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component with principal normal direction. Thus there exists a surface which contains both s−lines and
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1. Introduction

In general, differential geometry of surfaces examines the geometric structure of smooth surfaces.
In this context, there are many studies on differential geometry of surfaces in different spaces such
as Euclidean and non-Euclidean spaces. In many of these studies, the arc length of the curves on
the surface is used to obtain the distance over the surfaces. For this reason, curves on the surface
have an important role in the field of differential geometry. Investigations of curves on the surface,
not only their geometric properties but also their physical structures are considered. From this point
of view, it is the most preferred way of examining the local differential geometric structure of the
curve. In many studies dealing with differential geometric properties of curves, some methods and
tools of differential calculus are used. This review makes use of the well-known Frenet-Serret frame
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{
−→t ,−→n ,

−→
b }. Considering that σ = σ(s, n, b) is a given curve in Euclidean space, where s, n and b are the

distance along s− lines, n− lines and b− lines respectively. The main object is to obtain the system by
the directional derivatives of Frenet-Serret frame [1]. The quantities, the normal deformations of the
vector-tube in the directions −→n and

−→
b ,

ξns = g(−→n ,
∂

∂n
−→t ) and ξbs = g(

−→
b ,
∂

∂b
−→t )

are firstly introduced in [2], respectively.
Since it has many physical applications, Lorentzian geometry is the most studied geometry among

non-Euclidean geometries [3–8]. Also, this geometry is a very common research area of physical
problems on integrable systems, soliton theory, fluid dynamics, field theories, etc. [1, 9–11]. Since
Lorentz-Minkowski spacetime was extended to a curved spacetime by A. Einstein in order to model
nonzero gravitational fields, this geometry has been the mathematical theory which is used by general
relativity.

In this study, it is aimed to examine spacelike curve flow on Lorentzian space from a different
perspective. The three dimensional real vector space equipped with Lorentzian metric〈

−→x ,−→y
〉

L
= −x1y1 + x2y2 + x3y3

is named after Lorentzian space and denoted by E3
1. In second section, the three dimensional vector

field and the differential geometric aspects of curvature and torsion of vector lines are investigated by
means of anholomonic coordinates. We describe Frenet-Serret frame {−→t ,−→n ,

−→
b } of a given spacelike

space curve in E3
1 in terms of anholonomic coordinates which includes eight parameters, related by

three partial differential equations. It is proved that the curl of tangent vector field has no component in
the direction of principal normal vector field. Thus, there exists a surface which contains both s− lines
and b − lines. For this reason, the expression of this normal congruence is also discussed in the last
section. Then, intrinsic geometric properties of this normal congruence of surfaces are also given.

2. Differential analysis of spacelike curve with spacelike normal vector

Suppose that σ = σ(s, n, b) is a given spacelike curve with spacelike normal vector in three
dimensional Lorentzian space. And the distance along s − lines, n − lines and b − lines of the curve σ
are denoted by s, n and b, respectively. The unit spacelike tangent vector of s − lines and n − lines of
the curve σ are given by

−→t =
∂σ

∂s
, −→n =

∂σ

∂n
,

respectively. Then the unit timelike tangent vector of b − lines is given by [12, 13]

−→
b =
∂σ

∂b
.

A three-dimensional vector field can be considered in terms of anholonomic coordinates which includes
eight parameters, related by three partial differential equations [14].
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Theorem 1. Suppose that σ = σ(s, n, b) is a given spacelike curve Lorentzian space. Directional
derivatives of the unit vectors {−→t ,−→n ,

−→
b } are given as follows :

i)

∂

∂s



−→t

−→n

−→
b


=


0 κ 0

−κ 0 τ

0 τ 0





−→t

−→n

−→
b


, (1)

ii)

∂

∂n



−→t

−→n

−→
b


=


0 ξns τ + µb

−ξns 0 div b

τ + µb div b 0





−→t

−→n

−→
b


, (2)

iii)

∂

∂b



−→t

−→n

−→
b


=


0 µn − τ −ξbs

τ − µn 0 −
(
div−→n + κ

)
−ξbs −(div−→n + κ) 0





−→t

−→n

−→
b


. (3)

