In this paper, we derive a new fractional integral identity and using this identity as an auxiliary result, some new trapezium like inequalities essentially using the class of generalized γ-convex functions are established. In order to show the efficiency of the obtained results, we discuss and present some special cases and applications.
Citation: Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor. Fractional integral estimations pertaining to generalized γ-convex functions involving Raina's function and applications[J]. AIMS Mathematics, 2022, 7(8): 13633-13663. doi: 10.3934/math.2022752
[1] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[2] | Sevda Sezer, Zeynep Eken . The Hermite-Hadamard type inequalities for quasi p-convex functions. AIMS Mathematics, 2023, 8(5): 10435-10452. doi: 10.3934/math.2023529 |
[3] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[4] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[5] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
[6] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for s-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[7] | Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[9] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[10] | Wenbing Sun, Rui Xu . Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals. AIMS Mathematics, 2021, 6(10): 10679-10695. doi: 10.3934/math.2021620 |
In this paper, we derive a new fractional integral identity and using this identity as an auxiliary result, some new trapezium like inequalities essentially using the class of generalized γ-convex functions are established. In order to show the efficiency of the obtained results, we discuss and present some special cases and applications.
A function F:C→R is said to be convex, if
F(ϑϖ1+(1−ϑ)ϖ2)≤ϑF(ϖ1)+(1−ϑ)F(ϖ2),∀ϖ1,ϖ2∈C,ϑ∈[0,1]. |
In recent years the classical concept of convex functions have been extended and generalized in different directions and an extensive research has been done in visualizing the properties of these new classes. For details, see [1,2,3,4,5]. The concept of generalized convex sets was defined by Cortez et al. [6] as follows:
Definition 1.1 ([6]). Let ρ,λ>0 and ε=(ε(0),…,ε(k),…) be a bounded sequence of positive real numbers. A non-empty set I⊆R is said to be generalized convex, if
ϖ1+τRελ,ρ(ϖ2−ϖ1)∈I,∀ϖ1,ϖ2∈I,τ∈[0,1]. |
Here Rελ,ρ(z) is the Raina's function and is defined as follows:
Rελ,ρ(z)=Rε(0),ε(1),…λ,ρ(z):=∞∑k=0ε(k)Γ(ρk+λ)zk,z∈C, | (1.1) |
where ρ,λ>0, with bounded modulus |z|<M, and ε={ε(0),ε(1),…,ε(k),…} is a bounded sequence of positive real numbers. For details, see [7].
The class of generalized convex functions is defined as:
Definition 1.2 ([6]). Let ρ,λ>0 and ε=(ε(0),…,ε(k),…) be a bounded sequence of positive real numbers. A function F:I⊆R→R is said to be generalized convex, if
F(ϖ1+τRελ,ρ(ϖ2−ϖ1))≤(1−τ)F(ϖ1)+τF(ϖ2),∀ϖ1,ϖ2∈I,τ∈[0,1]. |
For some recent studies regarding generalized convexity, see [6,8].
We now introduce the class of generalized γ-convex functions.
Definition 1.3 Let γ:(0,1)→R be a real function and ρ,λ>0 and ε=(ε(0),…,ε(k),…) be a bounded sequence of positive real numbers. A function F:I⊆R→R is said to be generalized γ-convex, if
F(ϖ1+τRελ,ρ(ϖ2−ϖ1))≤γ(1−τ)F(ϖ1)+γ(τ)F(ϖ2),∀ϖ1,ϖ2∈I,τ∈[0,1]. |
If the above inequality is reversed then we have the class of generalized γ-convexity.
Remark 1.1. Note that, if we take γ(t)=ts,t−s and γ(t)=1, then we recapture the classes of generalized convex functions, Breckner type of generalized s-convex functions [8], Godunova–Levin type of generalized s-convex functions and generalized P-convex functions, respectively from Definition 1.3. This shows that the class of generalized γ-convex functions is quite unifying as it relates several other classes of the convexity.
Theory of convex functions also played significant role in the development of theory of inequalities. Many inequalities particulary integral inequalities can be obtained easily using the concept of convex functions, see [9]. In recent years researchers have utilized different approaches in developing new analogues of classical inequalities. For example, Sarikaya et al. [10] elegantly used the concepts of fractional calculus in developing fractional analogues of Hermite–Hadamard's inequality. This paper opened a new venue in this direction and consequently extensive research has been done. For example, Du et al. [11] used the concepts of (s,m)-pre-invex functions and obtained variants of Hermite–Hadamard's inequality. Iqbal et al. [12] used the concepts of conformable fractional calculus and obtained new refinements of Hermite–Hadamard's inequality. Khurshid et al. [13] obtained conformable fractional Hermite–Hadamard's inequality using the class of pre-invex functions. Lei et al. [14] established some new bounds related to Fejér–Hermite–Hadamard type inequality and found their corresponding applications. Liao et al. [15] investigated Sugeno integral with respect to α-pre-invex functions. Erhan et al. [16] derived several Fejér–Hermite–Hadamard type inequalities for conformable fractional integrals. Zhang et al. [17] obtained some new k-fractional integral inequalities containing multiple parameters via generalized (s,m)-preinvexity. Mohammed et al. [18] established generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Mohammed et al. [19] derived a new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Iqbal et al. [20] obtained Hermite–Hadamard type inequalities pertaining conformable fractional integrals and their applications. Houas et al. [21] found certain weighted integral inequalities involving the fractional hypergeometric operators. Srivastava et al. [22] established new Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag–Leffler kernel. Mohammed et al. [23] derived new fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions. Srivastava et al. [24] obtained some families of Mittag–Leffler type functions and associated operators of fractional calculus. Fernandez et al. [25,26] investigated series representations for fractional-calculus operators involving generalised Mittag–Leffler functions. Srivastava et al. [27] established some new fractional-calculus connections between Mittag–Leffler functions. Srivastava et al. [28] investigated the study of fractional integral operators involving a certain generalized multi-index Mittag–Leffler function. Srivastava et al. [29] used fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Tomovski et al. [30] investigated fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions. Sahoo et al. [31] derived new fractional integral inequalities for convex functions pertaining to Caputo–Fabrizio operator. Butt et al. [32] obtained new fractional Mercer–Ostrowski type inequalities with respect to monotone function. Qaisar et al. [33] established some new fractional integral inequalities of Hermite–Hadamard's type through convexity. Zhao et al. [34] derived Hermite–Jensen–Mercer type inequalities for Caputo fractional derivatives.
We now discuss some preliminaries which will be helpful in studying the main results of this paper.
Definition 1.4 ([35]). Given a function F:[0,∞)→R, then
Dσ(F)(ϑ)=limϵ→0F(ϑ+ϵϑ1−σ)−F(ϑ)ϵ, |
for all ϑ>0,σ∈(0,1] is called fractional derivative.
We denote Fσ(ϑ),dσdσϑ(F) for Dσ(F)(ϑ).
Theorem 1.1 ([35]). Let σ∈(0,1] and F,g be σ-differentiable at a point ϑ>0. Then
(1) dσdσϑ(ϑn)=nϑn−σ, for all n∈R.
(2) dσdσϑ(c)=0, where c is a constant.
(3) dσdσϑ(ϖ1F(ϑ)+ϖ2g(ϑ))=ϖ1dσdσϑ(F(ϑ))+ϖ2dσdσϑ(g(ϑ)), for all ϖ1,ϖ2∈R.
(4) dσdσϑ(F(ϑ)g(ϑ))=F(ϑ)dσdσϑ(g(ϑ))+g(ϑ)dσdσϑ(F(ϑ)).
(5) dσdσϑ(F(ϑ)g(ϑ))=g(ϑ)dσdσϑ(F(ϑ))−F(ϑ)dσdσϑ(g(ϑ))(g(ϑ))2.
(6) dσdσϑ((F∘g)(ϑ))=F′(g(ϑ))dσdσϑ(g(ϑ)), for F differentiable at g(ϑ).
In addition, if F is differentiable, then
dσdσϑ(F(ϑ))=ϑ1−σddϑ(F(ϑ)). | (1.2) |
By applying (1.2), one can compute the following:
(1) dσdσϑ(1)=0.
(2) dσdσϑ(ecϑ)=cϑ1−σecϑ,c∈R.
(3) dσdσϑ(sin(cϑ))=cϑ1−σcos(cϑ),c∈R.
(4) dσdσϑ(cos(cϑ))=−cϑ1−σsin(cϑ),c∈R.
(5) dσdσϑ(1σϑσ)=1.
(6) dσdσϑ(sinϑσσ)=cos(ϑσσ).
(7) dσdσϑ(cosϑσσ)=−sin(ϑσσ).
(8) dσdσϑ(eϑσσ)=e(ϑσσ).
Theorem 1.2 ([35]). Let σ∈(0,1],F:[ϖ1,ϖ2]→R be continuous on [ϖ1,ϖ2] and σ-differentiable on (ϖ1,ϖ2) with 0<ϖ1<ϖ2. Then. there exists c∈(ϖ1,ϖ2) such that
dσdσϑ(F)(c)=F(ϖ2)−F(ϖ1)ϖ2σσ−ϖ1σσ. |
Definition 1.5 ([36]). Let σ∈(0,1] and 0≤ϖ1<ϖ2. A function F:[ϖ1,ϖ2]→R is σ-fractional integrable on [ϖ1,ϖ2] if the integral
ϖ2∫ϖ1F(x)dσx:=ϖ2∫ϖ1F(x)xσ−1dx, |
exists and is finite.
The set of all σ-fractional integrable functions on [ϖ1,ϖ2] is denoted by L1σ([ϖ1,ϖ2]).
Theorem 1.3 ([37]). Let F:(ϖ1,ϖ2)→R be σ-differentiable and 0<σ≤1. Then for all ϑ>ϖ1, we have
Iϖ1σDϖ1σ(F)(ϑ)=F(ϑ)−F(ϖ1). |
Theorem 1.4 ([37]).(Integration by parts)} Let F,g:[ϖ1,ϖ2]→R be two functions such that Fg is differentiable. Then
ϖ2∫ϖ1F(x)Dϖ1σg(x)dσx=(Fg)|ϖ2ϖ1−ϖ2∫ϖ1g(x)Dϖ1σF(x)dσx. |
Theorem 1.5 ([37]). Let F:[ϖ1,∞)→R be such that F(n)(ϑ) is continuous and σ∈(n,n+1] where n∈N. Then for all ϑ≥ϖ1, we have
Dϖ1σIϖ1σ(F)(ϑ)=F(ϑ). |
Theorem 1.6 ([38]). Let F:[ϖ1,ϖ2]→R be a continuous function with ϖ1<ϖ2 and 0<σ≤1. Then
|Iϖ1σ(F)(ϑ)|≤Iϖ1σ(|F|)(ϑ). |
We also need the following well-known beta functions (complete and incomplete), respectively, for some of our calculations, which are defined as:
B(x,y)=1∫0ϑx−1(1−ϑ)y−1dϑ,ℜ(x)>0,ℜ(y)>0,Bρ(x,y)=ρ∫0ϑx−1(1−ϑ)y−1dϑ,ℜ(x)>0,ℜ(y)>0,0<ρ≤1. |
The aim of this paper is to obtain a new integral identity and associated bounds essentially using the concept of generalized γ-convex functions. We also discuss special cases of the main results which shows that the obtained results are quite unifying one. Finally, we also present applications for particular special means with arbitrary positive real numbers, hypergeometric functions, Mittag–Leffler functions, differentiable functions of first order that are in absolute value bounded, and some error estimations of the quadrature formula as well. It is expected that the ideas and techniques of the paper will inspire interested readers.
In this section, we will discuss our main results.
Let us denote, respectively,
P:=[ϖ1,ϖ1+Rελ,ρ(ϖ2−ϖ1)] |
and
P∘:=(ϖ1,ϖ1+Rελ,ρ(ϖ2−ϖ1)) |
which is the interior of P with 0<Rελ,ρ(ϖ2−ϖ1) in the sequel. In order to prove main results of the paper, we need to prove following new auxiliary result.
Lemma 2.1. Let ϖ1,ϖ2∈R+ with 0<Rελ,ρ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), then
F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ∫ϖ1+Rελ,ρ(ϖ2−ϖ1)ϖ1F(s)dσs=Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ[∫120((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))2σ−1−ϖ1σ(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−1)×Dσ(F)(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))ϑ1−σdσϑ+∫112((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))2σ−1−(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−1)×Dσ(F)(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))ϑ1−σdσϑ]. |
Proof. It suffices to show that
I:=12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))2σ−1−ϖ1σ(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−1)×Dσ(F)(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))ϑ1−σdσϑ+1∫12((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))2σ−1−(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−1)×Dσ(F)(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))ϑ1−σdσϑ=12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))dϑ+1∫12((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ)F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))dϑ. |
Integrating by parts, we get
I=((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)F(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))Rελ,ρ(ϖ2−ϖ1)|120−σ12∫0(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−1F(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))dϑ+((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ)F(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))Rελ,ρ(ϖ2−ϖ1)|112−σ1∫12(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−1F(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))dϑ=1Rελ,ρ(ϖ2−ϖ1)[((ϖ1+Rελ,ρ(ϖ2−ϖ1)2)σ−ϖ1σ)F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σϖ1+Rελ,ρ(ϖ2−ϖ1)2∫ϖ1F(s)dσs+((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+Rελ,ρ(ϖ2−ϖ1)2)σ)×F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1+Rελ,ρ(ϖ2−ϖ1)2F(s)dσs]=1Rελ,ρ(ϖ2−ϖ1)[((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs]. |
This completes the proof.
In this subsection, using Lemma 2.1, we discuss our main results.
Theorem 2.1. Let ϖ1,ϖ2∈R+ with 0<Rελ,ρ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′| is generalized γ-convex function on P, then
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{|F′(ϖ1)|[A1+A2+A3]+|F′(ϖ2)|[B1+B2+B3]}, |
where
A1:=12∫0ϖ1σ−1(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))γ2(1−ϑ)dϑ−1∫12ϖ1σγ2(1−ϑ)dϑ, | (2.1) |
A2:=12∫0ϖ2σ−1(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))γ(ϑ)γ(1−ϑ)dϑ−1∫12ϖ2σγ(ϑ)γ(1−ϑ)dϑ, | (2.2) |
A3:=−12∫0ϖ1σγ(1−ϑ)dϑ+1∫12(ϖ1+Rελ,ρ(ϖ2−ϖ1))σγ(1−ϑ)dϑ, | (2.3) |
B1:=12∫0ϖ2σ−1(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))γ2(ϑ)dϑ−1∫12ϖ2σγ2(ϑ)dϑ, | (2.4) |
B2:=12∫0ϖ1σ−1(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))γ(ϑ)γ(1−ϑ)dϑ−1∫12ϖ1σγ(ϑ)γ(1−ϑ)dϑ, | (2.5) |
B3:=−12∫0ϖ1σγ(ϑ)dϑ+1∫12(ϖ1+Rελ,ρ(ϖ2−ϖ1))σγ(ϑ)dϑ. | (2.6) |
Proof. Using Lemma 2.1, generalized γ-convexity of xσ−1 and −xσ (x>0) for σ∈(0,1], |F′| is generalized γ-convex, and property of the modulus, we have
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ[12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ+1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ]≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ[12∫0((γ(1−ϑ)ϖ1σ−1+γ(ϑ)ϖ2σ−1)(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))−ϖ1σ)×[γ(1−ϑ)|F′(ϖ1)|+γ(ϑ)|F′(ϖ2)|]dϑ+1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−γ(1−ϑ)ϖ1σ−γ(ϑ)ϖ2σ)[γ(1−ϑ)|F′(ϖ1)|+γ(ϑ)|F′(ϖ2)|]dϑ]. |
The proof is completed.
We now discuss some special cases of Theorem 2.1.
(Ⅰ) If we take γ(ϑ)=ϑ in Theorem 2.1, we have
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ8[|F′(ϖ1)|+3|F′(ϖ2)|]+Rελ,ρ(ϖ2−ϖ1)|F′(ϖ1)|[11ϖ1σ−1+5ϖ2σ−1192]+Rελ,ρ(ϖ2−ϖ1)|F′(ϖ2)|[5ϖ1σ−1192+ϖ2σ−164]−ϖ1σ8[|F′(ϖ1)|+|F′(ϖ2)|]+ϖ1ϖ2σ−124[2|F′(ϖ1)|+|F′(ϖ2)|]−ϖ2σ24[2|F′(ϖ1)|+7|F′(ϖ2)|]}. |
(Ⅱ) If we choose γ(ϑ)=1 in Theorem 2.1, we get
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{[|F′(ϖ1)|+|F′(ϖ2)|]×[ϖ1ϖ2σ−1−ϖ2σ−ϖ1σ+(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ2+Rελ,ρ(ϖ2−ϖ1)(ϖ1σ−1+ϖ2σ−1)8]}. |
(Ⅲ) If we take γ(ϑ)=ϑs in Theorem 2.1, we obtain
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{|F′(ϖ1)|[A∗1+A∗2+A∗3]+|F′(ϖ2)|[B∗1+B∗2+B∗3]}, |
where
A∗1:=ϖ1σ2s+1[1−122s]+ϖ1σ−1Rελ,ρ(ϖ2−ϖ1)2s+1[12s+2−122s+2(2s+2)−122s+2], | (2.7) |
A∗2:=B12(1+s,1+s)ϖ2σ−1(ϖ1+ϖ2)+ϖ2σ−1Rελ,ρ(ϖ2−ϖ1)B12(1+s,1+s)−ϖ2σB(1+s,1+s), | (2.8) |
A∗3:=12s+1(s+1)[ϖ1σ+(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ2s+1], | (2.9) |
B∗1:=ϖ2σ−122s+1(2s+1)[(ϖ1+ϖ2+Rελ,ρ(ϖ2−ϖ1)−22s+1ϖ2], | (2.10) |
B∗2:=ϖ1σ−1B12(1+s,1+s)(ϖ1+Rελ,ρ(ϖ2−ϖ1))−ϖ1σ−1Rελ,ρ(ϖ2−ϖ1)B(1+s,1+s), | (2.11) |
B∗3:=−ϖ1σ2s+1(s+1)+(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ[1−12s+1(s+1)]. | (2.12) |
(Ⅳ) If we choose γ(ϑ)=ϑ−s in Theorem 2.1, we have
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{|F′(ϖ1)|[A∗∗1+A∗∗2+A∗∗3]+|F′(ϖ2)|[B∗∗1+B∗∗2+B∗∗3]}, |
where
A∗∗1:=ϖ1σ1−2s[1−12−2s]+ϖ1σ−1Rελ,ρ(ϖ2−ϖ1)1−2s[12−2s−122−2s(2−2s)−122−2s], | (2.13) |
A∗∗2:=B12(1+s,1+s)ϖ2σ−1(ϖ1+ϖ2)+ϖ2σ−1Rελ,ρ(ϖ2−ϖ1)B12(1−s,1−s)−ϖ2σB(1−s,1−s), | (2.14) |
A∗∗3:=121−s(1−s)[ϖ1σ+(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ21−s], | (2.15) |
B∗∗1:=ϖ2σ−121−2s(1−2s)[(ϖ1+ϖ2+Rελ,ρ(ϖ2−ϖ1)−21−2sϖ2], | (2.16) |
B∗∗2:=ϖ1σ−1B12(1−s,1−s)(ϖ1+Rελ,ρ(ϖ2−ϖ1))−ϖ1σ−1Rελ,ρ(ϖ2−ϖ1)B(1−s,1−s), | (2.17) |
B∗∗3:=−ϖ1σ21−s(1−s)+(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ[1−121−s(1−s)]. | (2.18) |
Theorem 2.2. Let ϖ1,ϖ2∈R+ with 0<Rελ,ρ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′|q is generalized γ-convex function on P, for q≥1, then
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H1|F′(ϖ1)|q+H2|F′(ϖ2)|q]1q+Kη1−1q[Kη1|F′(ϖ1)|q+Kη2|F′(ϖ2)|q]1q}, |
where
H:=(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+1−(2ϖ1)σ+12σ+1Rελ,ρ(ϖ2−ϖ1)(σ+1)−ϖ1σ2, | (2.19) |
H1:=12∫0[(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ]γ(1−ϑ)dϑ, | (2.20) |
H2:=12∫0[(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ]γ(ϑ)dϑ, | (2.21) |
Kη:=(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ2−(2ϖ1+2Rελ,ρ(ϖ2−ϖ1))σ+1−(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+12σ+1(σ+1)Rελ,ρ(ϖ2−ϖ1), | (2.22) |
Kη1:=1∫12[(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ]γ(1−ϑ)dϑ, | (2.23) |
Kη2:=1∫12[(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ]γ(ϑ)dϑ. | (2.24) |
Proof. Using Lemma 2.1 and property of the modulus, we have
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ[12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ+1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ]. |
By power mean integral inequality and generalized γ-convexity of |F′|q, we get
12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ≤(12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)dϑ)1−1q×(12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|qdϑ)1q≤H1−1q(|F′(ϖ1)|q12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)γ(1−ϑ)dϑ+|F′(ϖ2)|q12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)γ(ϑ)dϑ)1q. |
Similarly,
1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ≤(1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)dϑ)1−1q×(1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|qdϑ)1q≤Kη1−1q(|F′(ϖ1)|q1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)γ(1−ϑ)dϑ+|F′(ϖ2)|q1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)γ(ϑ)dϑ)1q, |
which completes the proof.
We now discuss some special cases of Theorem 2.2.
(Ⅰ) If we take γ(ϑ)=ϑ in Theorem 2.2, we have
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H∗1|F′(ϖ1)|q+H∗2|F′(ϖ2)|q]1q+Kη1−1q[Kη∗1|F′(ϖ1)|q+Kη∗2|F′(ϖ2)|q]1q}, |
where
H∗1:=(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+12σ+2(Rελ,ρ(ϖ2−ϖ1))2(σ+1)[(2ϖ1+Rελ,ρ(ϖ2−ϖ1))+Rελ,ρ(ϖ2−ϖ1)(σ+2)σ+2]−3ϖ1σ8−ϖ1σ+1(Rελ,ρ(ϖ2−ϖ1))2(σ+1)[ϖ1+Rελ,ρ(ϖ2−ϖ1)(σ+2)(σ+2)], | (2.25) |
H∗2:=(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+12σ+2(Rελ,ρ(ϖ2−ϖ1))2(σ+1)×[(2ϖ1)σ+2+Rελ,ρ(ϖ2−ϖ1)(σ+2)−(2ϖ1+Rελ,ρ(ϖ2−ϖ1))(σ+2)]−ϖ1σ8, | (2.26) |
Kη∗1:=(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+12σ+2(Rελ,ρ(ϖ2−ϖ1))2(σ+1)[Rελ,ρ(ϖ2−ϖ1)(σ+2)+(2ϖ1+Rελ,ρ(ϖ2−ϖ1))(σ+2)],+(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ[18−(ϖ1+Rελ,ρ(ϖ2−ϖ1))2(Rελ,ρ(ϖ2−ϖ1))2(σ+1)(σ+2)], | (2.27) |
Kη∗2:=3(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ8+(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+12σ+2(Rελ,ρ(ϖ2−ϖ1))2(σ+1)×[Rελ,ρ(ϖ2−ϖ1)(σ+2)−(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+2]+(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+1Rελ,ρ(ϖ2−ϖ1)(σ+1)[(ϖ1+Rελ,ρ(ϖ2−ϖ1))−Rελ,ρ(ϖ2−ϖ1)(σ+2)σ+2]. | (2.28) |
(Ⅱ) If we choose γ(ϑ)=1 in Theorem 2.2, we get
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H∗∗1(|F′(ϖ1)|q+|F′(ϖ2)|q)]1q+Kη1−1q[Kη∗∗1(|F′(ϖ1)|q+|F′(ϖ2)|q)]1q}, |
where
H∗∗1:=(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+12σ+1(Rελ,ρ(ϖ2−ϖ1))2(σ+1)−ϖ1σ2−ϖ1σ+1Rελ,ρ(ϖ2−ϖ1)(σ+1), | (2.29) |
Kη∗∗1:=(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ2−(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+1Rελ,ρ(ϖ2−ϖ1)(σ+1)+(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+12σ+1Rελ,ρ(ϖ2−ϖ1)(σ+1). | (2.30) |
(Ⅲ) If we take γ(ϑ)=ϑs in Theorem 2.2, we obtain
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ×{H1−1q[H⋆1|F′(ϖ1)|q+H⋆2|F′(ϖ2)|q]1q+Kη1−1q[Kη⋆1|F′(ϖ1)|q+Kη⋆2|F′(ϖ2)|q]1q}, |
where
H⋆1:=(Rελ,ρ(ϖ2−ϖ1))σB12(1+σ,1+s), | (2.31) |
H⋆2:=(Rελ,ρ(ϖ2−ϖ1))σ2σ+s+1(σ+s+1), | (2.32) |
Kη⋆1:=1∫12[(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ](1−ϑ)sdϑ, | (2.33) |
Kη⋆2:=1∫12[(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ]ϑsdϑ. | (2.34) |
(Ⅳ) If we choose γ(ϑ)=ϑ−s in Theorem 2.2, we have
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ×{H1−1q[H⋆⋆1|F′(ϖ1)|q+H⋆⋆2|F′(ϖ2)|q]1q+Kη1−1q[Kη⋆⋆1|F′(ϖ1)|q+Kη⋆⋆2|F′(ϖ2)|q]1q}, |
where
H⋆⋆1:=(Rελ,ρ(ϖ2−ϖ1))σB12(1+σ,1−s), | (2.35) |
H⋆⋆2:=(Rελ,ρ(ϖ2−ϖ1))σ2σ−s+1(σ−s+1), | (2.36) |
Kη⋆⋆1:=1∫12[(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ](1−ϑ)−sdϑ, | (2.37) |
Kη⋆⋆2:=1∫12[(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ]ϑ−sdϑ. | (2.38) |
Theorem 2.3. Let ϖ1,ϖ2∈R+ with 0<Rελ,ρ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′|q is γ-convex function on P, for q≥1, then
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ[H|F′(C1H)|+Kη|F′(C2Kη)|], |
where
C1:=(2ϖ1+Rελ,ρ(ϖ2−ϖ1))24(σ+2)Rελ,ρ(ϖ2−ϖ1)[(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−2σ−1ϖ1σ(σ+2)2σ] | (2.39) |
−σϖ1σ+22Rελ,ρ(ϖ2−ϖ1)(σ+2), | (2.40) |
C2:=(2ϖ1+Rελ,ρ(ϖ2−ϖ1))24(σ+2)Rελ,ρ(ϖ2−ϖ1)[(2ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−2σ−1(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ(σ+2)2σ]−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ+22Rελ,ρ(ϖ2−ϖ1)(σ+2), | (2.41) |
and H,Kη are defined as in Theorem 2.2 with the assumption that γ(1−ϑ)+γ(ϑ)=1.
Proof. By power mean integral inequality and generalized γ-convexity of |F′|q, we have
(γ(1−ϑ)|F′(ϖ1)|+γ(ϑ)|F′(ϖ2)|)q≤γ(1−ϑ)|F′(ϖ1)|q+γ(ϑ)|F′(ϖ2)|q≤|F′(ϖ1+Rελ,ρ(ϖ2−ϖ1))|q, |
which shows that |F′| is also generalized γ-convex.
By using Lemma 2.1 and property of the modulus, we get
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ[12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ+1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ]. |
Applying Jensen's integral inequality for convex functions, we have
12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ≤(12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)dϑ)×|F′(12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))dϑ12∫0((ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ−ϖ1σ)dϑ)|=H|F′(C1H)|. |
Similarly,
1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)|F′(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))|dϑ≤(1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)dϑ)×|F′(1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))dϑ1∫12((ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−(ϖ1+ϑRελ,ρ(ϖ2−ϖ1))σ)dϑ)|=Kη|F′(C2Kη)|, |
which completes the proof.
Remark 2.1. If we take Rελ,ρ(ϖ2−ϖ1)=ϖ2−ϖ1 and γ(ϑ)=ϑ,1,ϑs,ϑ−s, respectively, then we get the results for classical convex functions (see [39]), P-convex functions, s-convex functions, and Godunova–Levin convex functions.
Remark 2.2. If we set σ=1 in Theorems 2.1–2.3, then we get inequalities for classical integral. Moreover, several new results can be found using Hölder–İşcan, Hölder–Power Mean, Chebyshev, Markov, Young and Minkowski inequalities. We omit here their proofs and the details are left to the interested reader.
In this section, we discuss several applications for the results obtained in the previous section.
We begin, this subsection by considering some particular means for arbitrary positive real numbers ϖ1,ϖ2 such that ϖ1<ϖ2.
(1) The arithmetic mean:
A(ϖ1,ϖ2):=ϖ1+ϖ22. |
(2) The generalized logarithmic (σ,r)-th mean:
L(σ,r)(ϖ1,ϖ2):=[σ(ϖr+σ2−ϖr+σ1)(ϖσ2−ϖσ1)(r+σ)]1r,r≠0,−σ;r∈R,σ∈(0,1]. |
Now, by making use of the results obtained in Section 2, we give some applications to special means of different positive real numbers.
Proposition 3.1. Let 0<ϖ1<ϖ2,r>1 and σ∈(0,1], then
|Ar(ϖ1,ϖ2)−Lr(σ,r)(ϖ1,ϖ2)|≤r(ϖ2−ϖ1)ϖσ2−ϖσ1{ϖσ28[ϖr−11+3ϖr−12]+(ϖ2−ϖ1)ϖr−11[11ϖσ−11+5ϖσ−12192]+(ϖ2−ϖ1)ϖr−12[5ϖσ−11192+ϖσ−1264]−ϖσ18[ϖr−11+ϖr−12]+ϖ1ϖσ−1224[2ϖr−11+ϖr−12]−ϖσ224[2ϖr−11+7ϖr−12]}. |
Proof. Under the assumptions of Theorem 2.1, if we take Rελ,ρ(ϖ2−ϖ1)=ϖ2−ϖ1, γ(ϑ)=ϑ and F(ϑ)=ϑr for ϑ>0, we have the desired result.
For numerical verification if we take ϖ1=0, ϖ2=1,σ=1 and r=2, then we have 0.08333≤0.1979.
Proposition 3.2. Let 0<ϖ1<ϖ2,r>1,q≥1, and σ∈(0,1], then
|Ar(ϖ1,ϖ2)−Lr(σ,r)(ϖ1,ϖ2)|≤r(ϖ2−ϖ1)ϖσ2−ϖσ1{iH1−1q[H∗∗1ϖq(r−1)1+H∗∗2ϖq(r−1)2]1q+K∗μ1−1q[Kμ∗∗1ϖq(r−1)1+Kμ∗2ϖq(r−1)2]1q}, |
where
iH:=(ϖ1+ϖ2)σ+1−(2ϖ1)σ+12σ+1(ϖ2−ϖ1)(σ+1)−ϖ1σ2,H∗∗1:=12∫0[((1−ϑ)ϖ1+ϑϖ2)σ−ϖ1σ](1−ϑ)dϑ,H∗∗2:=12∫0[((1−ϑ)ϖ1+ϑϖ2)σ−ϖ1σ]ϑdϑ,K∗μ:=(ϖ2)σ2−(2ϖ1+2(ϖ2−ϖ1))σ+1−(2ϖ1+(ϖ2−ϖ1))σ+12σ+1(σ+1)(ϖ2−ϖ1),Kμ∗∗1:=1∫12[(ϖ2)σ−((1−ϑ)ϖ1+ϑϖ2)σ](1−ϑ)dϑ,Kμ∗∗2:=1∫12[(ϖ2)σ−((1−ϑ)ϖ1+ϑϖ2)σ]ϑdϑ. |
Proof. Under the assumptions of Theorem 2.2, if we choose Rελ,ρ(ϖ2−ϖ1)=ϖ2−ϖ1, γ(ϑ)=ϑ and F(ϑ)=ϑr for ϑ>0, we get the desired result.
For numerical verification if we take ϖ1=0, ϖ2=1,σ=1 and q=r=2, then we have 0.08333<0.3484.
Let U be the partition of the points ϖ1=μ0<μ1<…<μn−1<μn=ϖ1+Rελ,ρ(ϖ2−ϖ1) of the interval P for fixed λ,ρ>0, and ε={ε(0),ε(1),…,ε(k),…} and be a bounded sequence of positive real numbers. Now, we consider the following quadrature formula:
ϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs:=Mσ(F,U)+Rσ(F,U), |
where
Mσ(F,U):=n−1∑i=0F(2μi+Rελ,ρ(μi+1−μi)2)[(μi+Rελ,ρ(μi+1−μi))σ−μσiσ] |
is the midpoint version and Rσ(F,U) denotes the associated approximation error. Here, we are going to derive some new error estimates for the midpoint formula.
Proposition 3.3. Let ϖ1,ϖ2∈R+ with 0<Rελ,ρ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′| is generalized γ-convex function on P, then
|Rσ(F,U)|≤n−1∑i=0Rελ,ρ(μi+1−μi)σ{|F′(μi)|[A(i)1+A(i)2+A(i)3]+|F′(μi+1)|[B(i)1+B(i)2+B(i)3]}, |
where
A(i)1:=12∫0μσ−1i(μi+ϑRελ,ρ(μi+1−μi))γ2(1−ϑ)dϑ−1∫12μσiγ2(1−ϑ)dϑ,A(i)2:=12∫0μσ−1i+1(μi+ϑRελ,ρ(μi+1−μi))γ(ϑ)γ(1−ϑ)dϑ−1∫12μσi+1γ(ϑ)γ(1−ϑ)dϑ,A(i)3:=−12∫0μσiγ(1−ϑ)dϑ+1∫12(μi+Rελ,ρ(μi+1−μi))σγ(1−ϑ)dϑ,B(i)1:=12∫0μσ−1i+1(μi+ϑRελ,ρ(μi+1−μi))γ2(ϑ)dϑ−1∫12μσi+1γ2(ϑ)dϑ,B(i)2:=12∫0μσ−1i(μi+ϑRελ,ρ(μi+1−μi))γ(ϑ)γ(1−ϑ)dϑ−1∫12μσiγ(ϑ)γ(1−ϑ)dϑ,B(i)3:=−12∫0μσiγ(ϑ)dϑ+1∫12(μi+Rελ,ρ(μi+1−μi))σγ(ϑ)dϑ. |
Proof. Applying Theorem 2.1 on the subintervals [μi,μi+Rελ,ρ(μi+1−μi)](i=0,1,2,…,n−1) of the partition U, we have
|F(2μi+Rελ,ρ(μi+1−μi)2)[(μi+Rελ,ρ(μi+1−μi))σ−μσiσ]−μi+Rελ,ρ(μi+1−μi)∫μiF(s)dσs|≤Rελ,ρ(μi+1−μi)σ{|F′(μi)|[A(i)1+A(i)2+A(i)3]+|F′(μi+1)|[B(i)1+B(i)2+B(i)3]}. |
Summing up with respect to i from 0 to n−1 and using the properties of the modulus, we get the desired result.
Proposition 3.4. Let ϖ1,ϖ2∈R+ with 0<Rελ,ρ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′|q is generalized γ-convex function on P, for q≥1, then
|Rσ(F,U)|≤n−1∑i=0Rελ,ρ(μi+1−μi)σ×π{(H(i))1−1q[H(i)1|F′(μi)|q+H(i)2|F′(μi+1)|q]1q+(Kη(i))1−1q[Kη(i)1|F′(μi)|q+Kη(i)2|F′(μi+1)|q]1q}, |
where
H(i):=(2μi+Rελ,ρ(μi+1−μi))σ+1−(2μi)σ+12σ+1Rελ,ρ(μi+1−μi)(σ+1)−μσi2,H(i)1:=12∫0[(μi+ϑRελ,ρ(μi+1−μi))σ−μσi]γ(1−ϑ)dϑ,H(i)2:=12∫0[(μi+ϑRελ,ρ(μi+1−μi))σ−μσi]γ(ϑ)dϑ,Kη(i):=(μi+Rελ,ρ(μi+1−μi))σ2−(2μi+2Rελ,ρ(μi+1−μi))σ+1−(2μi+Rελ,ρ(μi+1−μi))σ+12σ+1(σ+1)Rελ,ρ(μi+1−μi),Kη(i)1:=1∫12[(μi+Rελ,ρ(μi+1−μi))σ−(μi+ϑRελ,ρ(μi+1−μi))σ]γ(1−ϑ)dϑ,Kη(i)2:=1∫12[(μi+Rελ,ρ(μi+1−μi))σ−(μi+ϑRελ,ρ(μi+1−μi))σ]γ(ϑ)dϑ. |
Proof. Using the same technique as in Proposition 3.3 but applying Theorem 2.2, we obtain the desired result.
From relation (1.1), if we set ρ=1,λ=0 and σ(k)=(ϕ)k(ψ)k(η)k≠0, where ϕ,ψ and η are parameters may be real or complex values and (m)k is defined as (m)k=Γ(m+k)Γ(m) and its domain is restricted as |x|≤1, then we have the following hypergeometric function
R(ϕ;ψ;η;x)=∞∑k=0(ϕ)k(ψ)kk!(η)kxk. |
Lemma 3.1. Let ϖ1,ϖ2∈R+ with 0<R(ϕ;ψ;η;ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), then
F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ∫ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)ϖ1F(s)dσs=R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ[∫120((ϖ1+ϑR(ϕ;ψ;η;ϖ2−ϖ1))2σ−1−ϖ1σ(ϖ1+ϑR(ϕ;ψ;η;ϖ2−ϖ1))σ−1)Dσ(F)(ϖ1+ϑR(ϕ;ψ;η;ϖ2−ϖ1))ϑ1−σdσϑ+∫112((ϖ1+ϑR(ϕ;ψ;η;ϖ2−ϖ1))2σ−1−(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ(ϖ1+ϑR(ϕ;ψ;η;ϖ2−ϖ1))σ−1)×Dσ(F)(ϖ1+ϑR(ϕ;ψ;η;ϖ2−ϖ1))ϑ1−σdσϑ]. |
Theorem 3.1. Let ϖ1,ϖ2∈R+ with 0<R(ϕ;ψ;η;ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′| is generalized γ-convex function on P, then
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ{|F′(ϖ1)|[A1+A2+A3]+|F′(ϖ2)|[B1+B2+B3]}, |
where A1,A2,A3,B1,B2 and B3 are given by (2.1)–(2.6), respectively.
We now discuss some special cases of Theorem 3.1.
(Ⅰ) If we take γ(ϑ)=ϑ in Theorem 3.1, we have
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)−|σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ{(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ8[|F′(ϖ1)|+3|F′(ϖ2)|]+R(ϕ;ψ;η;ϖ2−ϖ1)|F′(ϖ1)|[11ϖ1σ−1+5ϖ2σ−1192]+R(ϕ;ψ;η;ϖ2−ϖ1)|F′(ϖ2)|[5ϖ1σ−1192+ϖ2σ−164]−ϖ1σ8[|F′(ϖ1)|+|F′(ϖ2)|]+ϖ1ϖ2σ−124[2|F′(ϖ1)|+|F′(ϖ2)|]−ϖ2σ24[2|F′(ϖ1)|+7|F′(ϖ2)|]}. |
(Ⅱ) If we choose γ(ϑ)=1 in Theorem 3.1, we get
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)|−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ{[|F′(ϖ1)|+|F′(ϖ2)|]×[ϖ1ϖ2σ−1−ϖ2σ−ϖ1σ+(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ2+R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1σ−1+ϖ2σ−1)8]}. |
(Ⅲ) If we take γ(ϑ)=ϑs in Theorem 3.1, we obtain
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)|−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ{|F′(ϖ1)|[A∗1+A∗2+A∗3]+|F′(ϖ2)|[B∗1+B∗2+B∗3]}, |
where A∗1,A∗2,A∗3,B∗1,B∗2 and B∗3 are given by (2.7)–(2.12), respectively.
(Ⅳ) If we choose γ(ϑ)=ϑ−s in Theorem 3.1, we have
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)|−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ{|F′(ϖ1)|[A∗∗1+A∗∗2+A∗∗3]+|F′(ϖ2)|[B∗∗1+B∗∗2+B∗∗3]}, |
where A∗∗1,A∗∗2,A∗∗3,B∗∗1,B∗∗2 and B∗∗3 are given by (2.13)–(2.18), respectively.
Theorem 3.2. Let ϖ1,ϖ2∈R+ with 0<R(ϕ;ψ;η;ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′|q is generalized γ-convex function on P, for q≥1, then
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)|−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H1|F′(ϖ1)|q+H2|F′(ϖ2)|q]1q+Kη1−1q[Kη1|F′(ϖ1)|q+Kη2|F′(ϖ2)|q]1q}, |
where H,H1,H2,Kη,Kη1 and Kη2 are given by (2.19)–(2.24), respectively.
We now discuss some special cases of Theorem 3.2.
(Ⅰ) If we take γ(ϑ)=ϑ in Theorem 3.2, we have
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)|−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H∗1|F′(ϖ1)|q+H∗2|F′(ϖ2)|q]1q+Kη1−1q×[Kη∗1|F′(ϖ1)|q+Kη∗2|F′(ϖ2)|q]1q}, |
where H∗1,H∗2,Kη∗1 and Kη∗2 are given by (2.25)–(2.28), respectively.
(Ⅱ) If we choose γ(ϑ)=1 in Theorem 3.2, we get
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)|−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H∗∗1(|F′(ϖ1)|q+|F′(ϖ2)|q)]1q+Kη1−1q×[Kη∗∗1(|F′(ϖ1)|q+|F′(ϖ2)|q)]1q}, |
where H∗∗1 and Kη∗∗1 are given by (2.29) and (2.30).
(Ⅲ) If we take γ(ϑ)=ϑs in Theorem 2.2, we obtain
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)|−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ×{H1−1q[H⋆1|F′(ϖ1)|q+H⋆2|F′(ϖ2)|q]1q+Kη1−1q[Kη⋆1|F′(ϖ1)|q+Kη⋆2|F′(ϖ2)|q]1q}, |
where H⋆1,H⋆2,Kη⋆1 and Kη⋆2 are given by (2.31)–(2.34), respectively.
(Ⅳ) If we choose γ(ϑ)=ϑ−s in Theorem 2.2, we have
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)|−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ×{H1−1q[H⋆⋆1|F′(ϖ1)|q+H⋆⋆2|F′(ϖ2)|q]1q+Kη1−1q[Kη⋆⋆1|F′(ϖ1)|q+Kη⋆⋆2|F′(ϖ2)|q]1q}, |
where H⋆⋆1,H⋆⋆2,Kη⋆⋆1 and Kη⋆⋆2 are given by (2.35)–(2.38), respectively.
Theorem 3.3. Let ϖ1,ϖ2∈R+ with 0<R(ϕ;ψ;η;ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′|q is γ-convex function on P, for q≥1, then
|F(2ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)2)|−σ(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σϖ1+R(ϕ;ψ;η;ϖ2−ϖ1)∫ϖ1F(s)dσs|≤R(ϕ;ψ;η;ϖ2−ϖ1)(ϖ1+R(ϕ;ψ;η;ϖ2−ϖ1))σ−ϖ1σ[H|F′(C1H)|+Kη|F′(C2Kη)|], |
where C1 and C2 are given by (2.40) and (2.41)and H,Kη are defined as in Theorem 2.2 with the assumption that γ(1−ϑ)+γ(ϑ)=1.
Moreover if we take σ=(1,1,1...),λ=1 and ρ=ϕ with ℜ(ϕ)>0 in (1.1), then we obtain well-known Mittag–Leffler function:
Rϕ(x)=∞∑k=01Γ(1+ϕk)xk. |
Lemma 3.2. Let ϖ1,ϖ2∈R+ with 0<Rϕ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), then
F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ∫ϖ1+Rϕ(ϖ2−ϖ1)ϖ1F(s)dσs=Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ×[∫120((ϖ1+ϑRϕ(ϖ2−ϖ1))2σ−1−ϖ1σ(ϖ1+ϑRϕ(ϖ2−ϖ1))σ−1)×Dσ(F)(ϖ1+ϑRϕ(ϖ2−ϖ1))ϑ1−σdσϑ+∫112((ϖ1+ϑRϕ(ϖ2−ϖ1))2σ−1−(ϖ1+Rϕ(ϖ2−ϖ1))σ(ϖ1+ϑRϕ(ϖ2−ϖ1))σ−1)×Dσ(F)(ϖ1+ϑRϕ(ϖ2−ϖ1))ϑ1−σdσϑ]. |
Theorem 3.4. Let ϖ1,ϖ2∈R+ with 0<Rϕ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′| is generalized γ-convex function on P, then
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ{|F′(ϖ1)|[A1+A2+A3]+|F′(ϖ2)|[B1+B2+B3]}, |
where A1,A2,A3,B1,B2 and B3 are given by (2.1)–(2.6), respectively.
We now discuss some special cases of Theorem 3.4.
