t1))→ +∞ ⇐⇒ |z(t1)| → +∞, |z(t)| ≥ ξ−m,3(z(t1)) for t ∈ [t1, t2],

ξ−m,4(z(t2))→ +∞ ⇐⇒ |z(t2)| → +∞, |z(t)| ≥ ξ−m,4(z(t2)) for t ∈ [t2, t3],

ξ−m,1(z(t3))→ +∞ ⇐⇒ |z(t3)| → +∞, |z(t)| ≥ ξ−m,1(z(t3)) for t ∈ [t3, t∗].

Set
ξ−m(z(0)) = ξ−m,1 ◦ ξ

−
m,4 ◦ ξ

−
m,3 ◦ ξ

−
m,2(z(0)).

Then,
|z(t)| ≥ ξ−m(z(0)) for t ∈ [0, t∗].

Notice that the discussions in Steps 1 and 2 are true for not only for initial time t0 = 0 but also for all
initial time t0 ∈ [0,T ]. Therefore, we can rewrite ξ±m(z(0)) as ξ±m(R0), which means that the upper and
lower bounds of the solution depend only on R0 = |z(t0)|. The proof of the lemma is complete.

Now let us return to the impulsive Eq (1.1). Notice that the motion of the solution of (1.1) is the
same as that of (2.1) until it meets the next impulsive time. We consider the behavior of small solutions.
Denote by DR the disc of radius R centered at zero.

According to [23], (A2) guarantee the existence and uniqueness of the solution. By boundedness of
impulses, similar to the proof of [19, Proposition 1], we have the following result.

Proposition 1. Assume that (A2)–(A3), (H1)–(H3) hold. For every integer m ≥ 1 and ε > 0, there
exists δ = δ(m, ε) > 0 such that if (x0, y0) ∈ Dδ, then the unique solution of (1.1), (x(t), y(t)),
with (x(0), y(0)) = (x0, y0), satisfies (x(t), y(t)) ∈ Dε for all t ∈ [0,mT ].

By Proposition 1, there exists δ0 = δ0(m, δ1) such that if z(t) = (x(t), y(t)) is any solution of (1.1)
with initial value z0 = (x(0), y(0)) ∈ Dδ0 , then z(t) ∈ Dδ1 . For the nontrivial solution z(t) ∈ Dδ1 , by (H2),

we have
√

2µ <
1
2

, then ∆r(t j) =
√

(△x(t j))2 + (△y(t j))2 <
1
2

r(t−j ). This implies that z(t) never passes
the origin, that is, if z0 , (0, 0) then z(t) , (0, 0) for t ∈ R. Then the rotation number of the solution z(t)
associated with the initial value z0 can be defined as

rot(z0; [0,mT ]) :=
θ(mT ) − θ(0)

2π
.

The rotation number is an algebraic counter of the counterclockwise turns of the solution z(t) around
the origin during the time-interval [0,mT ].

Now we introduce a generalized version of the Poincaré-Birkhoff theorem [11, Theorem 2.1] to
prove the existence of subharmonic solutions.

Theorem 2.1. Let A be an annular region bounded by two strictly star-shaped curves around the
origin, Γ−and Γ+,Γ− ⊂ int (Γ+), where int (Γ+)denotes the interior domain bounded by Γ+. Suppose
that F : int (Γ+) → R2 is an area-preserving homeomorphism and F|A admits a lifting, with the
standard covering projection Π : (θ, r) 7→ z = (r cos θ, r sin θ), of the form

F̃
∣∣∣
A

: (θ, r) 7→ (θ + h(θ, r),w(θ, r)),
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where h and w are continuous functions of period T in the first variable. Correspondingly, for Γ̃− =
Π−1 (Γ−) and Γ̃+ = Π−1 (Γ+), assume the twist condition

h(θ, r) > 0 on Γ̃−, h(θ, r) < 0 on Γ̃+. (2.9)

Then, F has two fixed points z1, z2 in the interior ofA, such that

h
(
Π−1 (z1)

)
= h

(
Π−1 (z2)

)
= 0.

Remark 2.1. In (2.9), the function h(θ, r) means ∆θF(z), the difference between polar angles of z and
its image through F(z). The continuity of this function is essential to verify the twist condition. In fact,
Poincaré map of impulsive system is an iterative map by the section maps of flows and the jump maps.
See [11] for more details.

3. The proof of Theorem 1.1.

In order to apply the Poincaré-Birkhoff theorem to the impulsive Eq (1.1) where α and βmay vanish
on a subinterval, we need to characterize a suitable twist condition. Therefore, we should evaluate the
rotation number of small and large solutions (see Lemmas 3.1 and 3.3).