The normal deformations of the vector-tube in the directions −→n and
−→
b are given as

ξns =

〈
−→n ,
∂
−→t
∂n

〉
L
, ξbs =

〈
−→
b ,
∂
−→t
∂b

〉
L

and abnormality of −→n and
−→
b are stated as

µn =
〈
curl−→n ,−→n

〉
L
, µb =

〈
curl
−→
b ,
−→
b
〉

L

respectively. Curvature and torsion function of the unit speed spacelike curve σ = σ(s, n, b) are
denoted by κ = κ(s, n, b) and τ = τ(s, n, b) respectively.

Proof. Proof of i) is clear by Frenet-Serret equation for unit speed spacelike curve. So, the proof of ii)
and iii) will be given. It is known that for i = 1, 2, 3 there exist smooth functions; αi and βi where

∂

∂n



−→t

−→n

−→
b


=


0 α1 α2

−α1 0 α3

α2 α3 0





−→t

−→n

−→
b


,
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∂

∂b



−→t

−→n

−→
b


=


0 β1 β2

−β1 0 β3

β2 β3 0





−→t

−→n

−→
b


.

We need to find these functionals. Firstly, we get

α1 =

〈
∂
−→t
∂n
,−→n

〉
L
= ξns, −β2 =

〈
∂
−→t
∂b
,
−→
b
〉

L
= ξbs

by our assumptions. Then, we also obtain divergence of Serret-Frenet frame fields as follows

div−→t =
〈
−→t ,
∂
−→t
∂s

〉
L
+

〈
−→n ,
∂
−→t
∂n

〉
L
+

〈
−→
b ,
∂
−→t
∂b

〉
L

=
〈−→t , κ−→n 〉

L
+

〈
−→n , ξns

−→n + α2
−→
b
〉

L
+

〈
−→
b , β1
−→n − ξbs

−→
b
〉

L
= ξns − β2,

div−→n =
〈
−→t ,
∂−→n
∂s

〉
L
+

〈
−→n ,
∂−→n
∂n

〉
L
+

〈
−→
b ,
∂−→n
∂b

〉
L

=

〈
−→t ,−κ−→t + τ

−→
b
〉

L
+

〈
−→n ,−ξns

−→t + α3
−→
b
〉

L
+

〈
−→
b ,−β1

−→t + β3
−→
b
〉

L
= −κ − β3

and

div
−→
b =

〈
−→t ,
∂
−→
b
∂s

〉
L
+

〈
−→n ,
∂
−→
b
∂n

〉
L
+

〈
−→
b ,
∂
−→
b
∂b

〉
L

=
〈−→t , τ−→n 〉

L
+

〈
−→n , α2

−→t + α3
−→n

〉
L
+

〈
−→
b ,−ξbs

−→t + β3
−→n

〉
L
= α3.

Therefore, we get
β3 = −

(
div−→n + κ

)
and α3 = div b.

On the other hand, we also obtain

curl−→t = −→t ×L
∂
−→t
∂s
+ −→n ×L

∂
−→t
∂n
+
−→
b ×L

∂
−→t
∂b

= κ
−→
b − α2

−→t + β1
−→t = (β1 − α2)−→t + κ

−→
b ,

curl−→n = −→t ×L
∂−→n
∂s
+ −→n ×L

∂−→n
∂n
+
−→
b ×L

∂−→n
∂b
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= τ−→n + ξns
−→
b − div b−→t + β1

−→n

= − div
−→
b−→t + (τ + β1)−→n + ξns

−→
b

and

curl
−→
b = −→t ×L

∂
−→
b
∂s
+ −→n ×L

∂
−→
b
∂n
+
−→
b ×L

∂
−→
b
∂b

=
−→t ×L (τ−→n ) + −→n ×L (α2

−→t + div
−→
b−→n ) +

−→
b ×L (−ξbs

−→t − (div−→n + κ)−→n )

= τ
−→
b − α2

−→
b + ξbs

−→n − (div−→n + κ)−→t

= −(div−→n + κ)−→t + ξbs
−→n + (τ − α2)

−→
b .

