Research article

Fractional integral estimations pertaining to generalized $ {\gamma} $-convex functions involving Raina's function and applications

  • Received: 30 March 2022 Revised: 11 May 2022 Accepted: 17 May 2022 Published: 23 May 2022
  • MSC : 26D07, 26D10, 26D15, 26A33, 26A51, 60E15

  • In this paper, we derive a new fractional integral identity and using this identity as an auxiliary result, some new trapezium like inequalities essentially using the class of generalized $ {\gamma} $-convex functions are established. In order to show the efficiency of the obtained results, we discuss and present some special cases and applications.

    Citation: Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor. Fractional integral estimations pertaining to generalized $ {\gamma} $-convex functions involving Raina's function and applications[J]. AIMS Mathematics, 2022, 7(8): 13633-13663. doi: 10.3934/math.2022752

    Related Papers:

  • In this paper, we derive a new fractional integral identity and using this identity as an auxiliary result, some new trapezium like inequalities essentially using the class of generalized $ {\gamma} $-convex functions are established. In order to show the efficiency of the obtained results, we discuss and present some special cases and applications.



    加载中


    [1] W. W. Breckner, Stetigkeitsaussagen fiir eine Klasse verallgemeinerter convexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978), 13–20.
    [2] S. S. Dragomir, J. Pecarič, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [3] E. K. Godunova, V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. Fiz. Mezvuzov. Sb. Nauc. Trudov, 1985,138–142.
    [4] S. Varošanec, On $h$-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086
    [5] S. Wu, M. U. Awan, M. A. Noor, K. I. Noor, S. Iftikhar, On a new class of convex functions and integral inequalities, J. Inequal. Appl., 2019 (2019), 131. https://doi.org/10.1186/s13660-019-2074-y doi: 10.1186/s13660-019-2074-y
    [6] M. J. Vivas-Cortez, R. Liko, A. Kashuri, J. E. H. Hernández, New quantum estimates of trapezium-type inequalities for generalized $\varphi$-convex functions, Mathematics, 7 (2019), 1047. https://doi.org/10.3390/math7111047 doi: 10.3390/math7111047
    [7] R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East As. Math. J., 21 (2015), 191–203.
    [8] M. J. Vivas-Cortez, M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, Trapezium-like inequalities involving $k$-th order differentiable $\mathcal{R}_{\gamma}$-convex functions and applications, Symmetry, 14 (2022), 448. https://doi.org/10.3390/sym14030448 doi: 10.3390/sym14030448
    [9] S. S. Dragomir, C. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, Science Direct Working Paper, 2003. Available from: https://ssrn.com/abstract=3158351.
    [10] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [11] T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard–Simpson type for the generalized $(s, m)$-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112–3126.
    [12] A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, Some New Hermite–Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), 9845407. https://doi.org/10.1155/2020/9845407 doi: 10.1155/2020/9845407
    [13] Y. Khurshid, M. A. Khan, Y. M. Chu, Z. A. Khan, Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via pre-invex functions, J. Funct. Spaces, 2019 (2019), 3146210. https://doi.org/10.1155/2019/3146210 doi: 10.1155/2019/3146210
    [14] H. Lei, T. S. Du, Some new bounds related to Fejér–Hermite–Hadamard type inequality and their applications, ScienceAsia, 45 (2019), 361–370. https://doi.org/10.2306/scienceasia1513-1874.2019.45.361 doi: 10.2306/scienceasia1513-1874.2019.45.361
    [15] J. G. Liao, S. H. Wu, T. S. Du, The Sugeno integral with respect to $\alpha$-preinvex functions, Fuzzy Sets Syst., 379 (2020), 102–114. https://doi.org/10.1016/j.fss.2018.11.008 doi: 10.1016/j.fss.2018.11.008
    [16] S. Erhan, I. Mumcu, Hermite–Hadamard–Fejér type inequalities for conformable fractional integrals, Misk. Math. Notes, 20 (2019), 475–488. https://doi.org/10.18514/MMN.2019.2421 doi: 10.18514/MMN.2019.2421
    [17] Y. Zhang, T. S. Du, H. Wang, Some new $k$-fractional integral inequalities containing multiple parameters via generalized $(s, m)$-preinvexity, Ital. J. Pure Appl. Math., 40 (2018), 510–527.
    [18] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. https://doi.org/10.3390/sym12040595 doi: 10.3390/sym12040595
    [19] P. O. Mohammed, I. Brevik, A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610
    [20] A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, A. Kashuri, Hermite–Hadamard type inequalities pertaining conformable fractional integrals and their applications, AIP Adv., 8 (2018), 075101. https://doi.org/10.1063/1.5031954 doi: 10.1063/1.5031954