Let z(t; z0) be the solution of (1.1) and (θ(t; θ0, r0), r(t; θ0, r0)) the polar coordinates of z (t; z0). First
of all, we find some small solutions of (1.1) with a given lower bound on the rotation number on the
interval [0,mT ]. More precisely, we have the following lemma.

Lemma 3.1. Assume that (A2), (H1)–(H3) hold. For any given positive integer k > 1, there exists a
integer m∗(k) ≥ 1 such that, for every integer m ≥ m∗(k), there exists r−(m) > 0 such that for

θ (mT ; θ0, r0) − θ0 > 2kπ, for θ0 ∈ R and r0 = r−(m).

Proof. For simplicity, let z(t) = z(t; z0) and (θ(t), r(t)) = (θ(t; θ0, r0), r(t; θ0, r0)). We assume
that (x(t), y(t)) ∈ Dε. Let’s introduce notations

∆i
jθ =: θ(t−j ) − θ(t+j−1), j = (i − 1)l + 1, · · · , il,

∆i
il+1θ =: θ(iT ) − θ(t+il ) and ∆iΘ =:

il∑
j=(i−1)l+1

(θ(t+j ) − θ(t−j )),

where l as defined in (1.2).
We first consider the case where i = 1. For (x(t), y(t)) ∈ Dδ1 t ∈ [0,T ], t , t j, j = 1, · · · , l, we have

θ′(t) =
y′(t)x(t) − y(t)x′(t)

x2(t) + y2(t)
=
α(t) f (y(t))y(t) + β(t)g(x(t))x(t)

x2(t) + y2(t)
≥ η(α(t) sin2 θ + β(t) cos2 θ).

By (H2), we get

sin(|θ(t+j ) − θ(t−j )|) =

√
△2x(t j) + △2y(t j)
x2(t−j ) + y2(t−j )

<

√
2µr(t−j )

r(t−j )
=
√

2µ,

AIMS Mathematics Volume 8, Issue 9, 20080–20096.
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it follows that |θ(t+j ) − θ(t−j )| < arcsin(
√

2µ), thus

|∆1Θ| ≤

l∑
j=1

|θ(t+j ) − θ(t−j )| < l arcsin(
√

2µ). (3.1)

There are two cases to be considered.

Case 1.1. Let θ(0) ∈
[
1
6
π,

2
3
π

]⋃ [
7
6
π,

5
3
π

]
. For t ∈ [0,T ], t , t j, j = 1, · · · , l, we have θ′(t) ≥ 0. So

either
∆1

jθ ≥
π

6(l + 1)
, for some j ∈ {1, · · · , l + 1},

or
0 ≤ ∆1

jθ ≤
π

6(l + 1)
, for all j ∈ {1, · · · , l + 1}.

For the former, by (H2) and (3.1), we have

θ(T ) − θ(0) =
l+1∑
j=1

∆1
jθ + ∆1Θ ≥

π

6(l + 1)
− l arcsin(

√
2µ) > 0.

For the latter, by (H2) and (3.1), we obtain |∆iΘ| <
π

12
. Hence,

θ(t) ∈
[

1
12
π,

11
12
π

]⋃[
13
12
π,

23
12
π

]
, for t ∈ [0,T ],

which implies that

θ′(t) ≥ ηα(t) sin2 1
12
π, for t , t j, j = 1, · · · , l.

Integrating both sides of the above inequality from 0 to T , we have

θ(T ) − θ(0) =
l∑

j=1

∫ t j

t j−1

θ′(t)dt +
∫ T

tl
θ′(t)dt + ∆1Θ ≥ ηA sin2 1

12
π − l arcsin(

√
2µ) > 0.

Case 1.2. Let θ(0) ∈
[
−

1
3
π,

1
6
π

]⋃ [
2
3
π,

7
6
π

]
. Similarly, either

∆1
jθ ≥

π

6(l + 1)
, for some j ∈ {1, · · · , l + 1},

or
0 ≤ ∆1

jθ ≤
π

6(l + 1)
, for all j ∈ {1, · · · , l + 1}.

For the former, we get

θ(T ) − θ(0) =
l+1∑
j=1

∆1
jθ + ∆1Θ ≥

π

6(l + 1)
− l arcsin(

√
2µ) > 0.
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For the latter, we see

θ(t) ∈
[
−

5
12
π,

5
12
π

]⋃[
7
12
π,

17
12
π

]
, for t ∈ [0,T ].