Therefore, we get

µs =
〈
curl−→t ,−→t

〉
L
=

〈
(β1 − α2)−→t + κ

−→
b ,−→t

〉
L
= β1 − α2,

µn =
〈
curl−→n ,−→n

〉
L
=

〈
− div

−→
b−→t + (τ + β1)−→n + ξns

−→
b ,−→n

〉
L
= τ + β1,

µb =

〈
curl
−→
b ,
−→
b
〉

L
=

〈
−(div−→n + κ)−→t + ξbs

−→n + (τ − α2)
−→
b ,
−→
b
〉

L
= α2 − τ.

Thus, we obtain
β1 = µn − τ, α2 = τ + µb.

Finally, if we substitute obtained values of the smooth functions; αi and βi for i = 1, 2, 3, then we get

∂

∂n



−→t

−→n

−→
b


=


0 ξns τ + µb

−ξns 0 div b

τ + µb div b 0





−→t

−→n

−→
b


,

∂

∂b



−→t

−→n

−→
b


=


0 µn − τ −ξbs

τ − µn 0 −
(
div−→n + κ

)
−ξbs −(div−→n + κ) 0





−→t

−→n

−→
b


.

□

Corollary 2. The following relation between abnormalities of −→t ,−→n and
−→
b is given by

µs + τ =
1
2

(µs + µn − µb) .
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Above equation proves that important results involving Dupin theorem. This means that all
coordinate surfaces intersect along common curvature lines in a triply orthogonal coordinate system.

Remark 3. In vectorial analysis, the vector operator curl describes the infinitesimal circulation of a
vector field in three-dimensional space. So, the curl of a vector field refers to the idea of how a fluid
may rotate. It is seen that

curl−→t = µs
−→t + κ

−→
b (4)

by proof of above theorem. The results of Eq (4) will be discussed in the next sections. Since curl−→t
does not include any component in the direction of principal normal −→n , then there exists a surface
which contains both s − lines and b − lines.

Considering the identity curl grad f = 0, we obtain

curl grad f = −→t ×L (
∂

∂s
(−→t
∂ f
∂s
+ −→n
∂ f
∂n
+
−→
b
∂ f
∂b

)) + −→n ×L (
∂

∂n
(−→t
∂ f
∂s
+ −→n
∂ f
∂n
+
−→
b
∂ f
∂b

))

+
−→
b ×L (

∂

∂b
(−→t
∂ f
∂s
+ −→n
∂ f
∂n
+
−→
b
∂ f
∂b

))

=
−→t ×L (

∂
−→t
∂s
∂ f
∂s
+
−→t
∂2 f
∂s2 +

∂−→n
∂s
∂ f
∂n
+ −→n

∂2 f
∂s∂n

+
∂
−→
b
∂s
∂ f
∂b
+
−→
b
∂2 f
∂s∂b

)

+ −→n ×L (
∂
−→t
∂n
∂ f
∂s
+
−→t
∂2 f
∂n∂s

+
∂−→n
∂n
∂ f
∂n
+ −→n
∂2 f
∂n2 +

∂
−→
b
∂n
∂ f
∂b
+
−→
b
∂2 f
∂n∂b

)

+
−→
b ×L (

∂
−→t
∂b
∂ f
∂s
+
−→t
∂2 f
∂b∂s

+
∂−→n
∂n
∂ f
∂n
+ −→n

∂2 f
∂b∂n

+
∂
−→
b
∂b
∂ f
∂b
+
−→
b
∂2 f
∂b2 )

=
∂ f
∂s

curl−→t +
∂ f
∂n

curl−→n +
∂ f
∂b

curl
−→
b + −→t ×L (−→t

∂2 f
∂s2 +

−→n
∂2 f
∂s∂n

+
−→
b
∂2 f
∂s∂b

)

+ −→n ×L (−→t
∂2 f
∂n∂s

+ −→n
∂2 f
∂n2 +

−→
b
∂2 f
∂n∂b

) +
−→
b ×L (−→t

∂2 f
∂b∂s

+ −→n
∂2 f
∂b∂n

+
−→
b
∂2 f
∂b2 )

=
∂ f
∂s

curl−→t +
∂ f
∂n

curl−→n +
∂ f
∂b

curl
−→
b + (

∂2 f
∂b∂n

−
∂2 f
∂n∂b

)−→t

+ (
∂2 f
∂s∂b

−
∂2 f
∂b∂s

)−→n + (
∂2 f
∂s∂n

−
∂2 f
∂n∂s

) =
−→
0 .

