Citation: Mehmet Kunt, Artion Kashuri, Tingsong Du, Abdul Wakil Baidar. Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities[J]. AIMS Mathematics, 2020, 5(6): 5439-5457. doi: 10.3934/math.2020349
[1] | A. A. Aljinović, Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral, J. Math., 2014 (2014), Article ID 503195, 1-6. |
[2] | G. A. Anastassiou, Ostrowski type inequalities, Proc. Amer. Math. Soc., 123 (1995), 3775-3781. doi: 10.1090/S0002-9939-1995-1283537-3 |
[3] | M. H. Annaby, Z. S. Mansour, q-Fractional Calculus and Equations, Berlin: Springer, 2012. |
[4] | M. Alomari, M. Darus, S. S. Dragomir, et al. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071-1076. doi: 10.1016/j.aml.2010.04.038 |
[5] | N. Alp, M. Z. Sarıkaya, A new definition and properties of quantum integral which calls q-integral, Konuralp J. Math., 5 (2017), 146-159. |
[6] | N. Alp, M. Z. Sarıkaya, M. Kunt, et al. q-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193-203. doi: 10.1016/j.jksus.2016.09.007 |
[7] | Y. Basci, D. Baleanu, Ostrowski type inequalities involving ψ-hilfer fractional integrals, Mathematics, 2019 (2019), Article ID 770, 1-10. |
[8] | H. Budak, M. Z. Sarıkaya, On generalized Ostrowski-type inequalities for functions whose first derivatives absolute values are convex, Turkish J. Math., 40 (2016), 1193-1210. doi: 10.3906/mat-1504-56 |
[9] | P. Cerone, S. S. Dragomir, On some inequalities arising from Montgomery's identity, J. Comput. Anal. Appl., 5 (2003), 341-367. |
[10] | S. S. Dragomir, T. M. Rassias, Ostrowski type inequalities and applications in numerical integration, Netherlands: Springer, 2002. |
[11] | G. Farid, Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. Appl., 14 (2017), 64-68. |
[12] | M. Gürbüz, Y. Taşdan, E. Set, Ostrowski type inequalities via the Katugampola fractional integrals, AIMS Math., 5 (2019), 42-53. |
[13] | İ. İşcan, Ostrowski type inequalities for p-convex functions, New Trends Math. Sci., 4 (2016), 140-150. doi: 10.20852/ntmsci.2016318838 |
[14] | V. Kac, P. Cheung: Quantum calculus, New York: Springer, 2002. |
[15] | H. Kavurmacı, M. E. Özdemir, M. Avcı, New Ostrowski type inequalities for m-convex functions and applications, Hacet. J. Math. Stat., 40 (2011), 135-145. |
[16] | M. E. Kiriş, M. Z. Sarıkaya, On Ostrowski type inequalities and Čebyšev type inequalities with applications, Filomat, 29 (2015), 1695-1713. doi: 10.2298/FIL1508695K |
[17] | U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137-146. |
[18] | M. Kunt, İ. İşcan, N. Alp, et al. (p, q)-Hermite-Hadamard inequalities and (p, q)-estimates for midpoint type inequalities via convex and quasi-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 112 (2018), 969-992. |
[19] | M. Kunt, M. A. Latif, İ. İşcan, et al. Quantum Hermite-Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals, Sigma J. Eng. Nat. Sci., 37 (2019), 207-223. |
[20] | W. J. Liu, H. F. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501-522. |
[21] | Z. Liu, Some Ostrowski type inequalities, Math. Comput. Model., 48 (2008), 949-960. doi: 10.1016/j.mcm.2007.12.004 |
[22] | W. Liu, X. Gao, Y. Wen, Approximating the finite Hilbert transform via some companions of Ostrowski's inequalities, Bull. Malays. Math. Sci. Soc., 39 (2016), 1499-1513. doi: 10.1007/s40840-015-0251-9 |
[23] | W. Liu, A. Tuna, Diamond-α weighted Ostrowski type and Grüss type inequalities on time scales, Appl. Math. Comput., 270 (2015), 251-260. |
[24] | W. Liu, A. Tuna, Y. Jiang, On weighted Ostrowski type, trapezoid type, Grüss type and Ostrowski-Grüss like inequalities on time scales, Appl. Anal., 93 (2014), 551-571. |
[25] | M. Matłoka, Ostrowski type inequalities for functions whose derivatives are h-convex via fractional integrals, J. Sci. Res. & Rep., 3 (2014), 1633-1641. |
[26] | D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Inequalities for functions and their integrals and derivatives, Netherlands: Springer, 1991. |
[27] | M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for q-differentiable convex functions, J. Math. Inequal., 10 (2016), 1013-1018. |
[28] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675-679. |
[29] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242-251. |
[30] | A. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv., 10 (1938), 226-227. |
[31] | M. E. Özdemir, H. Kavurmacı, M. Avcı, Ostrowski type inequalities for convex functions, Tamkang J. Math., 45 (2014), 335-340. doi: 10.5556/j.tkjm.45.2014.1143 |
[32] | M. Z. Sarıkaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc., 145 (2017), 1527-1538. |
[33] | E. Set, A. O. Akdemir, A. Gözpinar, et al. Ostrowski type inequalities via new fractional conformable integrals, AIMS Math., 4 (2019), 1684-1697. doi: 10.3934/math.2019.6.1684 |
[34] | E. Set, M. E. Özdemir, M. Z. Sarıkaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications, Facta Univ. Ser. Math. Inform., 27 (2012), 67-82. |
[35] | W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781-793. |
[36] | S. F. Tahir, M. Mushtaq, M. Muddassar, A note on integral inequalities on time scales associated with ostrowski's type, J. Funct. Spaces, 2019 (2019), Article ID 4748373, 1-6. |
[37] | J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013 (2013), Article ID 282, 1-19. |
[38] | J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), Article ID 121, 1-13. |
[39] | M. Tunç, E. Göv, S. Balgeçti, Simpson type quantum integral inequalities for convex functions, Miskolc Math. Notes, 19 (2018), 649-664. doi: 10.18514/MMN.2018.1661 |
[40] | Y. Zhang, T. S. Du, H. Wang, et al. Different types of quantum integral inequalities via (α, m)- convexity, J. Inequal. Appl., 2018 (2018), Article ID 264, 1-24. |
[41] | H. F. Zhuang, W. J. Liu, J. Park, Some quantum estimates of Hermite-Hadamard inequalities for quasi-convex functions, Mathematics, 7 (2019), Article ID 152, 1-18. |