Therefore,

θ′(t) ≥ ηβ(t) cos2 5
12
π = ηβ(t) sin2 1

12
π, for t , t j, j = 1, · · · , l.

Integrating both sides of the above inequality from 0 to T , we find

θ(T ) − θ(0) =
l∑

j=1

∫ t j

t j−1

θ′(t)dt +
∫ T

tl
θ′(t)dt + ∆1Θ ≥ ηB sin2 1

12
π − l arcsin(

√
2µ) > 0.

We take Θ∗ = µ∗ − l arcsin(
√

2µ) > 0 and obtain

θ(T ) − θ(0) ≥ Θ∗. (3.2)

Let m∗(k) =
[
2πk
Θ∗

]
+ 1. Thus, for a given positive integer m ≥ m∗(k), there exists a small circle

r = r−(m, δ1) such that the solution of (1.1) starting from r = r−(m) completes k counterclockwise
rotations on [0,mT ], that is,

θ (mT ; θ0, r0) − θ0 > 2kπ.

As is well-known, the global existence of solutions is a crucial requirement for applying the
Poincaré-Birkhoff theorem. To this end, we will prove that the solution of (1.1) possesses a spiral
property in the phase plane, which guarantees the global existence of the solution.

Lemma 3.2. Assume that (A2) and (A3), (H1)–(H3) hold. For fixed m ≥ m∗(k) and sufficiently
large R∗ > 0, there exists R±m : [R∗,+∞)→ R such that

R±m(s)→ +∞ ⇐⇒ s→ +∞.

Moreover, let z(t) be the solution of (1.1) with r0 = |z(t0)| ≥ R∗. Then we have either

R−m(r0) ≤ |z(t)| ≤ R+m(r0), ∀ t ∈ [t0, t0 + mT ],

or there exists t∗ ∈ (t0, t0 + mT ) such that

θ(t∗) − θ(t0) = 2π,

and
R−m(r0) ≤ |z(t)| ≤ R+m(r0), ∀ t ∈ [t0, t∗].

Proof. Let z(t) be the solution of (1.1) satisfying the initial value z(t0), where |z(t0)| is sufficiently
large. Notice that for impulsive Eq (1.1), the motion of the solution is same as the motion of the
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corresponding equation without impulses until it meets the next impulse time. By Lemma 2.1, we can
find curves ξ±j,m(r(t+j−1)) := ξ±m(r(t+j−1)), j = 1, · · · ,ml + 1, such that

ξ±j,m(r(t+j−1))→ +∞ ⇐⇒ r(t+j−1)→ +∞, j = 1, · · · ,ml + 1.

Moreover,
ξ−j,m(r(t+j−1)) ≤ r(t) ≤ ξ+j,m(r(t+j−1)), t ∈ (t+j−1, t

−
j ), j = 1, · · · ,ml,

and
ξ−ml+1,m(r(t+ml)) ≤ r(t) ≤ ξ+ml+1,m(r(t+ml)), t ∈ (t+ml,mT ].

In particular,
ξ−j,m(r(t+j−1)) ≤ r(t−j ) ≤ ξ+j,m(r(t+j−1)), j = 1, · · · ,ml. (3.3)

By (H3), we get

|r(t+j ) − r(t−j )| =
√

I2
j + J2

j <
√

2M0, j = 1, · · · ,ml.

Hence, for j = 1, · · · ,ml,

Q−j (r(t+j )) := ξ−j,m(r(t+j−1)) −
√

2M0 ≤ r(t+j ) ≤ ξ+j,m(r(t+j−1)) +
√

2M0 =: Q j(r(t+j )). (3.4)

Let
R±m(r0) := ξ±ml+1,m ◦ Q±ml ◦ · · · ξ

±
2,m ◦ Q±1 ◦ ξ

±
1,m(r0)

Combining (3.3) with (3.4), we have

R±m(r0)→ +∞ ⇐⇒ r0 → +∞,

and
R−m(r0) ≤ r(t) ≤ R+m(r0), ∀ t ∈ [0,mT ].

Further, we prove that the solution z(t) with sufficiently large |z(t0)|, cannot complete one turn around
the origin on [0,mT ], where m is given by Lemma 3.1.

Lemma 3.3. Assume that (A3), (H1)–(H3) hold. For any given m ∈ N, there exists r+(m) > 0 such that,

θ (mT ; θ0, r0) − θ0 < 2π, for θ0 ∈ R and r0 = r+(m).

Proof. Without loss of generality we assume that (H3) holds with g satisfying (g−). Then there
exists Mg > 0 such that

sup
x≤0
|g(x)| ≤ Mg.