AIMS Mathematics Volume 7, Issue 8, 13664–13680.



13670

By using of above relations, we get

0 = (
∂2 f
∂b∂n

−
∂2 f
∂n∂b

+
∂ f
∂s
µs −

∂ f
∂n

div
−→
b −
∂ f
∂b

(div−→n + κ))−→t

+ (
∂2 f
∂s∂b

−
∂2 f
∂b∂s

+
∂ f
∂n
µn +

∂ f
∂b
ξbs)−→n + (

∂2 f
∂s∂n

−
∂2 f
∂n∂s

+
∂ f
∂s
κ +
∂ f
∂n
ξns −

∂ f
∂b
µb)
−→
b .

This gives the following relations

∂2 f
∂b∂n

−
∂2 f
∂n∂b

= −
∂ f
∂s
µs +

∂ f
∂n

div
−→
b +
∂ f
∂b

(div−→n + κ), (5)

∂2 f
∂s∂b

−
∂2 f
∂b∂s

= −
∂ f
∂n
µn −

∂ f
∂b
ξbs, (6)

∂2 f
∂s∂n

−
∂2 f
∂n∂s

= −
∂ f
∂s
κ −
∂ f
∂n
ξns +

∂ f
∂b
µb. (7)

In general, the mixed derivatives of order two don’t commute. This means that s, n and b represent
anholonomic coordinates.

Theorem 4. The intrinsic representations of grad−→t , grad−→n and grad
−→
b give following conditions on

geometric parameters κ, τ, µs, µb, div−→n , div
−→
b , ξns, ξbs by the compatibility of the linear systems

∂ξns

∂b
−
∂(µn − τ)
∂n

= (µb + µn)(div−→n + κ) + (−ξbs + ξns) div
−→
b − µsκ, (8)

∂(µb + τ)
∂b

+
∂ξbs

∂n
= (ξns − ξbs)(div−→n + κ) + (µb + µn) div

−→
b , (9)

∂ div
−→
b

∂b
+
∂(div−→n + κ)
∂n

= −ξbsξns + (µb + τ) (τ − µn) + div2 −→b − (div−→n + κ)2 − µsτ, (10)

∂(µn − τ)
∂s

−
∂κ

∂b
= ξbs2τ − µn(ξns + ξbs), (11)

∂ξbs

∂s
= κ(div−→n + κ) − τ2 + (µb + 2τ)µn − ξ

2
bs, (12)

∂(div−→n + κ)
∂s

+
∂τ

∂b
= −(div−→n + 2κ)ξbs + div

−→
b µn, (13)

∂ξns

∂s
−
∂κ

∂n
= −(µb + τ)τ − κ2 − ξ2

ns + (µn − τ) µb, (14)

∂(µb + τ)
∂s

= −τξns + κ div
−→
b − (µb + τ)ξns − ξbsµb, (15)

∂ div
−→
b

∂s
−
∂τ

∂n
= −(µb + 2τ)κ − div

−→
b ξns − (div−→n + κ)µb. (16)
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Proof. By using Eq (5), we may write

∂2−→t
∂b∂n

−
∂2−→t
∂n∂b

= −
∂
−→t
∂s
µs +

∂
−→t
∂n

div
−→
b +
∂
−→t
∂b

(div−→n + κ).

