Research article

On differential analysis of spacelike flows on normal congruence of surfaces

  • Received: 18 January 2022 Revised: 13 May 2022 Accepted: 16 May 2022 Published: 23 May 2022
  • MSC : 53A35, 53A04, 53Z05

  • The present paper examines the differential analysis of flows on normal congruence of spacelike curves with spacelike normal vector in terms of anholonomic coordinates in three dimensional Lorentzian space. Eight parameters, which are related by three partial differential equations, are discussed. Then, it is seen that the $ \operatorname{curl} $ of tangent vector field does not include any component with principal normal direction. Thus there exists a surface which contains both $ s-lines $ and $ b-lines. $ Also, we examine a normal congruence of surfaces containing the $ s-lines $ and $ b-lines $. By compatibility conditions, Gauss-Mainardi-Codazzi equations are obtained for this normal congruence of surface. Intrinsic geometric properties of this normal congruence of surfaces are given.

    Citation: Melek Erdoğdu, Ayșe Yavuz. On differential analysis of spacelike flows on normal congruence of surfaces[J]. AIMS Mathematics, 2022, 7(8): 13664-13680. doi: 10.3934/math.2022753

    Related Papers:

  • The present paper examines the differential analysis of flows on normal congruence of spacelike curves with spacelike normal vector in terms of anholonomic coordinates in three dimensional Lorentzian space. Eight parameters, which are related by three partial differential equations, are discussed. Then, it is seen that the $ \operatorname{curl} $ of tangent vector field does not include any component with principal normal direction. Thus there exists a surface which contains both $ s-lines $ and $ b-lines. $ Also, we examine a normal congruence of surfaces containing the $ s-lines $ and $ b-lines $. By compatibility conditions, Gauss-Mainardi-Codazzi equations are obtained for this normal congruence of surface. Intrinsic geometric properties of this normal congruence of surfaces are given.



    加载中


    [1] A. W. Marris, S. L. Passman, Vector fields and flows on developable surfaces, Arch. Rational Mech. Anal., 32 (1969), 29–86. https://doi.org/10.1007/BF00253256 doi: 10.1007/BF00253256
    [2] O. Bjørgum, T. Godal, On Beltrami vector fields and flows, Universitetet i Bergen, 1951.
    [3] A. Yavuz, M. Erdoğdu, Non-lightlike Bertrand W curves: A new approach by system of differential equations for position vector, AIMS Math., 5 (2020), 5422–5438. https://doi.org/10.3934/math.2020348 doi: 10.3934/math.2020348
    [4] M. Erdoğdu, Parallel frame of non-lightlike curves in Minkowski space-time, Int. J. Geom. Methods Mod. Phys., 12 (2015). http://dx.doi.org/10.1142/S0219887815501091 doi: 10.1142/S0219887815501091
    [5] A. Yavuz, M. Erdoğdu, A different approach by system of differential equations for the characterization position vector of spacelike curves, Punjab Univ. J. Math., 53 (2021), 231–245.
    [6] G. A. Șekerci, A. C. Çöken, C. Ekici, On Darboux rotation axis of lightlike curves, Int. J. Geom. Methods Mod. Phys., 13 (2016). https://doi.org/10.1142/S0219887816501127 doi: 10.1142/S0219887816501127
    [7] G. Yüca, Kinematics applications of dual transformations, J. Geom. Phys., 163 (2021), 104139. https://doi.org/10.1016/j.geomphys.2021.104139 doi: 10.1016/j.geomphys.2021.104139
    [8] Z. Yang, Y. Li, M. Erdoğdu, Y. Zhu, Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane, J. Geom. Phys., 176 (2022), 104513. https://doi.org/10.1016/j.geomphys.2022.104513 doi: 10.1016/j.geomphys.2022.104513
    [9] C. Rogers, W. K. Schief, Backlund and Darboux transformations: Geometry of modern applications in soliton theory, Cambridge University Press, 2002.
    [10] C. Rogers, J. G. Kingston, Nondissipative magneto-hydrodynamic flows with magnetic and velocity field lines orthogonal geodesics, SIAM J. Appl. Math., 26 (1974), 183–195. https://doi.org/10.1137/0126015 doi: 10.1137/0126015
    [11] C. Rogers, W. K. Schief, Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation, Stud. Appl. Math., 101 (1998), 267–287. https://doi.org/10.1111/1467-9590.00093 doi: 10.1111/1467-9590.00093
    [12] T. Körpinar, R. C. Demirkol, Z. Körpinar, V. Asil, Maxwellian evolution equations along the uniform optical fiber, Optik, 217 (2020), 164561. https://doi.org/10.1016/j.ijleo.2020.164561 doi: 10.1016/j.ijleo.2020.164561
    [13] T. Korpinar, R. C. Demirkol, Z. Korpinar, Magnetic helicity and normal electromagnetic vortex filament flows under the influence of Lorentz force in MHD, Int. J. Geom. Methods Mod. Phys., 18 (2021). https://doi.org/10.1142/S0219887821501644 doi: 10.1142/S0219887821501644
    [14] G. Vranceanu, Les espaces non holonomes et leurs applications mécaniques, 1936.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1259) PDF downloads(124) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog