In this paper, we derive a new fractional integral identity and using this identity as an auxiliary result, some new trapezium like inequalities essentially using the class of generalized $ {\gamma} $-convex functions are established. In order to show the efficiency of the obtained results, we discuss and present some special cases and applications.
Citation: Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor. Fractional integral estimations pertaining to generalized $ {\gamma} $-convex functions involving Raina's function and applications[J]. AIMS Mathematics, 2022, 7(8): 13633-13663. doi: 10.3934/math.2022752
In this paper, we derive a new fractional integral identity and using this identity as an auxiliary result, some new trapezium like inequalities essentially using the class of generalized $ {\gamma} $-convex functions are established. In order to show the efficiency of the obtained results, we discuss and present some special cases and applications.
[1] | W. W. Breckner, Stetigkeitsaussagen fiir eine Klasse verallgemeinerter convexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978), 13–20. |
[2] | S. S. Dragomir, J. Pecarič, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341. |
[3] | E. K. Godunova, V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. Fiz. Mezvuzov. Sb. Nauc. Trudov, 1985,138–142. |
[4] | S. Varošanec, On $h$-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 |
[5] | S. Wu, M. U. Awan, M. A. Noor, K. I. Noor, S. Iftikhar, On a new class of convex functions and integral inequalities, J. Inequal. Appl., 2019 (2019), 131. https://doi.org/10.1186/s13660-019-2074-y doi: 10.1186/s13660-019-2074-y |
[6] | M. J. Vivas-Cortez, R. Liko, A. Kashuri, J. E. H. Hernández, New quantum estimates of trapezium-type inequalities for generalized $\varphi$-convex functions, Mathematics, 7 (2019), 1047. https://doi.org/10.3390/math7111047 doi: 10.3390/math7111047 |
[7] | R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East As. Math. J., 21 (2015), 191–203. |
[8] | M. J. Vivas-Cortez, M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, Trapezium-like inequalities involving $k$-th order differentiable $\mathcal{R}_{\gamma}$-convex functions and applications, Symmetry, 14 (2022), 448. https://doi.org/10.3390/sym14030448 doi: 10.3390/sym14030448 |
[9] | S. S. Dragomir, C. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, Science Direct Working Paper, 2003. Available from: https://ssrn.com/abstract=3158351. |
[10] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[11] | T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard–Simpson type for the generalized $(s, m)$-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112–3126. |
[12] | A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, Some New Hermite–Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), 9845407. https://doi.org/10.1155/2020/9845407 doi: 10.1155/2020/9845407 |
[13] | Y. Khurshid, M. A. Khan, Y. M. Chu, Z. A. Khan, Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via pre-invex functions, J. Funct. Spaces, 2019 (2019), 3146210. https://doi.org/10.1155/2019/3146210 doi: 10.1155/2019/3146210 |
[14] | H. Lei, T. S. Du, Some new bounds related to Fejér–Hermite–Hadamard type inequality and their applications, ScienceAsia, 45 (2019), 361–370. https://doi.org/10.2306/scienceasia1513-1874.2019.45.361 doi: 10.2306/scienceasia1513-1874.2019.45.361 |
[15] | J. G. Liao, S. H. Wu, T. S. Du, The Sugeno integral with respect to $\alpha$-preinvex functions, Fuzzy Sets Syst., 379 (2020), 102–114. https://doi.org/10.1016/j.fss.2018.11.008 doi: 10.1016/j.fss.2018.11.008 |
[16] | S. Erhan, I. Mumcu, Hermite–Hadamard–Fejér type inequalities for conformable fractional integrals, Misk. Math. Notes, 20 (2019), 475–488. https://doi.org/10.18514/MMN.2019.2421 doi: 10.18514/MMN.2019.2421 |
[17] | Y. Zhang, T. S. Du, H. Wang, Some new $k$-fractional integral inequalities containing multiple parameters via generalized $(s, m)$-preinvexity, Ital. J. Pure Appl. Math., 40 (2018), 510–527. |
[18] | P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. https://doi.org/10.3390/sym12040595 doi: 10.3390/sym12040595 |
[19] | P. O. Mohammed, I. Brevik, A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610 |
[20] | A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, A. Kashuri, Hermite–Hadamard type inequalities pertaining conformable fractional integrals and their applications, AIP Adv., 8 (2018), 075101. https://doi.org/10.1063/1.5031954 doi: 10.1063/1.5031954 |
[21] | M. Houas, Certain weighted integral inequalities involving the fractional hypergeometric operators, Scientia, Ser. A, Math. Sci., 27 (2016), 87–97. |
[22] | H. M. Srivastava, A. Kashuri, P. O. Mohammed, A. M. Alsharif, J. L. G. Guirao, New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag–Leffler kernel, AIMS Math., 6 (2021), 11167–11186. https://doi.org/10.3934/math.2021648 doi: 10.3934/math.2021648 |
[23] | P. O. Mohammed, T. Abdeljawad, D. Baleanu, A. Kashuri, F. Hamasalh, P. Agarwal, New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions, J. Inequal. Appl., 2020 (2020), 263. https://doi.org/10.1186/s13660-020-02538-y doi: 10.1186/s13660-020-02538-y |
[24] | H. M. Srivastava, Some families of Mittag–Leffler type functions and associated operators of fractional calculus, TWMS J. Pure Appl. Math., 7 (2016), 123–145. |
[25] | A. Fernandez, D. Baleanu, H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag–Leffler functions, Commun. Nonlinear Sci. Numer. Simulat., 67 (2019), 517–527. https://doi.org/10.1016/j.cnsns.2018.07.035 doi: 10.1016/j.cnsns.2018.07.035 |
[26] | A. Fernandez, D. Baleanu, H. M. Srivastava, Corrigendum to "Series representations for fractional-calculus operators involving generalised Mittag–Leffler functions" [Commun. Nonlinear Sci. Numer. Simulat. 67 (2019) 517–527], Commun. Nonlinear Sci. Numer. Simulat. 82 (2020), 104963. https://doi.org/10.1016/j.cnsns.2019.104963 |
[27] | H. M. Srivastava, A. Fernandez, D. Baleanu, Some new fractional-calculus connections between Mittag–Leffler functions, Mathematics, 7 (2019), 485. https://doi.org/10.3390/math7060485 doi: 10.3390/math7060485 |
[28] | H. M. Srivastava, M. K. Bansal, P. Harjule, A study of fractional integral operators involving a certain generalized multi-index Mittag–Leffler function, Math. Meth. Appl. Sci., 41 (2018), 6108–6121. https://doi.org/10.1002/mma.5122 doi: 10.1002/mma.5122 |
[29] | H. M. Srivastava, Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055 |
[30] | Ž. Tomovski, R. Hilfer, H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions, Integr. Transf. Spec. F., 21 (2010), 797–814. https://doi.org/10.1080/10652461003675737 doi: 10.1080/10652461003675737 |
[31] | S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo–Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171 |
[32] | S. I. Butt, A. Nosheen, J. Nasir, K. A. Khan, R. M. Mabela, New fractional Mercer–Ostrowski type inequalities with respect to monotone function, Math. Probl. Eng., 2022 (2022), Article ID 7067543. https://doi.org/10.1155/2022/7067543 doi: 10.1155/2022/7067543 |
[33] | S. Qaisar, J. Nasir, S. I. Butt, S. Hussain, On some fractional integral inequalities of Hermite–Hadamard's type through convexity, Symmetry, 11 (2019), 137. https://doi.org/10.3390/sym11020137 doi: 10.3390/sym11020137 |
[34] | J. Zhao, S. I. Butt, J. Nasir, Z. Wang, I. Tlili, Hermite–Jensen–Mercer type inequalities for Caputo fractional derivatives, J. Funct. Spaces, 2020 (2020), Article ID 7061549. https://doi.org/10.1155/2020/7061549 doi: 10.1155/2020/7061549 |
[35] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[36] | D. R. Anderson, Taylor's formula and integral inequalities for conformable fractional derivatives, In: P. M. Pardalos, T. M. Rassias, Contributions in mathematics and engineering, Springer, 2016, 25–43. https://doi.org/10.1007/978-3-319-31317-7_2 |
[37] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[38] | O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2 (2016), 115–122. https://doi.org/10.18576/pfda/020204 doi: 10.18576/pfda/020204 |
[39] | M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite–Hadamard type inequalities for conformable fractional integrals, RACSAM, 112 (2018), 1033–1048. https://doi.org/10.1007/s13398-017-0408-5 doi: 10.1007/s13398-017-0408-5 |
[40] | X. S. Zhou, C. X. Huang, H. J. Hu, L. Liu, Inequality estimates for the boundedness of multilinear singular and fractional integral operators, J. Inequal. Appl., 2013 (2013), 303. https://doi.org/10.1186/1029-242X-2013-303 doi: 10.1186/1029-242X-2013-303 |
[41] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Chichester: Ellis Halsted Press, 1985. |
[42] | N. S. Barnett, P. Cerone, S. S. Dragomir, J. Roumeliotis, Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Inequal. Pure Appl. Math., 2 (1999), 1–18. |
[43] | N. S. Barnett, S. S. Dragomir, Some elementary inequalities for the expectation and variance of a random variable whose pdf is defined on a finite interval, RGMIA Res. Rep. Collect., 2 (1999), 1–7. |
[44] | P. Cerone, S. S. Dragomir, On some inequalities for the expectation and variance, Korean J. Comput. Appl. Math., 8 (2000), 357–380. https://doi.org/10.1007/BF02941972 doi: 10.1007/BF02941972 |
[45] | J. E. Pečarič, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Vol. 187, New York: Academic Press, 1992. |