In this paper, we establish the boundedness for $ m $th order commutators of $ n- $dimensional fractional Hardy operators and adjoint operators on weighted variable exponent Morrey-Herz space $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) $.
Citation: Ming Liu, Bin Zhang, Xiaobin Yao. Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators[J]. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
In this paper, we establish the boundedness for $ m $th order commutators of $ n- $dimensional fractional Hardy operators and adjoint operators on weighted variable exponent Morrey-Herz space $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) $.
[1] | M. Asim, A. Hussain, N. Sarfraz, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 2. http://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z |
[2] | A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponent, J. Math. Anal. Appl., 394 (2012), 781–795. http://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043 |
[3] | C. Bennett, R. Sharpley, Interpolation of operators, New York: Academic Press, 1988. |
[4] | D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. http://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044 |
[5] | D. Cruz-Uribe, L. A. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 369 (2017), 1205–1235. http://doi.org/10.1090/tran/6730 doi: 10.1090/tran/6730 |
[6] | M. Chirst, L. Grafakos, Best constants for two nonconvolution inequalities, Trans. Amer. Math. Soc., 123 (1995), 1687–1693. http://doi.org/10.2307/2160978 doi: 10.2307/2160978 |
[7] | D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238. |
[8] | L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$, Math. Nachr., 268 (2004), 31–43. http://doi.org/10.1002/mana.200310157 doi: 10.1002/mana.200310157 |
[9] | Z. W. Fu, Z. G. Liu, S. Z. Lu, H. B. Wong, Characterization for commutators of $n-$dimensional fractional Hardy operators, Sci. China Ser. A: Math., 50 (2007), 1418–1426. http://doi.org/10.1007/s11425-007-0094-4 doi: 10.1007/s11425-007-0094-4 |
[10] | L. Grafakos, Modern Fourier analysis, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09434-2 |
[11] | G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965 |
[12] | A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. spaces, 2021 (2021), 9705250. http://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250 |
[13] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253. |
[14] | M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. http://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y |
[15] | M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 199. http://doi.org/10.1186/s13660-016-1142-9 doi: 10.1186/s13660-016-1142-9 |
[16] | M. Izuki, Remarks on Muckebhoupt weights with variable exponent, J. Anal. Appl., 11 (2013), 27–41. |
[17] | M. Izuki, T. Noi, Two weighted Herz space variable exponent, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4 |
[18] | M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. http://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849 |
[19] | O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech. Math. J., 41 (1991), 592–618. |
[20] | S. Long, J. wang, Commutators of Hardy operators, J. Math. Anal. Appl., 274 (2002), 626–644. http://doi.org/10.1016/S0022-247X(02)00321-9 doi: 10.1016/S0022-247X(02)00321-9 |
[21] | B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. http://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6 |
[22] | A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^{n})$, Math. Inequal. Appl., 7 (2004), 255–265. |
[23] | Q. W. Tao, On $n-$dimensional fractional Hardy operators and commutators in variable Herz-type spaces, Kyoto J. Math., 59 (2019), 419–439. http://doi.org/10.1215/21562261-2019-0011 doi: 10.1215/21562261-2019-0011 |
[24] | S. R. Wang, J. S. Xu, Commutators of bilinear Hardy operators on weighted Herz-Morrey spaces with variable exponent, Anal. Theory Appl., 37 (2021), 387–403. http://doi.org/10.4208/ata.2021.lu80.07 doi: 10.4208/ata.2021.lu80.07 |
[25] | D. Xiao, L. S. Shu, Boundedness of Marcinkiewicz integrals in weighted variable exponent Herz-Morrey spaces, Commun. Math. Res., 34 (2018), 371–382. http://doi.org/10.13447/j.1674-5647.2018.04.10 doi: 10.13447/j.1674-5647.2018.04.10 |
[26] | F. Y. Zhao, Z. W. Fu, S. Z. Lu, Endpoint estimates for $n-$dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1997–1990. http://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0 |
[27] | J. Zhou, D. H. Wang, Endpoint estimates for fractional Hardy operators and their commutators on Hardy spaces, J. Funct. Spaces, 2014 (2014), 272864. http://doi.org/10.1155/2014/272864 doi: 10.1155/2014/272864 |