    [21] M. Houas, Certain weighted integral inequalities involving the fractional hypergeometric operators, Scientia, Ser. A, Math. Sci., 27 (2016), 87–97.
    [22] H. M. Srivastava, A. Kashuri, P. O. Mohammed, A. M. Alsharif, J. L. G. Guirao, New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag–Leffler kernel, AIMS Math., 6 (2021), 11167–11186. https://doi.org/10.3934/math.2021648 doi: 10.3934/math.2021648
    [23] P. O. Mohammed, T. Abdeljawad, D. Baleanu, A. Kashuri, F. Hamasalh, P. Agarwal, New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions, J. Inequal. Appl., 2020 (2020), 263. https://doi.org/10.1186/s13660-020-02538-y doi: 10.1186/s13660-020-02538-y
    [24] H. M. Srivastava, Some families of Mittag–Leffler type functions and associated operators of fractional calculus, TWMS J. Pure Appl. Math., 7 (2016), 123–145.
    [25] A. Fernandez, D. Baleanu, H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag–Leffler functions, Commun. Nonlinear Sci. Numer. Simulat., 67 (2019), 517–527. https://doi.org/10.1016/j.cnsns.2018.07.035 doi: 10.1016/j.cnsns.2018.07.035
    [26] A. Fernandez, D. Baleanu, H. M. Srivastava, Corrigendum to "Series representations for fractional-calculus operators involving generalised Mittag–Leffler functions" [Commun. Nonlinear Sci. Numer. Simulat. 67 (2019) 517–527], Commun. Nonlinear Sci. Numer. Simulat. 82 (2020), 104963. https://doi.org/10.1016/j.cnsns.2019.104963
    [27] H. M. Srivastava, A. Fernandez, D. Baleanu, Some new fractional-calculus connections between Mittag–Leffler functions, Mathematics, 7 (2019), 485. https://doi.org/10.3390/math7060485 doi: 10.3390/math7060485
    [28] H. M. Srivastava, M. K. Bansal, P. Harjule, A study of fractional integral operators involving a certain generalized multi-index Mittag–Leffler function, Math. Meth. Appl. Sci., 41 (2018), 6108–6121. https://doi.org/10.1002/mma.5122 doi: 10.1002/mma.5122
    [29] H. M. Srivastava, Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055
    [30] Ž. Tomovski, R. Hilfer, H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions, Integr. Transf. Spec. F., 21 (2010), 797–814. https://doi.org/10.1080/10652461003675737 doi: 10.1080/10652461003675737
    [31] S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo–Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171
    [32] S. I. Butt, A. Nosheen, J. Nasir, K. A. Khan, R. M. Mabela, New fractional Mercer–Ostrowski type inequalities with respect to monotone function, Math. Probl. Eng., 2022 (2022), Article ID 7067543. https://doi.org/10.1155/2022/7067543 doi: 10.1155/2022/7067543
    [33] S. Qaisar, J. Nasir, S. I. Butt, S. Hussain, On some fractional integral inequalities of Hermite–Hadamard's type through convexity, Symmetry, 11 (2019), 137. https://doi.org/10.3390/sym11020137 doi: 10.3390/sym11020137
    [34] J. Zhao, S. I. Butt, J. Nasir, Z. Wang, I. Tlili, Hermite–Jensen–Mercer type inequalities for Caputo fractional derivatives, J. Funct. Spaces, 2020 (2020), Article ID 7061549. https://doi.org/10.1155/2020/7061549 doi: 10.1155/2020/7061549
    [35] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [36] D. R. Anderson, Taylor's formula and integral inequalities for conformable fractional derivatives, In: P. M. Pardalos, T. M. Rassias, Contributions in mathematics and engineering, Springer, 2016, 25–43. https://doi.org/10.1007/978-3-319-31317-7_2
    [37] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [38] O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2 (2016), 115–122. https://doi.org/10.18576/pfda/020204 doi: 10.18576/pfda/020204
    [39] M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite–Hadamard type inequalities for conformable fractional integrals, RACSAM, 112 (2018), 1033–1048. https://doi.org/10.1007/s13398-017-0408-5 doi: 10.1007/s13398-017-0408-5
    [40] X. S. Zhou, C. X. Huang, H. J. Hu, L. Liu, Inequality estimates for the boundedness of multilinear singular and fractional integral operators, J. Inequal. Appl., 2013 (2013), 303. https://doi.org/10.1186/1029-242X-2013-303 doi: 10.1186/1029-242X-2013-303
    [41] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Chichester: Ellis Halsted Press, 1985.
    [42] N. S. Barnett, P. Cerone, S. S. Dragomir, J. Roumeliotis, Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Inequal. Pure Appl. Math., 2 (1999), 1–18.
    [43] N. S. Barnett, S. S. Dragomir, Some elementary inequalities for the expectation and variance of a random variable whose pdf is defined on a finite interval, RGMIA Res. Rep. Collect., 2 (1999), 1–7.
    [44] P. Cerone, S. S. Dragomir, On some inequalities for the expectation and variance, Korean J. Comput. Appl. Math., 8 (2000), 357–380. https://doi.org/10.1007/BF02941972 doi: 10.1007/BF02941972
    [45] J. E. Pečarič, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Vol. 187, New York: Academic Press, 1992.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1389) PDF downloads(96) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog