In the present paper, we defined the circular evolutes and involutes for a given spacelike framed curve with respect to Bishop directions in Minkowski 3-space. Then, we studied the essential duality relations among parallel curves, normal surfaces, and circular evolutes and involutes. Furthermore, we also studied the duality relations of their singularities. Based on these studies, we found that it is crucially important to consider the duality relations among different geometric objects for the research of submanifolds with singularities.
Citation: Wei Zhang, Pengcheng Li, Donghe Pei. Circular evolutes and involutes of spacelike framed curves and their duality relations in Minkowski 3-space[J]. AIMS Mathematics, 2024, 9(3): 5688-5707. doi: 10.3934/math.2024276
In the present paper, we defined the circular evolutes and involutes for a given spacelike framed curve with respect to Bishop directions in Minkowski 3-space. Then, we studied the essential duality relations among parallel curves, normal surfaces, and circular evolutes and involutes. Furthermore, we also studied the duality relations of their singularities. Based on these studies, we found that it is crucially important to consider the duality relations among different geometric objects for the research of submanifolds with singularities.
[1] | V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, Volume 1, MA: Birkhäuser Boston, 1985. https://doi.org/10.1007/978-0-8176-8340-5 |
[2] | V. I. Arnol'd, Topological invariants of plane curves and caustics, Providence: American Mathematical Society, 1994. https://doi.org/10.1090/ulect/005 |
[3] | V. I. Arnol'd, Singularities of caustics and wave fronts, Dordrecht: Springer, 1990. https://doi.org/10.1007/978-94-011-3330-2 |
[4] | G. Aydın Şekerci, On evolutoids and pedaloids in Minkowski 3-space, J. Geom. Phys., 168 (2021), 104310. https://doi.org/10.1016/j.geomphys.2021.104313 doi: 10.1016/j.geomphys.2021.104313 |
[5] | G. Aydın Şekerci, S. Izumiya, Evolutoids and pedaloids of Minkowski plane curves, Bull. Malays. Math. Sci. Soc., 44 (2021), 2813–2834. https://doi.org/10.1007/s40840-021-01091-1 doi: 10.1007/s40840-021-01091-1 |
[6] | J. W. Bruce, P. J. Giblin, Curves and singularities: A geometrical introduction to singularity theory, 2 Eds., Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/CBO9781139172615 |
[7] | T. Fukunaga, M. Takahashi, Evolutes of fronts in the Euclidean plane, J. Singul., 10 (2014), 92–107. http://doi.org/10.5427/jsing.2014.10f doi: 10.5427/jsing.2014.10f |
[8] | T. Fukunaga, M. Takahashi, Involutes of fronts in the Euclidean plane, Beitr. Algebra Geom., 57 (2016), 637–653. https://doi.org/10.1007/s13366-015-0275-1 doi: 10.1007/s13366-015-0275-1 |
[9] | T. Fukunaga, M. Takahashi, Framed surfaces in the Euclidean space, Bull. Braz. Math. Soc., New Series, 50 (2019), 37–65. https://doi.org/10.1007/s00574-018-0090-z doi: 10.1007/s00574-018-0090-z |
[10] | K. F. Gauss, General investigations of vurved surfaces of 1827 and 1825 translated with notes and a bibliography, Princeton: The Princeton University Library, 1902. |
[11] | E. Abbena, S. Salamon, A. Gray, Modern differential geometry of curves and surfaces with mathematica, 3 Eds., New York: Chapman and Hall/CRC, 2006. https://doi.org/10.1201/9781315276038 |
[12] | S. Honda, M. Takahashi, Framed curves in the Euclidean space, Adv. Geom., 16 (2016), 265–276. https://doi.org/10.1515/advgeom-2015-0035 doi: 10.1515/advgeom-2015-0035 |
[13] | S. Honda, M. Takahashi, Circular evolutes and involutes of framed curves in the Euclidean space, 2021, arXiv: 2103.07041. |
[14] | S. Izumiya, M. C. R. Fuster, M. A. S. Ruas, F. Tari, Differential geometry from a singularity theory viewpoint, Singapore: World Scientific Publishing, 2015. https://doi.org/10.1142/9108 |
