Citation: Ayşe Yavuz, Melek Erdoǧdu. Non-lightlike Bertrand W curves: A new approach by system of differential equations for position vector[J]. AIMS Mathematics, 2020, 5(6): 5422-5438. doi: 10.3934/math.2020348
[1] | F. K. Aksoyak, İ. Gök, K. İlarslan, Generalized null Bertrand curves in Minkowski space-time, Ann. Alexandru Ioan Cuza Univ. Math., 60 (2014), 489-502. doi: 10.2478/aicu-2013-0031 |
[2] | E. Arrondo, J. Sendra, R. Sendrab, Genus formula for generalized offset curves, J. Pure Appl. Algebra, 136 (1999), 199-209. doi: 10.1016/S0022-4049(98)00028-0 |
[3] | B-Y. Chen, D-S. Kim, Y. H. Kim, New characterization of W-curves, Publ. Math. Debrecen, 69 (2006), 457-472. |
[4] | S. L. Devadoss, J. O'Rourke, Discrete and computational geometry, Princeton University Press, (2011), 128-129. |
[5] | Q. Ding, J. Inoguchi, Schrödinger flows, binormal motion for curves and second AKNS-hierarchies, Chaos Solitons Fractals, 21 (2004), 669-677. doi: 10.1016/j.chaos.2003.12.092 |
[6] | M. P. Do Carmo, Differential geometry of curves and surfaces, PRENTICE HALL, ISBN 10: 0132125897, New Jersey, 1976. |
[7] | M. Erdoǧdu, Parallel frame of nonlightlike curves in Minkowski space-time, Int. J. Geom. M., 12 (2015), 1550109. |
[8] | A. Yavuz, M. Erdoǧdu, Characterization of timelike curves: A new approach by system of differential equations for the position vector, Cumhuriyet J. Sci., In progress. 2020. |
[9] | M. Erdoǧdu, A. Yavuz, On characterization and backlund transformation of null cartan curves, Turk J. Math., In progress. 2020. |
[10] | K. İlarslan, Ö. Boyacıoǧlu, Position vectors of a space-like W-curve in Minkowski space $\mathbb{E}% _{1}^{3}$}, Bull. Korean Math. Soc., 44 (2007), 429-438. |
[11] | K. İlarslan, N. K. Aslan, On space bertrand curves in Minkowski 3-space, Konuralp J. Math., 5 (2017), 214-222. |
[12] | J. Inoguchi, Timelike surfaces of constant mean curvaturein Minkowski 3-space, Tokyo J. Math., 21 (1998), 141-152. doi: 10.3836/tjm/1270041992 |
[13] | J. Inoguchi, Biharmonic curves in Minkowski 3-space, Int. J. Math. Math. Sci., 2003 (2003), 1365- 1368. |
[14] | P. Lucas, J. A. Ortega-Yagues, Bertrand curves in non-flat 3-dimensional (Riemannian or Lorentzian) space forms, Bull. Korean Math. Soc., 50 (2013), 1109-1126. doi: 10.4134/BKMS.2013.50.4.1109 |
[15] | T. Maekawa, An overview of offset curves and surfaces, Comput. Aided Des., 31 (1999), 165-173. doi: 10.1016/S0010-4485(99)00013-5 |
[16] | A. Maǧden, S. Yılmaz, Y. Ünlütürk, Characterization of special time-like curves in Lorentzian plane, Int. J. Geom. Methods M., 14 (2017). |
[17] | W. F. Newton, Theoretical and practical graphics, Macmillan, 1898. |
[18] | M. Özdemir, A. A. Ergin, Rotations with unit timelike quaternions in Minkowski 3-space, J. Geom. Phys., 56 (2006), 322-336. doi: 10.1016/j.geomphys.2005.02.004 |
[19] | M. Özdemir, A. A. Ergin, Parallel frames of non-lightlike curves, Mo. J. Math. Sci., 20 (2008), 127-137. |
[20] | H. B. Öztekin, M. Bektas, Representation formulae for Bertrand curves in the Minkowski 3-space, Sci. Magna, 6 (2010), 89. |
[21] | M. Petrovic-Torgasev, E. Sucurovic, W-curves in Minkowski spacetime, Novi. Sad. J. Math., 32 (2002), 55-65. |
[22] | B. Pham, Offset curves and surfaces: A brief survey, Comput. Aided Des., 24 (1992), 223-239. doi: 10.1016/0010-4485(92)90059-J |
[23] | W. K. Schief, On the integrability of Bertrand curves and Razzaboni surfaces, J. Geom. Phys., 45 (2003), 130-150. doi: 10.1016/S0393-0440(02)00130-4 |
[24] | J. R. Sendra, F. Winkler, S. Pérez-Diaz, Rational algebraic curves: A computer algebra approach, Springer Science Business Media, 2007. |
[25] | N. Tanrıöver, Some characterizations of Bertrand curves in Lorentzian n-space Ln, Int. J. Geom. M., 13 (2016), 1650064. |
[26] | J. Walrave, Curves and surfaces in Minkowski space, Ph. D. thesis, K. U. Leuven, Fac. Sci. Leuven, 1995. |
[27] | A. Yavuz, M. Erdoǧdu, A different approach by system of differential equations for the characterization position vector of spacelike curves, Punjab Univ. J. Math., In progress. 2020. |