Let z(t) = (x(t), y(t)) be a nontrivial solution of (1.1) with the initial value z0 = (x0, y0). There are two
cases to discuss.
Case 3.1. Let z0 ∈ D1

⋃
D3

⋃
D4. We claim that z(t) cannot cross entirelyD2 during [0,mT ], if |z0| is

sufficiently large.
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Proof by contradiction. Assume that there exists [τ1, τ2] ⊂ [0,mT ], τ1, τ2 , t j, j = 1, · · · ,ml, such
that

0 ≥ x(τ1) ≥ −M0, y(τ1) > 0, 0 > x(τ2), M0 ≥ y(τ2) ≥ 0,

where M0 is given by (H5). Then,

|y(τ1)| ≤ |y(τ2)| +

∣∣∣∣∣∣Mg

∫ τ2

τ1

β(s)ds

∣∣∣∣∣∣ + ∑
τ1<t j<τ2

|J j(x(t−j ), y(t−j ))|

≤ M0 + mMgB + mlM0 := R∗.

By Lemma 3.2, we choose r+(m) such that for r0 = r+(m), |z(t)| ≥ R−m(r0) > R∗ + M0, t ∈ [0,mT ]. This
leads to a contradiction. Hence,

θ (mT ; θ0, r0) − θ0 < 2π.

Case 3.2. Let z0 ∈ D2. We claim that z(t) cannot cross entirelyD3 during [0,mT ], if |z0| is sufficiently
large.

Similarly, by contradiction, we assume that there exists [τ3, τ4] ⊂ [0,mT ], τ3, τ4 , t j, j = 1, · · · ,ml,
such that

0 > x(τ3), 0 ≥ y(τ3) ≥ −M0, 0 ≥ x(τ4) ≥ −M0, 0 ≥ y(τ4),

Thus,

|y(t)| ≤ |y(τ3)| + M
∫ τ4

τ3

β(s)ds +
∑
τ3<t j<τ4

|J j(x(t−j ), y(t−j ))|

≤ M0 + mMgB + mlM0 = R∗.

Let
N∗ := max{| f (y)| : |y| ≤ R∗},

then

|x(τ3)| ≤ |x(τ4)| + N∗
∫ τ4

τ3

α(s)ds +
∑
τ3<t j<τ4

|I j(x(t−j ), y(t−j ))|

≤ M0 + mN∗A + mlM0 := R∗∗.

By Lemma 3.2, we choose r+(m) such that for r0 = r+(m), |z(t)| ≥ R−m(r0) > R∗∗ + M0, t ∈ [0,mT ]. This
leads to a contradiction. Hence,

θ (mT ; θ0, r0) − θ0 < 2π.

Now we are in a position to consider the Poincaré mapping associated with (1.1). According to
Lemma 3.2, the solutions of (1.1) exists globally. Denote by (x(t; x0, y0), y(t; x0, y0)) the solution
of (1.1) with the initial value (x0, y0) = (x(0; x0, y0), y(0; x0, y0)) and define

P0 : (x0, y0)→ (x(t1−; x0, y0), y(t1−; x0, y0)),
P1 : (x1, y1)→ (x(t2−; x1, y1), y(t2−; x1, y1)),
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...

P j : (x j, y j)→ (x(t j+1−; x j, y j), y(t j+1−; x j, y j)),
...

Pml−1 : (xml−1, yml−1)→
(
x
(
t−ml; xml−1, yml−1

)
, y

(
t−ml; xml−1, yml−1

))
,

Pml : (xml, yml)→ (x (mT ; xml, yml) , y (mT ; xml, yml)) ,

where (x j, y j) = (x(t j+; x j, y j), y(t j+; x j, y j)), j = 1, 2, · · · ,ml. The jumping map is defined by

Φ j : (x, y) 7−→ (x + I j(x, y), y + J j(x, y)), j = 1, 2, · · · ,ml.

Then the Poincaré mapping P associated with (1.1) can be written in the form

P = Pml ◦ Φml ◦ · · · P1 ◦ Φ1 ◦ P0.

Since  x′ = −α(t) f (y),
y′ = β(t)g(x),

is conservative, P j, j = 0, 2, · · · ,ml, are symplectic. And Φ j, j = 1, 2, · · · ,ml, are area-preserving
homeomorphisms. Hence, the Poincaré mapping P is area-preserving. Moreover, by Lemmas 3.2
and 3.3, P satisfies the boundary twist condition.