By compatibility of the linear systems in Eqs (2) and (3), we obtain

∂2−→t
∂b∂n

−
∂2−→t
∂n∂b

=
∂

∂b
(ξns
−→n + (µb + τ)

−→
b ) −

∂

∂n
((µn − τ)−→n − ξbs

−→
b )

=
∂ξns

∂b
−→n + ξns

∂−→n
∂b
+
∂(µb + τ)
∂b

−→
b + (µb + τ)

∂
−→
b
∂b

−
∂

∂n
(µn − τ)−→n − (µn − τ)

∂−→n
∂n
+
∂ξbs

∂n
−→
b + ξbs

∂
−→
b
∂n

=
∂ξns

∂b
−→n + ξns((τ − µn)−→t + (div−→n + κ)

−→
b ) +

∂(−µb − τ)
∂b

−→
b

+ (−µb − τ)(ξbs
−→t − (div−→n + κ)−→n ) −

∂

∂n
(τ − µn)−→n

− (τ − µn)(ξns
−→t − div

−→
b
−→
b ) −

∂ξbs

∂n
−→
b − ξbs((−µb − τ)

−→t + div
−→
b−→n )

= (ξns(τ − µn) + ξbs(−µb − τ) − ξns(τ − µn) − ξbs(−µb − τ))
−→t

+ (
∂ξns

∂b
− (−µb − τ)(div−→n + κ) −

∂

∂n
(τ − µn) − ξbs div

−→
b )−→n

+ (ξns(div−→n + κ) +
∂(−µb − τ)
∂b

+ (τ − µn) div
−→
b −
∂ξbs

∂n
)
−→
b .

Therefore, we get

∂2−→t
∂b∂n

−
∂2−→t
∂n∂b

= (
∂ξns

∂b
− (µb + τ)(div−→n + κ) −

∂

∂n
(µn − τ) + ξbs div

−→
b )−→n

+ (−ξns(div−→n + κ) +
∂(µb + τ)
∂b

− (µn − τ) div
−→
b +
∂ξbs

∂n
)
−→
b .
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On the other hand, we have

−
∂
−→t
∂s
µs +

∂
−→t
∂n

div
−→
b +
∂
−→t
∂b

(div−→n + κ) = −(κ−→n )µs + (ξns
−→n + (µb + τ)

−→
b ) div

−→
b

+ ((µn − τ)−→n − ξbs
−→
b )(div−→n + κ)

= (κµs − ξns div
−→
b − (τ − µn)(div−→n + κ))−→n

+ ((µb + τ) div
−→
b − ξbs(div−→n + κ))

−→
b .

Therefore, we get

∂ξns

∂b
+
∂(µn − τ)
∂n

= (µb + µn)(div−→n + κ) + (−ξbs + ξns) div b
−→
b − µsκ.

By equality of the coefficient of binormal vector fields, we obtain

∂(µb + τ)
∂b

+
∂ξbs

∂n
= (ξns − ξbs)(div−→n + κ) + (µb + µn) div b

−→
b .

By using Eq (5), we have

∂2−→n
∂b∂n

−
∂2−→n
∂n∂b

=
∂

∂b

(
−ξns
−→t + div b

−→
b
)
−
∂

∂n

(
(τ − µn)−→t − (div−→n + κ)

−→
b
)

=

(
−
∂

∂b
ξns − ξbs div b −

∂

∂n
(τ − µn) + (τ + µn) − (div−→n + κ)

)
−→t

+

(
ξnsξbs +

∂

∂b
div b − (τ − µn)(µb + τ) +

∂

∂n
(div−→n + κ)

)
−→
b .

and

− µs
∂n
∂s
+ div b

∂n
∂n
+ (div−→n + κ)

∂n
∂b
=

(
µsκ − ξns div b + (div−→n + κ)(τ − µn)

)−→t
+

(
−µs + (div b)2

− (div−→n + κ)2
)−→

b .