[15] | S. Izumiya, K. Saji, M. Takahashi, Horospherical flat surfaces in Hyperbolic 3-space, J. Math. Soc. Jpn., 62 (2010), 789–849. https://doi.org/10.2969/jmsj/06230789 doi: 10.2969/jmsj/06230789 |
[16] | K. Eren, H. H. Kosal, Evolution of space curves and the special ruled surfaces with modified orthogonal frame, AIMS Mathematics, 5 (2020), 2027–2039. https://doi.org/10.3934/math.2020134 doi: 10.3934/math.2020134 |
[17] | J. Li, Z. Yang, Y. Li, R. A. Abdel-Baky, M. K. Saad, On the curvatures of timelike circular surfaces in Lorentz-Minkowski space, Filomat, 38 (2024), 1–15. https://doi.org/10.2139/ssrn.4425631 doi: 10.2139/ssrn.4425631 |
[18] | P. Li, D. Pei, Evolutes and focal surfaces of $(1, k)$-type curves with respect to Bishop frame in Euclidean 3-space, Math. Method. Appl. Sci., 45 (2021), 12147–12157. https://doi.org/10.1002/mma.7622 doi: 10.1002/mma.7622 |
[19] | P. Li, D. Pei, Nullcone fronts of spacelike framed curves in Minkowski 3-space, Mathematics, 9 (2021), 2939. https://doi.org/10.3390/math9222939 doi: 10.3390/math9222939 |
[20] | P. Li, D. Pei, X. Zhao, Spacelike framed curves with lightlike components and singularities of their evolutes and focal surfaces in Minkowski 3-space, Acta Math. Sin.-English Ser., (2023). https://doi.org/10.1007/s10114-023-1672-2 |
[21] | Y. Li, K. Eren, S. Ersoy, On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space, AIMS Mathematics, 8 (2023), 22256–22273. https://doi.org/10.3934/math.20231135 doi: 10.3934/math.20231135 |
[22] | Y. Li, K. Eren, K. H. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Mathematics, 8 (2023), 2226–2239. https://doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115 |
[23] | Y. Li, E. Güler, A hypersurfaces of revolution family in the five-dimensional pseudo-Euclidean space $\mathbb{E}_2^5$, Mathematics, 11 (2023), 3427. https://doi.org/10.3390/math11153427 doi: 10.3390/math11153427 |
[24] | Y. Li, E. Güler, Hypersurfaces of revolution family supplying $\Delta \mathfrak{r} = \mathcal{A}\mathfrak{r}$ in pseudo-Euclidean space $\mathbb{E}_3^7$, AIMS Mathematics, 8 (2023), 24957–24970. https://doi.org/10.3934/math.20231273 doi: 10.3934/math.20231273 |
[25] | Y. Li, E. Güler, Twisted hypersurfaces in Euclidean 5-space, Mathematics, 11 (2023), 4612. https://doi.org/10.3390/math11224612 doi: 10.3390/math11224612 |
[26] | Y. Li, M. Mak, Framed natural mates of framed curves in Euclidean 3-space, Mathematics, 11 (2023), 3571. https://doi.org/10.3390/math11163571 doi: 10.3390/math11163571 |
[27] | R. López, Differential geometry of curves and Surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2008), 44–107. https://doi.org/10.36890/iejg.594497 doi: 10.36890/iejg.594497 |
[28] | D. Mond, On the classification of germs of maps from $ \mathbb{R}^2$ to $ \mathbb{R}^2$, P. Lond. Math. Soc., 50 (1985), 333–369. https://doi.org/10.1112/plms/s3-50.2.333 doi: 10.1112/plms/s3-50.2.333 |
[29] | B. O'Neill, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, 1983. |
[30] | K. Saji, Criteria for cuspidal $S_k$ singularities and its applications, Journal of Gökova Geometry Topology, 4 (2010), 67–81. |
[31] | K. Saji, M. Umehara, K. Yamada, The geometry of fronts, Ann. Math., 169 (2009), 491–529. https://doi.org/10.4007/annals.2009.169.491 doi: 10.4007/annals.2009.169.491 |
[32] | C. Sun, K. Yao, D. Pei, Special non-lightlike ruled surfaces in Minkowski 3-space, AIMS Mathematics, 8 (2023), 26600–26613. https://doi.org/10.3934/math.20231360 doi: 10.3934/math.20231360 |
[33] | Y. Tunçer, S. Ünal, M. K. Karacan, Spherical indicatrices of involute of a space curve in Euclidean 3-space, Tamkang J. Math., 51 (2020), 113–121. https://doi.org/10.5556/j.tkjm.51.2020.2946 doi: 10.5556/j.tkjm.51.2020.2946 |
[34] | H. Whitney, The singularities of a smooth $n$-manifold in $(2n-1)$-space, Ann. Math., 45 (1944), 247–293. https://doi.org/10.2307/1969266 doi: 10.2307/1969266 |