(Ⅰ) If we take γ(ϑ)=ϑ in Theorem 3.4, we have
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ{(ϖ1+Rϕ(ϖ2−ϖ1))σ8[|F′(ϖ1)|+3|F′(ϖ2)|]+Rϕ(ϖ2−ϖ1)|F′(ϖ1)|[11ϖ1σ−1+5ϖ2σ−1192]+Rϕ(ϖ2−ϖ1)|F′(ϖ2)|[5ϖ1σ−1192+ϖ2σ−164]−ϖ1σ8[|F′(ϖ1)|+|F′(ϖ2)|]+ϖ1ϖ2σ−124[2|F′(ϖ1)|+|F′(ϖ2)|]−ϖ2σ24[2|F′(ϖ1)|+7|F′(ϖ2)|]}. |
(Ⅱ) If we choose γ(ϑ)=1 in Theorem 3.4, we get
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ×{[|F′(ϖ1)|+|F′(ϖ2)|][ϖ1ϖ2σ−1−ϖ2σ−ϖ1σ+(ϖ1+Rϕ(ϖ2−ϖ1))σ2+Rϕ(ϖ2−ϖ1)(ϖ1σ−1+ϖ2σ−1)8]}. |
(Ⅲ) If we take γ(ϑ)=ϑs in Theorem 3.4, we obtain
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ{|F′(ϖ1)|[A∗1+A∗2+A∗3]+|F′(ϖ2)|[B∗1+B∗2+B∗3]}, |
where A∗1,A∗2,A∗3,B∗1,B∗2 and B∗3 are given by (2.7)–(2.12), respectively.
(Ⅳ) If we choose γ(ϑ)=ϑ−s in Theorem 3.4, we have
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ{|F′(ϖ1)|[A∗∗1+A∗∗2+A∗∗3]+|F′(ϖ2)|[B∗∗1+B∗∗2+B∗∗3]}, |
where A∗∗1,A∗∗2,A∗∗3,B∗∗1,B∗∗2 and B∗∗3 are given by (2.13)–2.18), respectively.
Theorem 3.5. Let ϖ1,ϖ2∈R+ with 0<Rϕ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′|q is generalized γ-convex function on P, for q≥1, then
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H1|F′(ϖ1)|q+H2|F′(ϖ2)|q]1q+Kη1−1q×[Kη1|F′(ϖ1)|q+Kη2|F′(ϖ2)|q]1q}, |
where H,H1,H2,Kη,Kη1 and Kη2 are given by (2.19)–(2.24), respectively.
We now discuss some special cases of Theorem 3.5.
(Ⅰ) If we take γ(ϑ)=ϑ in Theorem 3.5, we have
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H∗1|F′(ϖ1)|q+H∗2|F′(ϖ2)|q]1q+Kη1−1q[Kη∗1|F′(ϖ1)|q+Kη∗2|F′(ϖ2)|q]1q}, |
where H∗1,H∗2,Kη∗1 and Kη∗2 are given by (2.25)–(2.28), respectively.
(Ⅱ) If we choose γ(ϑ)=1 in Theorem 3.5, we get
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H∗∗1(|F′(ϖ1)|q+|F′(ϖ2)|q)]1q+Kη1−1q[Kη∗∗1(|F′(ϖ1)|q+|F′(ϖ2)|q)]1q}, |
where H∗∗1 and K∗∗1 are given by (2.29) and (2.30).
(Ⅲ) If we take γ(ϑ)=ϑs in Theorem 3.5, we obtain
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ×{H1−1q[H⋆1|F′(ϖ1)|q+H⋆2|F′(ϖ2)|q]1q+Kη1−1q[Kη⋆1|F′(ϖ1)|q+Kη⋆2|F′(ϖ2)|q]1q}, |
where H⋆1,H⋆2,Kη⋆1 and Kη⋆2 are given by (2.31)–(2.34), respectively.
(Ⅳ) If we choose γ(ϑ)=ϑ−s in Theorem 3.5, we have
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ×{H1−1q[H⋆⋆1|F′(ϖ1)|q+H⋆⋆2|F′(ϖ2)|q]1q+Kη1−1q[Kη⋆⋆1|F′(ϖ1)|q+Kη⋆⋆2|F′(ϖ2)|q]1q}, |
where H⋆⋆1,H⋆⋆2,Kη⋆⋆1 and Kη⋆⋆2 are given by (2.35)–(2.38), respectively.
Theorem 3.6. Let ϖ1,ϖ2∈R+ with 0<Rϕ(ϖ2−ϖ1), and let F:P→R be a differentiable function on P∘ for σ∈(0,1]. If Dσ(F)∈L1σ(P), and |F′|q is γ-convex function on P, for q≥1, then
|F(2ϖ1+Rϕ(ϖ2−ϖ1)2)−σ(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rϕ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤Rϕ(ϖ2−ϖ1)(ϖ1+Rϕ(ϖ2−ϖ1))σ−ϖ1σ[H|F′(C1H)|+Kη|F′(C2Kη)|], |
where C1 and C2 are given by (2.40) and (2.41) and H,Kη are defined as in Theorem 2.3 with the assumption that γ(1−ϑ)+γ(ϑ)=1.
In this last section, we discuss applications regarding bounded functions in absolute value of the results obtained from our main results. We suppose that the following condition is satisfied:
|F′|≤M. |
Applying the above condition, we have the following results.
Corollary 3.1. Under the assumptions of Theorem 2.1, the following inequality holds:
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤MRελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{A1+A2+A3+B1+B2+B3}. |
Corollary 3.2. Under the assumptions of Theorem 2.2, the following inequality holds:
|F(2ϖ1+Rελ,ρ(ϖ2−ϖ1)2)−σ(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σϖ1+Rελ,ρ(ϖ2−ϖ1)∫ϖ1F(s)dσs|≤MRελ,ρ(ϖ2−ϖ1)(ϖ1+Rελ,ρ(ϖ2−ϖ1))σ−ϖ1σ{H1−1q[H1+H2]1q+Kη1−1q[Kη1+Kη2]1q}. |
In this paper we obtain a new integral identity and associated bounds essentially using the concept of generalized γ-convex functions. We also discussed special cases of the main results which shown that the obtained results are quite unifying one. Moreover, we also presented several applications for particular special means with arbitrary positive real numbers, hypergeometric functions, Mittag–Leffler functions, differentiable functions of first order that are in absolute value bounded, and some error estimations of the quadrature formula as well. Since the class of generalized γ-convex functions have large applications in many mathematical areas, they can be applied to obtain several results in convex analysis, special functions, quantum mechanics, related optimization theory, and mathematical inequalities and may stimulate further research in different areas of pure and applied sciences. Studies relating convexity, partial convexity, and preinvex functions (as contractive operators) may have useful applications in complex interdisciplinary studies, such as maximizing the likelihood from multiple linear regressions involving Gauss–Laplace distribution. For more details, see [40,41,42,43,44,45]. We hope that our ideas and techniques of this paper will inspire interested readers working in this field.
The authors are thankful to the editor and the anonymous reviewers for their valuable comments and suggestions. This research is supported by Project number (RSP-2021/158), King Saud University, Riyadh, Saudi Arabia.
The authors have no conflicts of interest to declare.