By using coefficient of binormal vector field, we get

∂ div
−→
b

∂b
+
∂(div−→n + κ)
∂n

= −ξbsξns + (µb + τ) (τ − µn) + div2 −→b − (div−→n + κ)2 − µsτ.
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Similarly, we have
∂2−→t
∂s∂b

−
∂2−→t
∂b∂s

=
∂

∂s
(
∂
−→t
∂b

) −
∂

∂b
(
∂
−→t
∂s

)

by Eq (6). By compatibility of the linear systems in Eqs (1) and (3), we obtain

∂2−→t
∂s∂b

−
∂2−→t
∂b∂s

=
∂

∂s
((µn − τ)−→n − ξbs

−→
b ) −

∂

∂b
(κ−→n )

=
∂(µn − τ)
∂s

−→n + (µn − τ)
∂−→n
∂s
−
∂ξbs

∂s
−→
b − ξbs

∂
−→
b
∂s
−
∂κ

∂b
−→n − κ

∂−→n
∂b
.

Then, we get

∂2−→t
∂s∂b

−
∂2−→t
∂b∂s

=
∂(τ − µn)
∂s

−→n + (τ − µn)(κ−→t + τ
−→
b ) +

∂ξbs

∂s
−→
b + ξbs(−τ−→n )

−
∂κ

∂b
−→n − κ((τ − µn)−→t + (div−→n + κ)

−→
b )

= (
∂(µn − τ)
∂s

− τξbs −
∂κ

∂b
)−→n + ((µn − τ)τ −

∂ξbs

∂s
+ κ(div−→n + κ))

−→
b .

Moreover, we have

−
∂
−→t
∂n
µn −

∂
−→t
∂b
ξbs = −(ξns

−→n + (µb + τ)
−→
b )µn −

(
(µn − τ)−→n − ξbs

−→
b
)
ξbs

= (−ξnsµn − ξbs(µn − τ))−→n + (−(µb + τ)µn + ξ
2
bs)
−→
b .

This gives the following equation

∂(µn − τ)
∂s

−
∂κ

∂b
= 2τξbs − (ξns + ξbs) µn).

And we obtain
∂ξbs

∂s
= κ(div−→n + κ) − τ2 + (µb + 2τ)µn − ξ

2
bs

by coefficients of binormal vector fields. Similarly, we get

∂2−→b
∂s∂b

−
∂2−→b
∂b∂s

=
∂

∂s
(
∂
−→
b
∂b

) −
∂

∂b
(
∂
−→
b
∂s

).

Then, we also have
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∂

∂s
(
∂
−→
b
∂b

) −
∂

∂b
(
∂
−→
b
∂s

) = (−
∂(ξbs)
∂s
+ κ(div−→n + κ) − τ(τ − µn))−→t

+ (−
∂(div−→n + κ)
∂s

−
∂τ

∂b
− κξbs)−→n .

We obtain

−
∂
−→
b
∂b
ξbs −

∂
−→
b
∂n
µn =

(
ξ2

bs − µn(τ + µb)
)−→t + (ξbs(div−→n + κ) − µn div

−→
b )−→n

by Eq (6). Then, we get

∂(div−→n + κ)
∂s

+
∂τ

∂b
= −(div−→n + 2κ)ξbs + div

−→
b µn.

The last three equations can be obtained by similar way to the others. □

3. Normal congruence of surfaces containing s − lines and b − lines

There exists a normal congruence of surfaces including the s − lines and b − lines if and only if

µn = 0. (17)

Theorem 5. Gauss-Mainardi-Codazzi equations are obtained as follows:

∂τ

∂s
+
∂κ

∂b
= −2τξbs,

∂ξbs

∂s
= −ξ2

bs − τ
2 + κ(div−→n + κ),

∂(div−→n + κ)
∂s

+
∂τ

∂b
= −ξbs(div−→n + 2κ).

Proof. The proof can be stated by using the compatibility conditions of Eqs (10), (11) and (16) in
Theorem 4. In the case of µn = 0, these equations reduces to Gauss-Mainardi-Codazzi equations for
this normal congruence of surfaces. □

Corollary 6. In the case of µn = 0, since the s − lines and b − lines lie on the constituent surfaces
Ψ, this means that −→n is perpendicular to surface. Thus −→n parallel to the normal vector field

−→
N of the

surfaces Ψ.