Finally, we apply the Poincaré-Birkhoff theorem to prove the existence of subharmonic solutions.
Applying Theorem 2.1 , P has at least two geometrically distinct fixed points

(xi, yi) = (ri cos θi, ri sin θi) , i = 1, 2,

which correspond to two mT -periodic solutions of system (1.1) with

θ (mT ; θi, ri) − θi = 2kπ, i = 1, 2,

that is, rot(zi,0; [0,mT ]) = k, i = 1, 2.
The proof of Theorem 1.1 is thus completed.

Remark 3.1. For any positive integer m′ ≥ m∗(k), there exist a new r±(m′) such that P satisfies the
boundary twist condition. Then, by Theorem 1.1, P has at least two geometrically distinct fixed points(

x(m′)
i , y

(m′)
i

)
=

(
r(m′)

i cos θ(m
′)

i , r
(m′)
i sin θ(m

′)
i

)
, i = 1, 2,

which correspond to two mT-periodic solutions of system (1.1) with rot(zm′
i,0; [0,mT ]) = k, i = 1, 2.

Therefore, system (1.1) has infinitely many geometrically distinct mT-periodic solutions.

4. Biological interpretations and conclusions

Our system (1.1) covers many mathematical models with biological properties. We briefly illustrate
our degenerate systems with examples.
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A classical predator-prey model of Lotka-Volterra type [19–21] has the form{
x′ = x(a(t) − b(t)y),
y′ = y(−c(t) + d(t)x),

(4.1)

where a, b, c, d : R → R are T -periodic functions and b(t) ⪈ 0, d(t) ⪈ 0. If system (4.1) possesses a
T -periodic coexistence state (x̃(t), ỹ(t)), namely, a positive componentwise T -periodic solution of the
system, then by change of variables

x(t) = u(t)x̃(t), y(t) = v(t)ỹ(t),

system (4.1) is changed into the equivalent system{
u′ = b(t)ỹ(t)u(1 − v),
v′ = d(t)x̃(t)v(−1 + u).

(4.2)

Commonly, (1, 1) is regarded as a trivial coexistence state of system (4.2). From a geometric point
of view, nontrivial componentwise positive mT -periodic solutions are the trajectories inside the first
quadrant wound around the equilibrium point.

For the convenience of study, we can move the equilibrium point to the origin. System (4.2) is
changed, via the change of variables x = ln u and y = ln v, into the system{

x′ = −α(t)(−1 + ey),
y′ = β(t)(−1 + ex).

(4.3)

with α(t) ⪈ 0 and β(t) ⪈ 0. Obviously, (4.3) satisfies (A2) and (A3) and is a particular case of (1.1).
Now, let’s provide some biological explanations for (H1). In nature, a predator or prey can maintain

a fairly constant density despite fluctuations in the density of its prey. At certain periodic times (certain
seasons) of the year, the predators hunt preys and collect them. At other periodic times, they stop
hunting the preys and simply consume what they have collected, during which the prey is unaffected
by the predator.

Introducing a simple prototype model for system (1.1). In Mediterranean pine forests, there is a
species of moth called the pine processionary. Typically, in late summer or early autumn, they lay
their eggs on pine trees. After a period of incubation, the larvae emerge, and the larval stage can
last for several months, during which the caterpillars actively feed on pine needles. the caterpillars
actively feed on pine needles, causing defoliation. During this period, the density of pine trees remains
constant, while the density of pine processionary caterpillars fluctuates. Depending on the impact of
defoliation, the population of the next generation of caterpillars can increase or decrease before the start
of a new cycle. Coefficient functions α and β vanish on some subintervals to simulate this property,
which makes our model more realistic.

On the other hand, models (4.1) and (4.2) are affected by short-term perturbations, which are
usually considered as impulse terms. It is well known that many biological systems are disturbed by
human activities, such as biological control, feeding, harvesting, and planting in fisheries and forest
management, chemotherapy to cancer cells, and regular release of toxins from environmental
pollution. In order to describe this system more accurately, continuous human activity is often
removed from the model and replaced with impulses [22, 24–26].
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A commonly employed method in biological pest control is the release of natural enemies to reduce
the population of pests. For example, parasitic wasps are natural enemies of many pests and are
commonly used in biological pest control. In greenhouse production, pests often experience outbreaks
during the summer season. In this period of time, we can release parasitic wasps to control the growth
of pests, and in some cases, even eliminate them.

In this paper, based on Poincaré-Birkhoff theorem, by using phase plane analysis, we show that
for every integer m ≥ m∗(k), impulsive systems (1.1) has at least two mT -periodic solutions. From
a biological perspective, Theorem 1.1 indicates that small bounded disturbances caused by human
activities do not affect the existence of infinitely many equilibrium states.
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14. A. Hausrath, R. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra
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