[1] | W. W. Breckner, Stetigkeitsaussagen fiir eine Klasse verallgemeinerter convexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978), 13–20. |
[2] | S. S. Dragomir, J. Pecarič, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341. |
[3] | E. K. Godunova, V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. Fiz. Mezvuzov. Sb. Nauc. Trudov, 1985,138–142. |
[4] | S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 |
[5] |
S. Wu, M. U. Awan, M. A. Noor, K. I. Noor, S. Iftikhar, On a new class of convex functions and integral inequalities, J. Inequal. Appl., 2019 (2019), 131. https://doi.org/10.1186/s13660-019-2074-y doi: 10.1186/s13660-019-2074-y
![]() |
[6] |
M. J. Vivas-Cortez, R. Liko, A. Kashuri, J. E. H. Hernández, New quantum estimates of trapezium-type inequalities for generalized φ-convex functions, Mathematics, 7 (2019), 1047. https://doi.org/10.3390/math7111047 doi: 10.3390/math7111047
![]() |
[7] | R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East As. Math. J., 21 (2015), 191–203. |
[8] |
M. J. Vivas-Cortez, M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, Trapezium-like inequalities involving k-th order differentiable Rγ-convex functions and applications, Symmetry, 14 (2022), 448. https://doi.org/10.3390/sym14030448 doi: 10.3390/sym14030448
![]() |
[9] | S. S. Dragomir, C. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, Science Direct Working Paper, 2003. Available from: https://ssrn.com/abstract=3158351. |
[10] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
![]() |
[11] | T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard–Simpson type for the generalized (s,m)-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112–3126. |
[12] |
A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, Some New Hermite–Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), 9845407. https://doi.org/10.1155/2020/9845407 doi: 10.1155/2020/9845407
![]() |
[13] |
Y. Khurshid, M. A. Khan, Y. M. Chu, Z. A. Khan, Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via pre-invex functions, J. Funct. Spaces, 2019 (2019), 3146210. https://doi.org/10.1155/2019/3146210 doi: 10.1155/2019/3146210
![]() |
[14] |
H. Lei, T. S. Du, Some new bounds related to Fejér–Hermite–Hadamard type inequality and their applications, ScienceAsia, 45 (2019), 361–370. https://doi.org/10.2306/scienceasia1513-1874.2019.45.361 doi: 10.2306/scienceasia1513-1874.2019.45.361
![]() |
[15] |
J. G. Liao, S. H. Wu, T. S. Du, The Sugeno integral with respect to α-preinvex functions, Fuzzy Sets Syst., 379 (2020), 102–114. https://doi.org/10.1016/j.fss.2018.11.008 doi: 10.1016/j.fss.2018.11.008
![]() |
[16] |
S. Erhan, I. Mumcu, Hermite–Hadamard–Fejér type inequalities for conformable fractional integrals, Misk. Math. Notes, 20 (2019), 475–488. https://doi.org/10.18514/MMN.2019.2421 doi: 10.18514/MMN.2019.2421
![]() |
[17] | Y. Zhang, T. S. Du, H. Wang, Some new k-fractional integral inequalities containing multiple parameters via generalized (s,m)-preinvexity, Ital. J. Pure Appl. Math., 40 (2018), 510–527. |
[18] |
P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. https://doi.org/10.3390/sym12040595 doi: 10.3390/sym12040595
![]() |
[19] |
P. O. Mohammed, I. Brevik, A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610
![]() |
[20] |
A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, A. Kashuri, Hermite–Hadamard type inequalities pertaining conformable fractional integrals and their applications, AIP Adv., 8 (2018), 075101. https://doi.org/10.1063/1.5031954 doi: 10.1063/1.5031954
![]() |
[21] | M. Houas, Certain weighted integral inequalities involving the fractional hypergeometric operators, Scientia, Ser. A, Math. Sci., 27 (2016), 87–97. |
[22] |
H. M. Srivastava, A. Kashuri, P. O. Mohammed, A. M. Alsharif, J. L. G. Guirao, New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag–Leffler kernel, AIMS Math., 6 (2021), 11167–11186. https://doi.org/10.3934/math.2021648 doi: 10.3934/math.2021648
![]() |
[23] |
P. O. Mohammed, T. Abdeljawad, D. Baleanu, A. Kashuri, F. Hamasalh, P. Agarwal, New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions, J. Inequal. Appl., 2020 (2020), 263. https://doi.org/10.1186/s13660-020-02538-y doi: 10.1186/s13660-020-02538-y
![]() |
[24] | H. M. Srivastava, Some families of Mittag–Leffler type functions and associated operators of fractional calculus, TWMS J. Pure Appl. Math., 7 (2016), 123–145. |
[25] |
A. Fernandez, D. Baleanu, H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag–Leffler functions, Commun. Nonlinear Sci. Numer. Simulat., 67 (2019), 517–527. https://doi.org/10.1016/j.cnsns.2018.07.035 doi: 10.1016/j.cnsns.2018.07.035
![]() |
[26] | A. Fernandez, D. Baleanu, H. M. Srivastava, Corrigendum to "Series representations for fractional-calculus operators involving generalised Mittag–Leffler functions" [Commun. Nonlinear Sci. Numer. Simulat. 67 (2019) 517–527], Commun. Nonlinear Sci. Numer. Simulat. 82 (2020), 104963. https://doi.org/10.1016/j.cnsns.2019.104963 |
[27] |
H. M. Srivastava, A. Fernandez, D. Baleanu, Some new fractional-calculus connections between Mittag–Leffler functions, Mathematics, 7 (2019), 485. https://doi.org/10.3390/math7060485 doi: 10.3390/math7060485
![]() |
[28] |
H. M. Srivastava, M. K. Bansal, P. Harjule, A study of fractional integral operators involving a certain generalized multi-index Mittag–Leffler function, Math. Meth. Appl. Sci., 41 (2018), 6108–6121. https://doi.org/10.1002/mma.5122 doi: 10.1002/mma.5122
![]() |
[29] |
H. M. Srivastava, Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055
![]() |
[30] |
Ž. Tomovski, R. Hilfer, H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions, Integr. Transf. Spec. F., 21 (2010), 797–814. https://doi.org/10.1080/10652461003675737 doi: 10.1080/10652461003675737
![]() |
[31] |
S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo–Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171
![]() |
[32] |
S. I. Butt, A. Nosheen, J. Nasir, K. A. Khan, R. M. Mabela, New fractional Mercer–Ostrowski type inequalities with respect to monotone function, Math. Probl. Eng., 2022 (2022), Article ID 7067543. https://doi.org/10.1155/2022/7067543 doi: 10.1155/2022/7067543
![]() |
[33] |
S. Qaisar, J. Nasir, S. I. Butt, S. Hussain, On some fractional integral inequalities of Hermite–Hadamard's type through convexity, Symmetry, 11 (2019), 137. https://doi.org/10.3390/sym11020137 doi: 10.3390/sym11020137
![]() |
[34] |
J. Zhao, S. I. Butt, J. Nasir, Z. Wang, I. Tlili, Hermite–Jensen–Mercer type inequalities for Caputo fractional derivatives, J. Funct. Spaces, 2020 (2020), Article ID 7061549. https://doi.org/10.1155/2020/7061549 doi: 10.1155/2020/7061549
![]() |
[35] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[36] | D. R. Anderson, Taylor's formula and integral inequalities for conformable fractional derivatives, In: P. M. Pardalos, T. M. Rassias, Contributions in mathematics and engineering, Springer, 2016, 25–43. https://doi.org/10.1007/978-3-319-31317-7_2 |
[37] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
![]() |
[38] |
O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2 (2016), 115–122. https://doi.org/10.18576/pfda/020204 doi: 10.18576/pfda/020204
![]() |
[39] |
M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite–Hadamard type inequalities for conformable fractional integrals, RACSAM, 112 (2018), 1033–1048. https://doi.org/10.1007/s13398-017-0408-5 doi: 10.1007/s13398-017-0408-5
![]() |
[40] |
X. S. Zhou, C. X. Huang, H. J. Hu, L. Liu, Inequality estimates for the boundedness of multilinear singular and fractional integral operators, J. Inequal. Appl., 2013 (2013), 303. https://doi.org/10.1186/1029-242X-2013-303 doi: 10.1186/1029-242X-2013-303
![]() |
[41] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Chichester: Ellis Halsted Press, 1985. |
[42] | N. S. Barnett, P. Cerone, S. S. Dragomir, J. Roumeliotis, Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Inequal. Pure Appl. Math., 2 (1999), 1–18. |
[43] | N. S. Barnett, S. S. Dragomir, Some elementary inequalities for the expectation and variance of a random variable whose pdf is defined on a finite interval, RGMIA Res. Rep. Collect., 2 (1999), 1–7. |
[44] |
P. Cerone, S. S. Dragomir, On some inequalities for the expectation and variance, Korean J. Comput. Appl. Math., 8 (2000), 357–380. https://doi.org/10.1007/BF02941972 doi: 10.1007/BF02941972
![]() |
[45] | J. E. Pečarič, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Vol. 187, New York: Academic Press, 1992. |