Proof. By definitions of the vector fields −→t and
−→
b , we obtain

∂Ψ

∂s
=
∂σ

∂s
=
−→t and

∂Ψ

∂b
=
∂σ

∂b
=
−→
b .

Then, we have
∂Ψ

∂s
×L
∂Ψ

∂b
=
−→t ×L
−→
b = −→n .
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Thus we obtain
−→
N =

∂Ψ
∂s ×L

∂Ψ
∂b∥∥∥∂Ψ

∂s ×L
∂Ψ
∂b

∥∥∥ = −→n .
□

Remark 7. The one-parameter family of surfaces Ψ, which contain the s − lines and b − lines, are
timelike surfaces, since −→n is a spacelike vector field.

Theorem 8. The geodesic curvature of b − lines of the surface Ψ is given as follows

kgb = ξbs.

And s − lines are the geodesics of the surface Ψ.

Proof. It is known that
∂2Ψ

∂b2 =
∂
−→
b
∂b
= −ξbs

−→t − (div−→n + κ)−→n

by Eq (3) in Theorem 1. Then we get the geodesic curvatures of b − lines as follows

kgb =

〈
∂2Ψ

∂b2 ,
−→n×L
−→
b
〉

L

=

〈
−ξbs
−→t − (div−→n + κ)−→n ,−→n×L

−→
b
〉

L

=
〈
−ξbs
−→t − (div−→n + κ)−→n ,−−→t

〉
L
= ξbs.

Similarly, we get
∂2Ψ

∂s2 =
∂2σ

∂s2 =
∂
−→t
∂s
= κ−→n

by Eq (1) in Theorem 1. So, we get the geodesic curvatures of s − lines as follows

kgs =

〈
∂2Ψ

∂s2 ,
−→n×L
−→t

〉
L

=
〈
κ−→n ,−→n×L

−→t
〉
=

〈
κ−→n ,−

−→
b
〉
= 0.

This implies that s − lines are the geodesics of the surface Ψ. □

Theorem 9. The normal curvatures of b − lines and s − lines of the surface Ψ are given as follows

knb = −(div−→n + κ), kns = κ

respectively.
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Proof. Again by using the equation

∂2Ψ

∂b2 = −ξbs
−→t − (div−→n + κ)−→n ,

we obtain the normal curvatures of b − lines as follows

knb =

〈
∂2Ψ

∂b2 ,
−→n

〉
L

=
〈
−ξbs
−→t − (div−→n + κ)−→n ,−→n

〉
L

= −(div−→n + κ).

And so, the normal curvatures of s − lines are obtained as follows

kns =

〈
∂2Ψ

∂s2 ,
−→n

〉
L
=

〈
κ−→n ,−→n

〉
L
= κ.

□

Theorem 10. The geodesic torsion of b − lines and s − lines of the surface Ψ are obtained as follows

τgb = τ, τgs = −τ,

respectively.

Proof. We obtain the geodesic torsion of b − lines as follows:

τgb =

〈
∂−→n
∂b
,−→n×L

−→
b
〉

L

=

〈
τ
−→t − (div−→n + κ)

−→
b ,−−→t

〉
L
= τ

by Eq (3) in Theorem 1. Similarly, the geodesic torsion of s − lines is given as follows

τgs = −

〈
∂−→n
∂s
,−→n×L

−→t
〉

L

= −

〈
−κ
−→t + τ

−→
b ,−
−→
b
〉

L
= −τ

by Eq (1) in Theorem 1. □

Theorem 11. Gaussian and mean curvatures of the surface Ψ are given as follows

K = κ(div−→n + κ),

H = −
div n + 2κ

2
,

respectively.
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Proof. The first fundamental form of the surface Ψ is obtained as

I = ⟨dΨ, dΨ⟩L =
〈
∂Ψ

∂s
ds +

∂Ψ

∂b
db,
∂Ψ

∂s
ds +

∂Ψ

∂b
db

〉
L

=

〈
−→t ds +

−→
b db,−→t ds +

−→
b db

〉
L

= ds2 − db2.

We get g11 = 1, g12 = 0 and g22 = −1. Since normal vector field of the surface Ψ is equal to −→n , we find
the second fundamental form as follows

II =
〈
dΨ, d−→n

〉
L
=

〈
∂Ψ

∂s
ds +

∂Ψ

∂b
db,
∂−→n
∂s

ds +
∂−→n
∂b

db
〉

L

=

〈
−→t ds +

−→
b db, (κ−→t + τ

−→
b )ds + (τ−→t + (div−→n + κ

−→
b )db

〉
L

= −κds2 + (div−→n + κ)db2.

We have l11 = −κ, l12 = 0 and l22 = div−→n + κ. Thus, Gaussian curvature K of the surface Ψ is given

K =
l11l22 − l2

12

g11g22 − g2
12

=
−κ(div−→n + κ)

−1
= κ(div−→n + κ).

And the mean curvature H of the surface Ψ is obtained as

H =
g11l22 − 2g12l12 + g22l11

2(g11g22 − g2
12)

=
(div−→n + κ) + κ

−2
=

div−→n + 2κ
−2

.

□

Corollary 12. If the following equality is satisfied

κ(div−→n + κ) = 0,

then the surface Ψ is developable.

Remark 13. We know that Gaussian curvature of the surface Ψ is found as

K = κ(div−→n + κ).

By following equation
∂ξbs

∂s
= −ξ2

bs + κ(div−→n + κ),

we obtain that
K =

∂ξbs

∂s
+ ξ2

bs.

If b − lines are geodesics and s − lines are plane curves, then the surface Ψ is developable.
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Corollary 14. The surface Ψ is minimal if and only if

div−→n = −2κ.

Corollary 15. The surface Ψ is a NLS surface if and only if κ = 1.

Proof. It is easily seen that the equality

∂Ψ

∂s
×L
∂2Ψ

∂s2 =
∂Ψ

∂b

is satisfied if and only if κ = 1. □

Example 16. Let the surface Ψ = Ψ(s, b) containing the s − lines and b − lines be given as follows

Ψ(s, b) =
1
2

sinh
(
s +
√

5b
)
,

1
2

cosh
(
s +
√

5b
)
,

√
5

2
s +

1
2

b


where
∂Ψ

∂s
(s, b) =

1
2

cosh
(
s +
√

5b
)
,

1
2

sinh
(
s +
√

5b
)
,

√
5

2


is a unit spacelike vector field. We obtain that

−→t (s, b) =
1

2
cosh

(
s +
√

5b
)
,

1
2

sinh
(
s +
√

5b
)
,

√
5

2

 ,
−→n (s, b) =

(
sinh

(
s +
√

5b
)
, cosh

(
s +
√

5b
)
, 0

)
.

And we also see that

∂Ψ

∂b
(s, b) =

 √5
2

cosh
(
s +
√

5b
)
,

√
5

2
sinh

(
s +
√

5b
)
,

1
2

 .
Thus, we get

−→
b (s, b) =

 √5
2

cosh
(
s +
√

5b
)
,

√
5

2
sinh

(
s +
√

5b
)
,

1
2

 .
Furthermore, we obtain that

κ(s, b) =
1
2
, τ(s, b) =

√
5

2
.

Then, we also have
ξbs(s, b) = µn(s, b) = 0, div n(s, b) = −2

which implies that

kns(s, b) =
1
2
, τgb(s, b) =

√
5

2
, τgs(s, b) = −

√
5

2
.

Gaussian and mean curvature of the surface Ψ = Ψ(s, b) are obtained as follows

K(s, b) = −
5
4
, H(s, b) = 1,

respectively.
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4. Conclusions

This study investigates spacelike curves with spacelike normal vector field by means of
anholomonic coordinates on Lorentzian space. Frenet-Serret formulas {−→t ,−→n ,

−→
b } of a given spacelike

space curve are described which includes eight parameters related to three partial differential
equations. It is proved that the curl of tangent vector field has no component in the direction of
principal normal vector field. This means that there exists a surface which contains both s − lines and
b − lines. For this reason, the expression of this normal congruence is also discussed with intrinsic
geometric properties. Finally, an example is stated to explain the obtained results.
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